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ABSTRACT

The Monte Carlo method is used in this work to investigate the tem-
perature effects on the Doppler coefficient of reactivity and resonance
capture probability due to a non-uniform temperature distribution in the
fuel reds arrayed in a reactor lattice., ©Scattering is allowed in the
fuel and moderator, and Doppler broadening of the resonances is taken into
account.,

This investigation begins with the Boltzmann equation describing the
transport of neutronsin steady state. By transforming this equation into
an integral equation, the solution can be expressed as a Neumann series,
for which a convergence criterion is established. It is shown that the
Neumann series can be used to obtain series equivalents for general reactor
parameters and their derivatives which depend on the neutron collision
density.

A Monte Carlo process that traces neutrons in spatial propagation and
energy degradation through a reactor can be related to random walk chains
governed by the source and kernel of the integral equation. Also, once
the relationship between Monte Carlo histories and the Neumann series ig
established, one can determine the proper form for random variables which
depend upon the paths of the neutron histories in order to evaluate reactor
parameters and their derivatives by Monte Carlo. By application of this
technique a new and direct method is devised for evaluating the Doppler
coefficient,

vi



As an example of this method a computer program was developed for a
cylindrical cell and a fuel rod with arbitrary radial temperature de-
pendence, Several cases for different fuel temperatures were investigated
using water moderator and UOs fuel. Results illustrating temperature de-
pendence of the Doppler coefficient of ractivity and the resonance capture
probability are reported for uniform temperature and parabolic temperature
distributions in the fuel.

The results indicate that this direct method of calculating the Dop-
pler coefficient by Monte Carlo is practical, and allows more efficient
use of computer time in comparison to empirical and finite difference ap-
proximations previously used. It is also concluded that the Doppler co-
efficient is more sensitive than the capture probability to a temperature
distribution appropriate to power reactors. This Monte Carlo program also
provides the means of investigating these same effects for temperature

distributions appropriate to reactors in excursion conditions.
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CHAPTER I

INTRODUCTION

A. BACKGROUND

Nuclear reactors may contain in the fuel certain nuclides, such as
U-235, U-238, Pu-239, and Th-232, which have neutron resonances that lie
within the neutron energy spectrum present in reactors. If the tempera-
ture of the resonance material were at absolute zero, then each resonance
would have a shape, called 'natural line' shape, with very sharp peak and
very narrow energy width. Because of the thermal motion of atoms at nor-
mal reactor temperatures, the relative energy distribution of the neutrons
and target nuclei changes as the temperature of the material increases and
causes the resonances to broaden and lower. This phenomenon is called
'Doppler broadening', and is named after Christian Dopplerl who noticed
similar effects in his original work with light waves. The Breit and

Wigner2

single level formula for neutron resonance cross sections is sim-
ilar to that for the natural shape of an optical line. In 1937 Bethe and
Placzek? discussed Doppler broadening of a neutron absorption resonance
caused by the thermal agitation of the resonance atoms and derived ex-
pressions describing the temperature dependence of the cross sections.

The effect of the Doppler broadening of resonances on the neutron re-
action rate is called the Doppler effect and the resulting influence on

the reactivity of a nuclear reactor is called the Doppler temperature co-

efficient of reactivity. The dependence of the Doppler coefficient of



reactivity upon fuel temperature makes it important in reactor safety
considerations because a decrease in reactivity with increasing fuel tem-
Perature helps to make a power excursion self-limiting. U-238 produces
Just such an effect whereas fissile resonance absorbers cause the oppo-
site effect. Also the capture of neutrons in the resonances of U-238 and
the ensuing conversion to Pu-239 is an important factor in long term tem-
poral studies of reactor criticality.
It is reportedlL that as early as 1957, Meitner, Hahn and

Strassmann first surmised that neutrons were absorbed in re-

sonances of U-238, and that soon thereafter Fermi and Szilard

recognized that resonance absorption could be decreased by mix-

ing the fuel and moderator heterogeneously instead of homogen-

eously.
At Szilard's suggestion, Wigner, Creutz, Jupnik, and Snyder5 performed ex-
perimental and theoretical studies in 1941 on resonance absorption of neu-
trons in heterogeneous fuel-moderator systems that included measurements
of the temperature dependence in uranium dioxide (UOZ). Since that time
many authors have reported extensive work, both of theoretical and experi-
mental nature, that has contributed to the understanding and quantitative
evaluation of the importance of the Doppler effect in the design and per-
formance of nuclear reactors. The work for thermal reactors has been re-
viewed by Creutz, Jupnik, Snyder alrld'Wiglrler)1L in 1955, by‘Wigner6 in 1956,
by Sampson and Chernickl in 1958, by Nordheim®:9 in 1959 and 1961, and by
PearcelO in 1961. The importance of the Doppler effect in fast reactors
has been studied by Feshback, Goertzel and Yamanchi,ll Frost, Kato and

Butler,12 and Nicholson.l? The remainder of this discussion will deal

exclusively with thermal reactors.



The temperature dependence of the Doppler effect has also been in-
vestigated with Monte Carlo techniques by Morton,lLP and Arnold and Dan-
nels.l® The latter authors used the REP code developed by Richtmyer,
Van Norton and WOlfe,l6 which treats the slowing down of neutrons from a
"1/E" source in a rectangular cell with cylindrical fuel rod. The code
allows use of the Breit-Wigner single level formula for the resonances.
PearcelO and Hellstrand, Blomberg, and Hornert ! have indicated that the
discrepancy among experimental and theoretical methods in evaluating tem=-
perature dependence of the resonance integral of uranium metal, uranium
dioxide, thorium metal and thorium dioxide lies cutside the limits of
experimental error. However, recently Nordheim18 has discussed a new
method of calculating the resonance integral which assumes isolation of
the individual resonances and invclves numerical integration to deter-
mine average collision densities in the fuel and moderator regions. He
has obtained quantitative agreement of the resonance integrals for ura-
nium metal and uranium dioxide and their temperature dependence with the
experimental results of Hellstrand, Blomberg and Horner. LT

In the references on thermal reactors cited above, the Doppler co-

efficient is defined as

a0 - L O(RI) (1-1)

(RI) oT

where T is the fuel temperature, and (RI) is the effective resonance in-

tegral, which is related to the rescnance escape probability, p, by the



following expression:

P = ’e_(RI)/EEE (1-2)

where EEE is the average slowing down power per resonance atom. Since
the temperature coefficient of reactivity is given by (1/k) Ok/dT where
k is the multiplication constant of the reactor, then the contribution
to the temperature coefficient due to Doppler broadening of the resonances

is given by

= afnop (1-3)

b Loy

aqo/

H I3
[

and i1s called the Doppler coefficient of reactivity in order to make the
verbal distinction between Eq. (1-1) and (1-3). In theoretical studies
in the past 1t has been the practice to obtain the Doppler coefficient by
approximating the differential in Eq. (1-1) or (1-3) as a finite differ-
ence or by fitting the temperature dependence of the resonance integral
by an empirical curve functiqnally dependent on Tl/2.

Monte Carlo has also been used in conJjunction with other calculational
methods in reactor analysis in order to obtain more accurate design infor-
mation and knowledge of temporal behavior. Ritsi and Mintonl? have used
Monte Carlo to treat the slowing down of neutrons through the resonance
energy region and thence to provide energy group constants for the Muft
and Sufocate codes, which are multigroup codes for the epi-thermal and

thermal energy regions, respectively. In addition, Leshan, Burr, Temme,



Morrison, Thompson and Triplettgo have combined Monte Carlo with diffusion
theory and kinetic equations for fuel life-time studies.

All of the works mentioned previously have considered only a uniform
temperature in the fuel, however in operating power reactors the temper-
ature distributions are non-uniform. In fact BelleZl gives evidence that
the ratio of the peak to surface fuel temperature (absolute temperature
scale) for uranium dioxide could be greater than three depending on power
density and size of fuel rods. Under certain cases he reports temperatures
of about 2740°C and 400°C, respectively, in a simulation of an operating
power reactor with uranium dioxide fuel. There has been very little pub-
lished work discussing the effects of a non-uniform temperature distribu-
tion. The case of a 1 cm slab of uranium metal with surfaces at 0°K and
mid-plane at 900°K was studied by Keane®® who used a simplified model of
the U-238 resonance structure and assumed neutrons to be normally incident
on the slab. In addition, Dresnera) performed a similar study for a sin-
gle resonance on an isolated cylindrical fuel rod with maximum temperature
ratio of two, using resonance parameters typical of U-238 resonances.

Both authors conjectured that the resonance capture probability for a
parabolic temperature distribution can be approximated by that of a uni-
form temperature at the mean temperature, however both authors neglected
scattering and neither discussed the validity of the approximation in ob-
taining the Doppler coefficient of reactivity.

The neglect of scattering could be a serious error since the neutron

width is comparable or greater than the capture width for at least half



of the resolved resonances of U-238 and the expected value of the neutron
width is greater than the capture width for the unresolved resonances.
Furthermore the absolute zero temperature used by Keane does not have
physical significance for metal or oxide fuels as noted by Lamb.Eu The
Monte Carlo method is an attractive alternative to the analysis of Keane
and Dresner, since the problem of a non-uniform fuel temperature can be
solved by Monte Carlo for a realistic reactor simulation without making
the assumptions and approximations introduced by them.

For our purpose, Monte Carlc can be thought of as a mathematical ex-
periment, involving the use of random sampling procedures, for simulating
and studying a physical process or solving a deterministic mathematical
problem. The physical process that we are studying is the slowing down
of neutrons through the resonances of fuel in a heterogeneous reactor sys-
tem. This process can be described by the Boltzmann transport equation,
which is used to formulate the mathematical experiment. Alternatively,
the Boltzmann equation could be solved by standard numerical technigues,
but because of the resonance structure of the fuel and the geometry of
the reactor lattice, there is a danger that the systematic errors or pos-
sible instabilities inherent in numerical analysis would mask the small
but important effects that we are looking for in this problem. Monte Carlo
avolds this difficulty and can be made more determinably accurate by in-

creasing the number of histories processed.

B. SCOPE OF RESEARCH

The Monte Carlo method is used in this work to investigate the tem-



perature effects on the Doppler coefficient of reactivity and resonance
capture probability due to a non-uniform temperature distribution in the
fuel rods arrayed in a reactor lattice. Scattering is allowed in the fuel
and moderator, and Doppler broadening of the resonances is taken into ac-
count. A new and direct method of evaluating the Doppler coefficlent by
Monte Carlo is obtained and discussed in succeeding chapters.

The investigation in Chapter II uses as a foundation the Boltzmann
equation describing the transport of neutrons in a steady state condition.
By use of the Green's function technique, the Boltzmann equation is trans-
formed in this study to a transport integral equation, the solution of
which is written in terms of the Neumann series. Although integral equi-
valents of the Boltzmann equation for specific conditions have been pre-
sented elsewhere?5526 the derivdation presented in this investigation is
kept general in order that the resulting integral transport equation be
applicable for the same general conditions which apply to the Boltzmann
equation., Furthermore this general form is required for our study of the
problem of non-uniform fuel temperature. By using the mathematical prop-
erties of Banach abstract spaces, we can investigate the convergence of
the Neumann series and establish a convergence criterion, which is re-
quired in the work of succeeding chapters.

In view of the fact that the purpose of this study is to include in-
vestigation of reactor parameters, such as the resonance capture probabil-
ity and the Doppler coefficient, a general parameter is represented by the

integral of the product of a function and the collision density. The de-



rivative of the parameter equals the derivative of the integral. It is
then shown in Chapter II that the Neumann series can be used to obtain
series equivalents for the integral and its derivative, and that these
series converge for conditions that are usually satisfied in physical sys-
tems. A perusal of these Neumann series representations, which are given
in Chapter II, indicates that closed form solutions are intractable be-
cause of the multiple integration involved in the terms of the series.
However, these series can be evaluated by Monte Carlo.

In 1953 Alvert®T introduced a stochastic model for describing a ran-
dom walk process, and in 1960 Spanier28 studied and generalized this model
by using the rigorous mathematics of modern probability theory. Both au-
thors discussed the application of Albert's model to the study by Monte
Carlo of the solution of a Fredholm type integral equation by assuming
uniform convergence of the Neumann series associated with the integral
equation. Spanier recognized applicability to neutron transport problems
under the assumption of convergence. Since the convergence of the Neumann
series solution of the Boltzmann transport equation is established in Chap-
ter II, the basic stochastic model of Albert for a general random walk
process is used in Chapter ITII. Also in view of the convergence of the
Neumann series representations of reactor parameters and their derivatives,
the application of Albert's model to neutron transport is reformulated and
extended to the evaluation of reactor parameters and their derivatives.
The investigation presented in the second and third chapters results in

the complete and straightforward formulation of a rigorous stochastic model



for evaluating reactor parameters and their derivatives by Mcnte Carlo.
The work in this chapter is kept general; in fact, the results can be
applied to the behavior of gamma rays for shielding problems.

The stochastic model formulated in Chapter III is specialized in Chap-
ter IV to the class of slowing down problems in a reactor. In this case
the neutrons are emitted from a given high energy source and are processed
by Monte Carlo according to random walk chains that are specialized in this
chapter to specifically describe energy degradation and spatial propagation
through the fuel and moderator regions. Since the type of collisions are
restricted to those in which a neutron loses energy but cannot gain energy,
this study is not applicable to the thermal energy region. However, this
restriction 1s compatible with the study of temperature coefficient and
capture probability due to Doppler broadening of the resonances in uranium
fuel. The Monte Carlo treatment for this problem is formulated for a gen-
eral temperature distributicn in the fuel rod.

Previous to this work, the Doppler coefficient was obtained by an
empirical fit to a curve of capture probability plctted versus temperature,
or by a finite difference approximation to the differential, as described
in Section I-A. This was done only in the case of a constant fuel tempera-
ture but could be applied to the case of a non-uniform temperature distri-
bution. By applying the results of the investigation in Chapter III, a
method of determining the Doppler coefficient directly by the Monte Carlo
process is devised. 1In this way the Doppler coefficient is no longer de-

pendent upon the inherent uncertainties of the two previous methods. Also
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as discussed in Chapter VI, the direct method allows a very considerable
saving of computer time in determining the Doppler coefficient to a given
accuracy.

As an example of the method given in Chapter IV, a computer program
was written for a circular cylindrical cell geometry. This cell geometry
was used instead of a rectangular cell geometry in order to save computer
time. This savings in time is possible because neutron paths incident on
the cell boundary are reflected along a chord similar to the incident chord.
The results are presented for a parabolic temperature distri bution, water
moderator and U-238 oxide resonance material.

This work results in a new method for determining the Doppler coef-
ficient by Monte Carlo that is founded on a systematic deductive approach.
Although the method could conceivably be formulated by intuition alone;
evidently no one has done it. Furthermore the mathematical development
avoids the introduction of assumptions that can be justified only by intu-
ition. The method 1s shown to be applicable to physical systems of inter-

est in reactor studies.



CHAPTER ITI

INTEGRAL TRANSPORT EQUATION AND NEUMANN SERTES

In this chapter an integral equation for the transport of neutrons
is obtained from the steady-state Boltzmann equation. If one writes the
integral equation in terms of neutron collision density rather than neu-
tron flux, and represents a point in the 6-dimensional phase space (neu-
tron energy, direction, and position) by the variable T, then the integral
equation may be written in standard form.

In Section II—B the Neumann series solution of the integral equation
is determined by iteration. In investigating the convergence of the re-
sulting Neumann series the more conventional techniques can not be relied
upon since the kernel of the integral equation does not belong to Hilbert
space. However the kernel does belong to the more general abstract space,
namely Banach space. By using the appropriate definitions of norms and
properties of transformations in Banach space the convergence for the Neu-
mann series for neutron transport can be rigorously proven. The most im-
portant physical condition for the convergence is that the ratio of scat-
tering to total cross section have a maximum value less than one. This

is a reasonable conditicn for realistic reactor or shielding systems.

11
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A. DERIVATION OF INTEGRAL TRANSPORT EQUATION FROM BOLTZMANN EQUATION
The Boltzmann equation describing the transport of neutrons serves
as the foundation for this work. For the steady state case it is given

by, 26

V-9 r,EQ) +2(x,E) ¢r,E,0) = S(r,EQ)

(2-1)

+ /ﬁ(;,E',Q') 2o(E,Q|E",0';r) A" dE'
Ei QI

where the following definitions and identifications apply:

n(r,E,Q) d°r dE dn

1

The expected number of neutrons in
d3r about r with energies in dE about

E and going in the direction dQ about Q.

®r,E,0) = n(r,E,0) v(E)
= Neutron "flux"
v(E) = Speed of neutron of energy E
S(r,E,Q) = DNeutron source
Zt(E:E) = Total macroscopic cross section
2s(E,Q|E',0';r) = Differential scattering cross section

In order to derive the integral equation equivalent to (2-1), con-
sider the Green's function G(r,E,Q|r',E',Q') satisfying the differential

equation
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Ve OG + Zt(E’E) G(_I;:E32|£')EYJQ! )
(2-2)
= o(r - x') 8(E-E') 5,(2 - 2")
and the boundary conditions
(2-3)

The notation ® is defined as the Dirac delta function and the notation

62 is defined as

1
. ' = e—— . L -
5,(2 - 2) = zz8(g- 0 -1) (2-4)
Let
M, = 8¢ Q! (2-5)
then 1t is noted that
Jfag(g - Q') Ao = k/p62(g © Q') 4o’
) o}
2-6)
1 en (
- L Jf u/\ &(ur, = 1) dup, 4@ =1
2
uLz—l CD:O

Equation (2-2) is solved in Appendix A by Fourier Transform tech-

The solution for the Green's function is found to be

niques.
|z-r'|
f Zt(E,_I'_' + QR R')dR?
G(EJE:QIE';E',Q') a3r' @' aQ' = e © )
(2-7)
a3r' 4E' 40!
-5 (a-a)s(a-q)dE-E"
A RS lr - r'|?



r-r r-r (2-8)
where Q. = — = = 2-
—R I._Etl R

Let H(r',E',Q') represent the right hand side of equation (2-1), then
by superposition,
CD(E)E:_Q) = G(E:E)QIE’)E'JQ'> .

EIEIQ!
(2-9)

- qH(r',E',Q") 4% dE' 4o

is an integral equivalent of Eq. (2-1). The method of proving equiva-
lence is given by Churchil129. Equation (2-1) can be obtained by multi-
plying Eq. (2-2) by H(r',E',Q') and integrating over all r',E',Q'.

Substitute the right hand side of (2-1) for H(r',E',Q') into (2-9).
One can then integrate over E', and Q', employing the properties of the
Dirac delta function, and obtain

|r-z|
_/p 2y dR'

3,1 L
o(r,E,Q) = f 'l—d'“‘r""'l‘z e0 5 (Q - ) S(E':E:Q)
r - r'

(2-10)
" JQ(E’:E”)Q”) ZS(E)QIE”)Q/”;T') aE" aq"
EH Q”
Equation (2-10) can be put in the form of a standard integral equation by

introducing the following definitions:

W(_I'_JE)Q) = ZH—(E:E) Q(T:E:Q)

v —_— —_—

Collision density
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5,(0-0g)

- z|®

= Transport kernel

1

5(x,E,0) \/nS(g',E,Q) ™r|r';E,0) a°r!

rl

= (Colligion density source

1

¢(E,Q|EY,0";x")AEAQ e
Zt(zf:E')

X.(E,0[E",0';x")dEdQ

= (Collision kernel

K(E,E,Q_|£',E',Q')

C(E,0|E','s5r") T(z|r';E,0)
= Kernel of integral equation
Finally the integral form of the Boltzmann transport equation can be writ-

ten for the neutron collision density as

W(.]:JE:Q_) = g(E)EJQ.)
(2-11)
+ f/fwszg) K(r,E,0[r",E', Q") a°' dE' dQ'
(8 oL
EIE'Q‘
It is further noted that the following relations exist:
JFT(£|£’;E,Q) d°r = 1 (2-12)
L
L. (E',r")
ffc(E,s_ziE',_@';z'> aBdQ = (2-13)
Z"’[_",(E')E’)

E Q'
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N E',r!
hence /p/i/ﬁK(r,E,Q}r',E',Q') a3r dEdq = —Eﬁ———é—l (2-14)
vv e Ze(E',x")

The integral transport equation for neutrons can also be obtained
directly by physical arguments if one notes that the kernels be expres-
sed as the following conditional probsbilities:

K(r,E,0|r',E',0') @3 dEdQ = The probability that a neutron with en-
ergy E' and going in direction Q' shall, upon suffering a collision at r',
be scattered into dE about E and dQ about ( after that collision and shall
suffer its next collision in d°r about r.

C(E,QIE',Q';E') dE dQ = The probability that a neutron with energy
E' and going in direction Q' shall, upon suffering a collision at r', be
scattered into dE about E and dQ about Q after that collision.

T(£|£';E,Q) a3r = The probability that a neutron at r' with energy
E and going in direction ( shall suffer its next collision in a3r about
E.

ZS(E,E)/Zt(E,E) = The probability that a collision suffered by a

neutron with energy E at r was a scattering collision.

B. FORMULATION OF NEUMANN SERIES AND CONVERGENCE CRITERION

The integral equation for neutron transport can be put in a more com-
pact form for use in this section by letting T represent the 6-dimensional
vector of phase space in Eq. (2-11),

W) = 80 +fK(T|Tf> W) ar (2-15)

T !
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where ar = a°r dEdq (2-16)

The Neumann series solution of Eq. (2-15) can be obtained by succes-
sive iteration.BO The first iteration is found by substituting the right
hand side of (2-15) for Y(t') appearing in the integral term of (2-15),

obtaining

'w(T) = g(T) +k/ﬁ K(T|TO) g(To) dTg

T
o)

(2-17)

+ \/P\/FK(TITI) K(TllTO) W(TO) dTO dTl
T To

The second iteration is formed by substituting the right hand side of
(2-17) for ¥(t') into (2-15). Higher order iterations are formed by suc-
cessively substituting the previous iterative value of ¥(rt) into the in-

tegral term of (2-15). After m iterations there results,

v(T) = }: ?%(T) + Remainder (2-18)
n=o
where %g(T) = §(TO) (2-19)

and for n >1

%é(T) = Jﬁ":/ﬁK(TITn_l) "'K(T1|TO) g(To) dTo"'dTn N (2-20)
n-1 o

and also
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Remainder = b/j'l/\ K(TITm)"'K(TllTO) W(TO) drgye--dTy " (2-21)
™ To

The Neumann series is then formed by letting m approach infinity and neg-

lecting the remainder term,

(T) (2-22)

#

y(r) =

B

e

=
I
O

It is remarked that the n®™ term in (2—22)physically represents the con-
tribution to the collision density at T due to source neutrons which have
undergone exactly n scattering collisions.

The question of convergence of the Neumann series has been thoroughly
studied for the special case that Eq. (2-15) is a Fredholm integral equa-
tion of the 2nd kind and which has elements belonging to Hilbert 1.2
space.ﬁ’52 In that special case the Neumann series converges if the

norm of the kernel is less than one, i.e., if

k|| = ff 1X(r]7*) |2 ar ar /2 (2-23)

Unfortunately, the kernel for the neutron transport integral equation is
not square integrable, which is a necessary condition for the solution of
Eq. (2-15) to belong to L2 space.

However, the criterion for the establishment of convergence of the
Neumann series can be obtained by generalizing to Banach space (P space) .

Actually the functional space Lp(l < p < w) and the space of continuous
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functions C are particular cases of the Banach abstract space. Briefly
a Banach space is a set of abstract elements, and is a linear space, a
complete space, and has a norm (positive) for every element of the ab-
stract set. The elements of the set may be points, measurable functions,*®
transformed functions or functionals (operators). The mathematical des-
cription of a Banach space is given in Appendix B.

For a Banach space the norm of a measurable function, f, defined in

the region € isBO

norm = Hf“

f|f(x)|p dx h/o (2-24)
1€

in 1P space, 1 <p < w, or

norm = ||f|] = max |£(x)] (2-25)
in C or L” space.
The norm of a linear transformation, T, belonging to Banach space is

defined as

norm = [T = M, (2-26)

where M, is the smallest of the bounds M, and where

el < M|zl (2-27)

¥Functions which are continuous or have a finite number of finite discon-
tinuities are measurable. Functions that concern us here, namely those
which describe physical processes, are measurable. For a rigorous defini-
tion based on set theory the reader is referred to Halmos>) or Doob.BLL
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The convergence criterion for the Neumann series for neutron trans-
port can now be established within the framework of Banach spaces and

linear transformations. Writing Eq. (2-15) as a functional equation:
W(T) = g(T) +-X¢(T) (2—28)
or (I-X)v = § (2-29)

where I is the identity transformation and & is the linear transformation,
associated with the kernel K(T|T'), which transforms the measurable func-
tion ¥ into the measurable function XV, i.e-.,

Xu(r) = fK(TIT')w(T')dT' (2-30)

TY

the Neumann series in this notation becomes

() = Z‘/H(T) = §+ xS+ AT + ¥F + ... (2-%1)

The elements of the integral Eq. (2-15) ér (2-29» belong to Banach
Lt space under the conditions that the norm of S exists and is finite and
the norm of K is bounded. In fact the source ié a non-negative quantity;
therefore, for L' space,

T f|§<7>|ld7 _ f%m ar (2-32)

T T

After referring to relation (2-12) and the definition of the collision
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source, inverting the order of integration in r and r', and then integra-
ting over all r, one can write the norm of the collision source as
ISl = st(T) ar (2-33)
T

The norm equals one if the neutron source is normalized, and at least is
finite for physical problems of interest, i.e., the class of slowing down
problems in a reactor. Later it will also be reqiired that the integral
of the derivative of S be bounded.

According to (2-26) and (2-27) the norm of the kernel is found from

the norm of the function which was obtained by operating the kernel on the

source term.

xS = S|tar = | ) S+ TH|dT -
I X3 -Jl%sl a Tflthl ) 8(r) artlar (2-34)

Sb/\Jf|K(T|T') §(r)| ar' ar (2-35)

T 7T

By employing Fubini's Theorem (page 84, Riesz and Nagy,Bo)the limits of
integration in (2-35) can be interchanged. After integrating over all
T and noting (2-14), there results

Ixsl <[

,.rl

-lgi dr' <

- 18]l (2-36)

max

Zs
Z,

=
Ly

Therefore the norm of the kernel is no larger than the largest ratio of

scattering cross section to total cross section.



Il = M, < <1 (2-37)

Condition (2-37) would not be satisfied for a pure scattering system (e.
g., pure Compton scattering for photons) but would be reasonable for true
physical systems. In requiring conditions (2-37), the norm of the kernel
is bounded. Also, as shown, the norm of the source exists, and therefore
the solution of integral transport Eq. (2-15) belongs to Banach Ll space.
This condition will now be shown to satisfy the criterion for convergence
of the Neumann series. Later we will require the norm of the derivative
of the kernel to be bounded.
Consider the right hand side of Eq. (2-31) and denote the partial

sum by Sy, then the norm of the partial sum is
Isyll = I8 +x8 + %28 + R + .-+ + %G| (2-38)

By using the properties of linear transformations(Egs. (B-6) through

(B-12) Appendix B), the norm of the partial sum becomes
Isall < ISIF + (1 + (K1 + IKIZ + -+ 1R ™) (2-39)

which converges as n approaches «. This can be seen by employing condi-
tion (2-37) and comparing the resulting series to the geometric series.

Hence the Neumann series (2-31) is "strongly" convergent('"strong conver-
gence" in Banach space is a generalization of '"convergence in the mean"

in Hilbert space.BO) Denote the limit of the partial sum S, by V. By

operating on the Neumann series with the transformation ¥ and utilizing
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the continuity property of linear transformations (Appendix B), one can

show that Eq. (2-31) is indeed a solution of the integral Eq. (2-15)

v o= K(S + 48 +¥25 + ...)
= -5 +85 +%S +#F + &8 + ... (2-40)
= -8 +y Q.E.D.

C. REPRESENTATION OF REACTOR PARAMETERS BY NEUMANN SERIES

In this work we are primarily concerned with evaluating reactor pa-
rameters such as resonance capture probability, resonance escape proba-
bility and Doppler coefficient. These parameters can be expressed in
terms of the Neumann series solution to the integral transport equation.
In this chapter let w(T) represent a general function which is bounded
and has finite derivative, a.e., and which when "averaged" with respect
to the neutron collision density, gives the desired parameters of inter-
est. The quotation marks are used because, although the collision density
can be thought of as a probability density function, it does not necessar-
ily satisfy the requirement of normalization. Let I represent the integral

I - fw(T) w(r) ar (2-11)

J
then the true average of w(T) is

<w(r) > = —L (2-L2)
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Means of evaluating the integral I in terms of the Neumann series
will now be considered. We will again rely on the mathematical theory
of Banach space. Since it has been established that the elements of the
integral Eq. (2-15)belong to L1 space, and consequently so does its solu-
tion ¥, it is necessary that the measurable function w(T) belong to L
space 1n order that I represent the scalar product of w and ¥ in Banach

30

space. The norm of w must exist in order for w to belong to L® space.

Then according to (2-25) the norm of w equals
norm = vl = mex |w(r)] (2-43)

and must be finite. Now substitute the Neumann series for y(T) into the

integral I (2-41), giving

I = /qW[§'+fW§'+ #S + ....] ar (2-44)

8

According to Riesz and Nagy,BO strong convergence of the Neumann
series implies "weak" convergence of the Neumann series, which means that
(2-44) can be integrated term by term and the resulting series converges

strongly to I. Therefore,

T (2-45)
. E: L/\L/j W(Tn)K(TnITn-l) e K(Tl[TO) §(TO) dry ++- dr,

annTO

Let O be a variable upon which w, §, and K depend parametrically. (The
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temperature of the fuel would be an example of O since neutron cross sec-
tions in general depend on the temperature of the medium.) Rewriting

(2-145) as an explicit function of «,

I(a) = k/hw(«r,oc) s(T,a) dar
- (2-L6)
+ >4 J[' U[kd'%}l) K(Tann_l,a)...K(TllTo,a) S(r,,2) aT e eedr
n=1Tn To

We will require that the conditions previously satisfied by the norms of
W, §, and K hold for all values of interest for the variable Q. Then by
using the Welerstrass Test for uniform convergence55’56 the Neumann ser-
ies equivalent of the integral I (2-46) can be shown to be uniformly and

absolutely convergent with respect to O over an interval in which the terms

are continuous functions of .

|1(a)] < Ifwg at| + | [wKE at| + ... (2-47)

T

< (o] f|§| ar +f|><§| ar +f|K2§[dT e | (oou8)
T T T

But according to the definition of the norm of the source and the kernel
for Lt space, and by again using the properties of linear transformations

reported in Appendix B, series (2-48) becomes

~

20| < [u(ma) | - 3] - ( L K+ W2 s ) (5-19)

max

which converges since (2-39) converges as n approaches w. Therefore, Eq.
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(2-46) converges uniformly since the function w(T,0) is bounded and the
Neumann series exhibits strong convergence.
In later chapters the differential of I (2-41) with respect to the

general variable will be needed.

oI(a) o . . - -
L f > (w(r,0) W(r,0)) (2-50)

T

assuming the limits of integration are independent of the variable Q.
In view of the uniform convergence of the Neumann series equivalent of I,
Eq. (2-46) can be differentiated term by term if the resulting series con-

verges uniformly. Performing term-wise differentiation,

oI(a) = J/V[}__awo + L aSO]W(TO) g(To) dTO

% w3 55

To

o , ow oK
2 1 n 1 n
/,,./‘[%__4.-}{—11_4_ (2-51)

+

1 9K, 1 95, N
+'K—“6&—-+8—"'—aoc WnKn Kl SO d_TO d'Tl’l
1 ~o

where the following notations are used

K, = K(rp|m,_,,0) (2-52)
v, = w(ry,a) (2-53)
go = g(To’O‘) (2-54)

By again using the Weierstrass Test and by imposing the requirements that
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the derivative of w is bounded, that the integral over all T of the deriv-
ative of § is bounded, and that the integral over all ry (7, = (r,,E,,8))
of the derivative of the kernel, K,, is bounded for all n, then series
(2-51) can be shown to be uniformly convergent with respect to O over an
interval in which the terms are continuous functions of . Under these
conditions the absolute values of the terms of (2-51) can be shown to be

less than the terms of the following geometric series:

n-1

Z'S
L

l BI(OC)! <M ; n
oo o
n=o0

which is convergent by the Ratio Test, 9230 for condition (2-37). M is

a finite constant.

D. MATHEMATICAL MODIFICATION OF KERNEL AND SOURCE

The remainder of this chapter will consider the modification of the
kernel in a mathematical sense, and the resultant effect on the Neumann
series. It is noted that if one thinks of ¥ as just a mathematical den-
sity function, then a new density term V' can be introduced into the inte-

gral I (2-41) in the following manner:

where the weight factor W(T) is defined as

wiT) = w(r) /v () (2-56)
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Hence the integral I represents in this second form the "average" of the

product (w W) with respect to the "density" term w’. Likewise the source
and kernel in the Neumann series representation of I can be modified with-
out effecting the sum if the correct weighting factor is introduced. Let

S'and K' be the new non-physical source and kernel respectively, then

(2-57)
24 k/ W, (7g s -'Tn)K'(Tann_l)---K'(TlITO)g'(TO)dTO' -dry
n=1 Tn
where the weight factors are now defined as
Wy (1) S(7) /3¢ (2-58)
and for n > 1,
_ K(Tn]Tn_l)'“°K(Tl|TO) S(7g)
Wy(Tgseeemy) = = : poy (2-59)
K (Tann—l)'. K (TllTO) 5'(7,)
Similarly the differential of I can be written in the form
\
dI(x) [1ow 138 ~
= v = = \W(T) W S'(T) dr
= PSR ) () B
T
\' [ I ow. oK oK
+Z / LMl e, 1K (2-60)
Wn 00 Kp O K, oo
n=1 ™T™n To
1 95,
+ — T ann('ro, Tn) K'n K’l g 0 dTo‘ dTn
S

where the notation K', and g'o are similarly defined as in (2-52) and

(2-54). The new kernel and source may be completely arbitrary without
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effecting the value of I or OI/dx as long as the weight factors are de-
fined as above. However in practice it would be reasonable to require
the norm of new source to exist and the norm of the new kernel to be less
than one, and both norms to belong to L' space, so that the corresponding
Neumann series would be convergent. This discussion on the modification
of the source and kernel in this chapter serves as insight to the non-

analog random walk process that is examined in the next chapter.



CHAPTER ITT

RANDOM WALK PROCESS

In this chapter the mathematical description for a random walk proc-
ess 1s formulated, and applied to the problem of neutron transport. The
Neumann series and the random walk process are then related.

In 1953 Albert27 presented a mathematical model based on stochastic
process theory to describe a random walk process and discussed specialized
applications to the problem of estimating the solutions of integral equa-
tions. Spanier28 reformulated and extended his work by using a clear and
precise mathematical development based on modern probability theory. Both
authors make the basic assumption that the Neumann series converges, which
is needed to develop their mathematical theory rigorously. Since the cri-
terion for convergence of the Neumann series solution to the integral
equation for neutron transport was developed in Chapter II, the basic math-
ematical model of Albert can be used in this chapter and related to the
Neumann series.

Monte Carlo is a convenient method for processing random walk chains.
This 1s accomplished by making decisions based on random variables selected
from probabilities governing the random walk chains. These decisions de-
termine the generation of the random walk process and in turn the evalua-
tion of random variables that serve as estimators to desired parameters
which depend upon neutron transport phenomena. As will be seen in this

chapter, proofs of convergence that were given in Section II-C are needed

30
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to determine the proper random variables, called estimators, which provide
an estimate of the quantities given by the integrals I(2-41) and 9I/dx(2-50)
in the preceding chapter. It will also be noted that Monte Carlo effec-
tively provides a method of evaluating the individual terms of the Neumann
series corresponding to the integral I(2-45) and OI/dx(2-51).

Because this chapter draws upon probability theory as a background,
using definitions of probability density functions {or frequency functions),
distribution functions, conditional density functions, and expected values,
all in the multivariate sense, these definitions are presented in Appendix
C.

A. FORMULATION OF RANDOM WALK CHAINS FOR ANATLOG PROCESSES

Random walk processes can be divided into two categories called ana-
log and non-analog. Analog processes can be described as processes in
which random walks are governed by probabilities simulating the physical
laws of the system under consideration. Non-analog processes are those in
which the probabilities are deliberately but carefully distorted. This
distortion will then permit the adoption of special Monte Cerlo techniques.

A random walk chain can be described as follows: Consider a particle
propagating through a medium in a random manner and suffering collisions
T

at successive points in phase space, Tor T It may be absorbed

1 2’aoo

at any one of the points, say T,, with probability P thus terminating the
random walk chain, or it may continue on to the next point T,,, with proba-
bility Q. The selective process is continued until termination occurs.

The mathematical model can be developed by considering a random walk
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chain consisting of a sequence of points {Tn} at which are assigned defi-

nite probabilities of continuing or stopping the chain. Let

4y (Tgs+°7,) = Probability of continuing the chain with sequence {r,}
beyond point T,.
p (7Ty>+++7 ) = Probability of terminating the chain with sequence
{r,} at point T_.
where
p(Tgs e emy) + ay(7gseee1y) = 1, for all n
and (3-1)
0 <p(1,+++7) <1, for all n
Also let
fo(7o) = the probability density function of T_, n=0
and
fn(TnITO,'°'Tnnl) = the conditional probability density function of

Th? providing the particle was not absorbed at
any preceding point of the chain, n > 0.
It is noted that fn(Tn|%o,~--Tn_l) is written as a density function condi-
tioned on the previocus points of the chain and also that both P and q, are
allowed to depend on all previous collision points. This dependence is
actually more general than we need in later work. In accordance with these
definitions a random walk chain can be constructed by the following process:
1. Select 7  from the density function fO(TO).
2. Decide termination (with probability po(Ty)) or continuation

(with probability a(75))-
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3. If continuation is selected then select Ty from the conditional
density function fl(Tl[TO).

L. Decide termination (with probability pl(To,Tl)) or continuation
(with probability ql( T Tl) ).

5. If continuation is selected, continue the process by selecting
decisions from appropriate probabilities of the next higher
subscript until termination occurs.

In general, if previous n decisions are of continuation type and the se-
quence (TO,Tl,---Tn_l) has been generated, then select T from the condi-
tional density function £ (7 [7g,+ 7 )

Let us assume that termination occurs at 1, with probability

p (T ,--~Tn), this random walk chain may then be represented by the nota-

* .(Tn-l’ql’l-]_( Ty " 'Tn_l)) (Tn’pn( Tos ™" 'Tn))}

The length of the random walk chain is defined as the subscfipt correspond-
ing to that phase point, among the sequence (TO,Tl,Tz,"'), at which a ter-
mination event was selected. Let L represent the chain length, which is
equal to n for the random walk chain, Cn' It is noted that the chain must
be of finite length in order to represent physical problems.

The probability density function, fn(T °'Tn), for the chain of length

o’’

n and sequence {Tn} can be determined by an iterative procedure from the
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conditional density function governing the chain. It is in fact defined

by

fn(Tos e em) = Eplmplrgseeemy ) - Fy(rgs e emy ) (3-2)

By successive application of the definition, then

H
—
_‘
.
-
~
]

T fn(TanO,---T ) - f (T

n-1 n-1" n-1

"f2(72|TO,Tl) . fl(Tl]To) - (T )

( 77’ fm(Tm]To,...Tm_li) . fo(To) (3-4)

m=1

A random walk process consists of a sequence of random walk chains
usually of variable length. Therefore, a random walk process is repre-

sented by a sequence of density functions {fn(To,---T )} and a sequence

n

of functions {q,(7g,+++7,)} and {p (71,,+-+7,)}. For a random walk proc-

ess certain valuable probabilities can be obtained. Let

P{L=n} = The probability that the chain length is exactly n.
Descriptively this would be the probability that among all possible
chains the first n-1 collisions that occur are scattering collisions and

that the n™® collision is an absorption collision. Mathematically for the

random walk process this probability is



By using Eq. (3-3) this can also be written in shortened form as

n-1

P{L=n} = \/ﬁ.l/“ fn(To,---Tn) pn(TO,---Tn) 77’ qi(TO,"'Ti) dTO---dTn
Ty T i=o0

(3-6)

n 0O

In accordance with the restriction that random walk chains must be of fi-
nite length, we must have

P{lL=w} = 0

This is a natural condition to impose in order to process random walk
chains by Monte Carlo.

An analog random walk for the neutron transport problem can be gen-
erated by using the kernel and source term of the neutron integral trans-
rort Eq. (2-15). For convenience, assume normalization of the source and
make the following identifications:

@ (1m0 ) =fK(Tan) o - T (3-7)

T

+T_) is independent of chain points T _,+-oT and

n this case T 4
I ’ qn( o’ n o) n-1
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Physically represents the probability of the neutron suffering a scatter-
ing collision at T given that the collision occured there, and therefore
the probability of continuing the chain. Furthermore from Eq. (3-1),

pn(To,"'Tn) represents the probability of an absorption collision.

Zg(Ty)
a\ 'n
p<T 3"'7) = ]-'Q(T :"'T) = &~ (5'8)
n' o n n' o n Zt(Tn)
The conditional density function is given by
K(TnITn—l) Zt(Tn-l)
fn(Tano,--.T ) = = K(Tnl—rn-l) (5_9)

. qn(To""Tn—l) Zs(Tn—l)

which is normalized as can be seen by integrating over all T,+ The prob-
ability density function for n=0 is related to the neutron source as fol-

lows, assuming that the source is normalized,

fo(To) dr, = g(To) dar (3-10)

o} O

Upon substituting (3-7) through (3-10) into (3-3), the probability density

function for n >0 is given by

o Zi(Ty) ~
fn(To,°-°T )dTO°'°dTn = 777 — =" K(T S(T )dTO"'dTn (5—11)

i41l 1)
i=o0 Zs(Ti) i °

Egs. (3-10) and (3-11) are also normalized as can be shown by integrating

over all T, through 7, and under assumption that the source is normalized.

0O n

The procedure previously mentioned for constructing the random walk

chains can now be used for this analog problem. However in order to use
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Monte Carlo for processing these random walks, it is necessary to show that
this analog problem produces chains of finite length with probability one.
Equivalently we can show that the probability of a chain of infinite length
1s zero by using the convergence criterion of the Neumann series. From Eq.
(3-6) the probability that the chain is of infinite length is just

m

P{L=} = Iﬁiﬂff £l Tgs e my) ]7 Qs (Tgseeemy) Aty edry (3-12)
™ To

i=0

After substituting Egs. (3-11) and (3-7) into Eq. (3-12) one obtains, after

simplification
Z (T ) m=-1
=00 = LAY S m g e 0
P{L=w} = i&gk/q \/p ) K(Ti+lITi) S(TO) dTO SR
o To th 'm/|1=0
(3-13)
| m
- éiﬁ v/:'uf Zif K(Ti+1|Ti) S(To) dTo'”dTm+1
T T [17©
m+1

Since the source and kernel are non-negative quantities the inequality of

Egs. (2-3 ) and (2-37), can be used in Eq. (3-13), obtaining

| <&

S(T) aT

m->co

m+1
P{L=w} < 1lim ( )

™~

+ ! max T

(3-1k4)

It is thus noted that the analog random walk chain is of finite length in
the applications where the Neumann series converges.

As mentioned in the previous chapter, we are concerned with evaluating
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integrals of the form

I = fw(T) v(T) dr (2-41)

where ¥ is a solution of the integral Eq. (2-15).

It is desirable to obtain an estimator which when used in conjunction
with the random walk process will give an unbiased estimate of I. Suppose
I represents the random variable (or estimator) which is evaluated as the
random walk chains are processed by Monte Carlo. After N histories of ran-
dom walk chains are processed, the average of the estimator is given by
<
Z 1(3) (3-15)

J=1

T =

=

where N

total number of histories

total number of random chains

1l

The requirement that T be an unbiased estimate of I is Just that the ex-

pected value of f’equals I,
E{I} =1 (3-16)

Let it be assumed that the estimator is evaluated only at the termination
point of each chain. In order to identify the chain length with each his-
tory a special function,called a characteristic function (or indicator)’is
introduced. It is defined as

xy(3) = {1, if B history terminated at 7,;(L=n)
( 0, otherwise
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The estimator f can now be defined as

23 = 1t ) 00 dlrgreer,) (3-17)

and the Eq. (3-15) can be written as

T =

=

0
J=1 n=0

N k
U A
Lim }: }J Xp(3) T(rgseeemy) (3-18)

A
where I, can be called the partial estimator corresponding to histories

terminating at Ty For unbiasedness, we must now determine ﬁn such that

(1) = BT =1 (3-19)

(The first equality in (3-19) is known from probability theory.2() It is
convenient to employ conditional expectations to show unbiasedness. Using

the property of the characteristic function, Eq. (3-19) becomes

( E
E(1) Elll;in; Z x ()1 (ryeeer)

n (@] n
n=0
(3-20)
k
- lim Z £(1,|L=n) - P(L=n)
k>
n=o0
Because of (3-14) it is noted
P(L <o} = 1lim ; P{L=n} = 1 (3-21)
k—)'oo A

n=0

The conditional expectations are of the form:
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E(?|L=n) = L/C~1/n fn h (7 5007, [L=n) dreeedt (3-22)
™ To

where h, 1s the conditional probability density of chain Cp» conditioned

on a chain of length exactly n,

£o(75) PolTg)

= -2
ol 7ol 10 F(1-0) (5-23)
and fn-l
hn(To)“'TnlL:n) = fn(To""Tn) 1=0 qi(To’...Ti) pn(To,"°Tn)(5_2h_)
P{L=n)
Using Egs. (3-22), (3-23), and (3-24) in Eq. (3-20),
A £ A n-1
E(I}) = lio }: Jﬁ':/P In fpl7os+ o) 11’ a3( 7oy * 1)
k>0 s
nme T o - (3-25)

* PplTgyeeemy) drgeerdTy

Upon substituting Egqs. (3-7) through (3-11) into (3-25) there results,

k
" tig E: /t.l/ﬁ fn(To’.'.Tn) pn(To’...Tn) K(Tn|Tn-1) (5-26)

Equation (3-26) is now in the form to determine the proper estimator

A J—
In(TO,"°T so that I is an unbiased estimate of I. Comparison of Eq.

)
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(3-26) to the Neumsnn series solution of I (2-45), leads to the following

choice of the partial estimator in’

fn(To"°°Tn) = - = w(Ty) (3-27)

The division of w by D, can be understood physically by recalling that the
estimator is averaged with respect to the termination of the random walk
chains which is analogous to capture density, however in order to obtain
I from the integral equation, w was averaged with respect to neutron coll-
sion density.

The proper derivative estimator for the integral OI/dx (2-50) can be
determined in a manner similar to the foregoing analysis for the estimator
of the integral I (2-41). Then after referring to the Neumann series solu-

tion of OI/dx (2-51), the proper choice for the partial differential esti-

mator is
n ) 1 dw, 1 98, w(Tg) -
DLo(ro) W) 3 B(r) & | pglr)
and
I dw d
N _ 1 n 1 9%, (3-28)
Phltor = m) = | Ty % s
L1 aKl + = 1 8, w(T,) in>1
Kl o S(TO) o pn(To, Tn)

where the notations are the same as in Chapter II (2-52) through (2-54).

Because of the derivatives involved in estimator (3-28), the derivative
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estimator 1s explicitly dependent on previous collision points of the ran-
dom walk chain whereas the estimator (3-27) is dependent only on the ter-

minal point of the chain for neutron transport phenomena. The estimate of
the differentiated integral is given by the average of the partial deriva-

tive estimators.

N .
0. 1 Z (5) (5-29)
J=1
N k
1 .. V¢ A
) ) w R GW
J=1 n=o0

where xn(j) is the same characteristic function defined previously.

By using the Monte Carlc method to generate the individual random
walk chaing of the analog process and thus averaging the partial estima-
tors (3-27) and (3-29), estimates of the individual terms of the Neumann

series solution of the integrals I(2-45) and OI/dx(2-51) can be obtained.

B. FORMULATION OF RANDOM WALK CHATNS FOR NON-ANAT.OG PROCESSES

The techniques and mathematical descriptions of the random walk proc-
ess developed in the previous section serve as basis for this section in
which we consider the use of non-analog chains. These random walk chains
may be completely arbitrary as long as the condition of finite length with
probability one holds.

In Chapter II it was discussed that the kernel of the integral equa-

tion and of the Neumann series could be modified without mathematically



b3

effecting the solution, if the correct weighting factor was introduced to
compensate for the modification. Similarily, non-physical kernel and
source terms will be used in this section. If this modified kernel is
then used to govern the random walk chain, then a non-analog process would

be produced. Let

)
Cl’l’ = \:(TO’qO'(TO))"..(Tn—l’q'n—l(TO’.”Tn-l))’ (Tn)Pn'(TO;"'Tn))(
represent a random walk chain of length n that is determined by the arbi-
trary kernel K'(7|7') and arbitrary source §'(T). The source and kernel
may be completely arbitrary except that they must have the properties re-
quired in Chapter II and in addition determine finite random walk chains.

The continuation and termination probabilities and the conditional density

function governing the chain C,' are defined as follows:

4 (g em) = [ K(rlry) ar (3-31)

i

o (7 ,mm) = 1 - gy (r e ) (5-52)

K'(n|mn-1)

(3-23)

fn‘("rnho,""rn)

1
¢ n-l(To’ Tn—l)

The probability density functions governing the chain Cn'are obtained

as in Section III-A.

£o'(1) d1g = 8§'(7y) drg; n=0 (3-3L4)
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' o e . —_— ' e o * o o ‘ ' L
fn (TO, Tn)dTo dTn fn (Tano Tn_l) fl (Tl!To)fo (TO)dTO dTn
et (3-35)
X (Ti+1‘7i) &
= §'(r.)dr ++dT 3 n >1
ProgMr ,eeer.) 070 n -
i=o *i' o i

Equations (3-33), (3-34), and (3-35) are normalized as can be shown by in-
tegrating over all T,, T4, and T, through t,, respectively, and under the
assumption that the source §'(T) is normalized.

The random walk process for this non-analog problem is now rgpresented
by a sequence of density functions {fn'(TO,---Tn)} and a sequence of func-

-7 )}. As in the previous section, the

tions {q '(7_,---7 )} and (p (1,7,

conditional probability density, h,', conditioned on a chain C,' of length

exactly n will be needed for this non-analog process. It is given by

fo'(To) Po'(To)

h '(t |L=0) = ;n =0 (3-36)
o Ol P{L=n}
and
n-1
T '(T “'T) .7—_7q.'('|' ...T.)p‘(T "'T)
hn'(To""Tnlen) _.n 0’ n’ i=o 4i 0’ i n 0’ n ;n>1

P{L=n}
(3-37)
In order to estimate the integral I(2-41) by the use of non-analog
chaing processed by Monte Carlo, the proper estimator must first be deter-
mined. As in Section III-A, an estimator is acceptable only if it gives

an unbiased estimate of the integral I, i.e.,

(f') = 1 (3-28)
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where
k

—

1) = Lm ) (9 T (o) (5-39)
n=0o

where the characteristic x,(J) assumes the same definition as in Section
A

ITT-A and where I, ' 1s the partial estimator corresponding to histories

terminating at 7, for the non-analog random walk chain C,'. After N his-

tories have been generated by Monte Carlo the estimate of I is given by

N
To-g) bW (3-40)

The proper estimator is again determined by the use of conditional
probabilities and the density functions governing the non-analog random

walk chain,

k
g} - 1im Z E fn'lLen} + P(L'=n) (3-41)

{
k>
n=0o

where the conditional expectations are equal to

A A
E{In‘IL':n] = \jﬁ-l/ﬁ I, hn’(To)"'Tn|L'=n) dtge+-dmy (3-42)
Tn To

After using Egs. (3-31) through (3-37) in Eq. (3-42), and then substitute-
A
ing the result into Eg. (2-41), the expected value of the estimator I' can

be written as
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k
= n-1
11 T ), ' ( ) T ¥ (73440 75)
+ lim coe L R | e R Tipl T

i=0

n=1"n To (3-43)

A
The selection of partial estimator I', such that the expected value

A
of I' equals I, is obtained by comparing Eq. (3-43) with (2-57), this gives

Ta(toseeery) = — (i(T??.T 7 W7o 1) (3-4k)
n' o’ n

where the weighting function is given by

W (1) = ;n=0 (3-15)

K'(jn|Tn_l) K'(TllTo) S'(To) -

wn(To"'

or expressed in terms of the probability density functions governing the

analog and non-analog fandom walk chains, by

n-1
f(T; T) . Q.-(T P
n* o n’ i=o0 *i‘ o n
W lrgseeem) = — (3-47)
i=0

By using the same techniques as above, the proper choice for the par-
tial derivative estimator in the non-analog process can be obtained. Refer-

ring to Eq. (2-60), it is given Dby
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o |1 9ve 1 35| wlro) -
Pllolmo) = | wl,) oo ' 8(1y) o | p' (7,) HolTo)s n=0 (5-48)

DI' (7 .- Sl %1 a1 9% 1 o n
o) TS TR T R Tow | O
w(y)
S ey el ) 5 m 2

where the notations are the same as in Chapter II, (2-52) through (2-54),
and where the weighting factor is given by (3-45) and (3-L46).

The estimate of the differentiated integral (2-50) is given by the
average of the partial derivative estimators, averaged over N histories of

the non-analog process.

N
DI - %Z BI( 3) (3-50)
Jj=1
where
k
B - b ) (9 Bl (3-51)
n=0

Referring to Egs. (3-44), (3-48) and (3-49), it is noted that both the
partial estimator and partial derivative estimator for the non-analog proc-
ess are explicitly dependent on all the phase points of the given random
walk chain. Furthermore the probability of termination p' (rtg,++-7.)
occurs in the denominators since the integrals I and al/aa represent aver-

ages with respect to neutron collision density and not with respect to cap-

ture density.



CHAPTER IV

MONTE CARLO APPROACH

In this chapter the Monte Carlo chains are specialized to the neutron
slowing down problems in a reactor. Implicit in this case is the fact that
neutrons undergo only energy degrading collisions. Usually a neutron is
introduced at some high initial energy and followed by random walk process
until it is absorbed or its energy has decreased below some cutoff energy,
which is above thermal energies. Certain properties can be obtained by
averaging reactor parameters over the points of the random walk chain.

In the first section a non-analog process is formulated, which forces
all collisions to be scattering collisions. It is then necessary to prove
that the chain is finite with probability one and to determine the proper
estimator that gives an unbiased estimate of the desired property. In or-
der to obtain the proper estimator, the use of expected values is evolved
from this non-analog process, i.e., the probability of terminating the
chain by absorption is analytically calculated and also the quantity to
be averaged is evaluated at each chain point not at just the terminal
point. 1In practice, when the contribution of succeeding chain points to
the averaged quantity becomes negligible, the chain is terminated even
though the neutron energy may be greater than the cutoff energy.

In Section IV-B the non-analog slowing down problem is further spec-
ialized to obtaining information about resonance absorption probability

and Doppler temperature coefficient. A heterogeneous reactor with infinite

L8
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lattice array is assumed; therefore, a single cell can be considered into
which a neutron source is introduced and in which the neutrons undergo per-
fect reflection at the cell boundaries, i.e., angle of reflection equals
angle of incidence.

In order to utilize experimentally obtained parameters describing the
resonances, the fuel cross sections are expressed as a function of the Breit-
Wigner formula. By neglecting any temperature expansion of fuel materials,
all the temperature dependence for this problem is contained in the Doppler
broadened cross sections, which are expressable in terms of the Doppler
broadening functions. The estimators as well as the transport kernel used
in generating the random walk chains are functions of the temperature de-
pendent Doppler broadening functions. In addition the derivative estima-
tors are related to the derivatives with respect to temperature of the

Doppler broadening functions.

A. SPECTALIZATION TO SLOWING DOWN PROBLEMS IN A REACTOR LATTICE

For this type of problem it is convenient to use a high energy source
and a non-analog process which forces all collisicns to be scattering col-
lisions. but being careful that an unbiased estimate of the desired re-
actor property is obtained. The chains are terminated only when the neu-
tron energy is less than some arbitrary cutoff energy. Since all collisions
are forced to be scattering collisions, the collision kernel in Chapter II
is acéordingly modified by replacing the ratio L./, by one. In this case

H is normalized and is given by
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K(mn|mn-4)

Zs(Tn-l)/Zt(Tn-l)

H( Tl’l l Trl-l)

(4-1)

E ,Q
n’-—m

) ZS(En)_inEn-l’Q-n"l )En-l) ()4"2)
LB, r, )

1’=n-1

- T(znlzn—15

The random walk chains are governed by the following probability density

function, termination, and continuation probabilities, respectively:

dn( Tos ™" 'Tn)) p*( Tn): q*( Tn)

where
a (r lrseeer ) = B(r |7 ) (k-3)

f 0, if En < Ecutoff

(4-k)
1 1, otherwise

q-*( Tn) =

p*(1y) = 1 -a*(my) (4-5)

and therefore the probability density function for T

n 1s given by

.o ) 4 (

dn(To’.“T ) 0" ""'n-1’ Yn-1

0 dn(Tan oo T )---do(To)

Tn-l‘To" n-2

(1-6)

H(ry 7y )8 [7o) 8(7,)

For convenience the source is assumed normalized in this section. It is
noted that the values of p* and g¥ do not depend on the sample sequence
but rather are determined by the given phase point in the chain.

As mentioned in Chapter III, the non-analog chains may be completely
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arbitrary, provided the chain has probability one of being finite. There-
fore, as in Section III-A, it is necessary that the probability of generat-

ing a chain of infinite length is zero. This probability is given by

lim \/C°:/hdm(To,°'°Tm) 77 q*(Ti) dr«eedr

P{L=w}

m->oco

Because of the nature of g¥*¥ in this non=~-analog problem for a hetero-
geneous lattice, it is difficult to simplify this expression and show that
the limit is zero directly. However it is shown in Appendix D by physical
arguments that the above process is finite with probability one. Since
elastic collisions in the epi-thermal region are energy degrading, it
seems reasonable that the neutron energy will decrease below the cutoff
energy in a finite number of collisions.

By combining the use of expected values with this non-analog chain,
it is possible to obtain more information from a given chain and hence a
more efficient determination cf the desired reactor property. riefly,
the use of expected values involves analytically calculating the expected
value of a random variable rather than using a sample value. For the prob-
lem of interest the use of expected values 1s applied by calculating at
each chain point the true probability of absorption, Za/Zt, and multiply-
ing this by the quantity to be averaged, w, at each chain point. The esti-

mator for this problem will now be determined.
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The random walk process governed by Egs. (4-1) through (4-6) has the

following conditional density function, conditioned on the chain length

exactly n. .
a yeee * c o g*( Ty
bﬁ(TO’...Tnlen) _ n(To Tn) p*( ) i=0 a*(7i) (4-8)
P{L=n}
n-1

_ p*m) Slrg) 4o B(rigy[7y) a*(ms) (4-9)
P(L=n)

But the termination of the chain is determined only by the energy of
the last point, i.e., the chain terminates only when a phase point has en-
ergy less than the cutoff energy.

In the previcus chapter the estimator contributed to the knowledge of
the integral I(2-41) only at the termination point of the chain, although
it was allowed to depend on all previous points. However since each chain
point can contribute to the estimate of I in this chapter, the estimator

is written

Nk
= 1. A _
T - tum ) ) @ Bl (4-10)
J=1 n=o0
where *
n
A ,
In(To""Tn) = I*m(To"°'Tm) (k-11)
m=0

*Spanier28 has shown that by using the integral equation adjoint to (2-15)
and (2-41), a random variable determined by summing over all the phase
points in the chain can be an unbiased random variable for an analog ran-
dom walk process. In the investigation of slowing down problems, we oOb-
tain the proper estimator for I(2-41) for a non-analog process without re-
lying on the adjoint equation.
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As in Chapter III
A
I(j) = 1lim

koo

A

Xn(3) Tp(rgseeemy) (4-12)

il

where xn(j) 1s the same as defined in Chapter III. According to the re-

A
quirement of unbiasedness, In must be determined such that
A
E(I} = I (4-13)

Employing conditional expectations with the non-analog process,

.
5(f) - n > anm % (Toy v+ Ty) (4-1l)
n?é) m=0
2 (n
- >E > 1% (7,7 )|L=n } PfL=n) (4-15)
neo lm=o

But by Eq. (4-9),

E \gi I*m(TO,---Tm)|L=n
{m=o
=L/T°:/p(’§jl*m(To’"°Tm)) b (TO,"'TnlL=n)dTO"'dTn (L-16)
™

TO m=0
n-1
n
— p*('r TO) E H(Tl_l_ll"ri) vq*("ri)
= e I*m(TO,...Tm> dTo"'dTn
— P{L=n)
m=0"pn o

The next step is to substitute EqQs. (4-16) into (4-15) and employ

the Cauchy product rule, which is given by



S n 0 I 0 0
sl - T | M uantl
> > F(n > > F(n+m,m) = zd > F(n,m)
" A - AN s
n=0 M=o n=0 m=o m=0 n=m

Equation (4-15) becomes

\
E(T)
2 n ne1
\ ~ -
= PR * ¥* fT x
L Z/ f Y L C ORI (CARE LU C ALY
=0 m= i=o
n=0 m=0T, T,
co [o¢]
X e
= }J }J Jﬁ':/p same integrand
m=0 n=m
v m-1 »
_ Z f S NE NN I CANESIEUEN SEEREINS
m=0 Tm TO 1=0
where
) ’O‘.LI n/rl
i |- p*(r ) + > \/P \/P o*(r ) || B(ry, Im)ax(ey) ar .
n=m+1 Tn Tm+l 1=m
but since
P*(Tn) = 1 - g*(t) andk/ﬁ H( l+l|Tl) dTl+1 = 1
Ti+1

then

(4-17)

(4-18)

eeodT
n

(4-20)
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Jf Jf p*(T ]TT H(Ti+1|Ti) q*(Ti) dTm+1.“dTn

1=m

f f Tf a*(7y) H(vy|ri_y) drpy,eeedry, (B-21)

i=m+1
n 1 m+1

- aX( T ) d/\ Jf 77f q*(T ) H(T, |T1+1 ary, e rdTy

i=m+1
IIl+ 1

Upon using Eq. (4-21), (4-20) becomes

b oax(r) i ff [1 - [ are) mn ) ar | (b-22)

After cancellation of like terms,

{ } L - lin g*(rp) d/\ d/\ 77’ a*(y) H(Ti|Ti-1) ATy "ty
n->co

i=m+1

(4-23)

= 1 (4-2L)

Upon comparing the integral term in (4-23) to Eq. (4-7), the limit is zero
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under the conditions of non-zero source and finiteness of the random walk

chains. Equation (4-15) now becomes

E(f} -
= m-1
= 24 R I*m(TO,---Tm) 77‘ H(Ti+llTi)q*(Ti)g(To)dTo-°-dTm
m=0 -I\-m To =0
(k-25)
= I*O(To) g(TO) ar
;
© (4-26)
i E: .‘L/h I ?7’ H(Ti+1lTi) §(To) dryee-dmy
m=1 T, Ty 1=0

The q*(Ti) are all equal to one since the integral was conditicned on

a chain of length given by the index. Comparison of this series to the

Neumann series for I in Chapter II (2-57) leads to the following estimator

which satisfies the condition of unbiasedness:

X (e eom) = ) W (ro,eer )
where
W (o) = ;SETm;...E:EToi
t\ Tm "o
Therefore

(h-27)

(4-28)

(L4-29)
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is the estimate value of I(2-41) as determined by a Monte Carlo process
generating non-analog random chains which terminate in a reactor only when
the corresponding energy of the chain becomes less than some cutoff energy
and in which each collision point of the chain contributes knowledge to
the average value. In practice the chain may actually be terminated when
the contributing knowledge becomes negligible (when the product of the ra-
tios of ZS/Zt becomes << 1).

Because of the uniform convergence of the Neumann series representa-
tion of I(2-45) and dI/d0(2-50), and the finiteness of the non-analog ran-
dom walk chains in this chapter, the partial derivative estimator corre-
sponding to OI/d0 is determinable. By combining the methods of Chapter
IIT and the preceding analysis of this chapter and referring to Egq. (2-60),

the corresponding partial derivative estimator is found to be

DI*m(TO:'”Tm) = W(Tm) wm'l(TO’ "'Tm_l) Dwm(TO’.HTm) (14"50)

where

ow dS
1 o . 1 o)

D o( 74) ko (L-31)
o0 w(t ) oo  8(r ) ox
o o
and form >1
DH (1 ,ene7 ) = _l_ivi@+_l_aﬁ+.,,_l__a_£+_}_% (4-%2)
m' o m w_ oo K o K oo S oa
m m 1
and where again the following notations are used:
w.oo= w(r) (4-33)

m m

K, = K( Tm|'rm_l) (L-3k)
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o o}

The derivatives are evaluated at the chain points. Thence

N 0 n

_ oo O

DI é 2; 2: ZiJ Xn(‘j) DI*m(To"..Tm) (k-36)
j=1 n=0 m=0

is the Monte Carlo estimate of OI/dx (2-50).

B. SPECIALIZATION TO DOPPLER COEFFICIENT AND RESONANCE ESCAPE PROBABILITY

In this section the background provided by the previous sections are
applied to the specific problem of resonance absorption probability and
temperature coefficient in a heterogeneous reactor having a non-uniform
temperature in the fuel rod.

In order to determine the absorption probability, the random varia-
ble w(r) is set equal to the ratio of neutron absorption cross section to
the total cross secticon. Recalling that ¥ represents the collision density,

then

v(T) ar (4-37)

[}

]
%
=
It
(\
™ gPd
S

represents the number of neutron absorptions per unit time in region R.
The resonance absorption probability can be thought of as the ratio of the
number of absorptions per unit time in the phase space with energy greater
than the thermal cutoff to the number of neutron births per unit time in

the same space. For numerical results this definition will be specialized
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to the case of no absorptions in non-fuel regions. By using the nomencla-

ture
P = Resonance escape probability
1-p = Resonance absorption probability
then
\/ Z%( () dr
T I )
l-p = y = 3 (4-38)
/g('r) ar
o
R
where
R = region of the whole space T with E > E cutoff
S = number of source neutrons per unit time (or birth rate)
= /E(T) dr = /S(T) dr
. J
R R

The derivative with respect to temperature of the resonance absorp-

tion probability is given by

3(1-p) 131 _ [3 (?@ )dT
dr St ﬁ/ r \S Y TS (4-29)

That part of the temperature coefficient of reactivity due to absorptions
of neutrons in the resonances of the fuel will be called the Doppler coef-

ficient of reactivity, and is then given by

Lo . 1o (4-40)
p OT S - IoT
JFB (zg
J {2y a
OT \ 2y v o
= (4-41)
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Since this work is concerned with the problem of temperature effects
due to the Doppler broadening of resonances in the fuel, any effects due
to changes in geometry or material density with temperature are purposely
neglected. Specifically, U-238 is considered in oxide form (UOE) because
of its use in power reactors, although the methods proposed are valid for
the metal form. In order to exhibit the temperature dependence of the
fuel cross section explicitly, two assumptions are made, (1) the motion
of the fuel atoms which are bound in a crystal are described by the per-
fect gas model, i.e., their velocity distribution is approximated by the
Maxwell-Boltzmann distribution for free particles in a ideal gas, and (2)
the resonances of the fuel are spaced far enough apart that there is no
interaction among neighboring levels and therefore the single-level Breit-
Wigner formula2:58 can be used to describe the microscopic cross section
in the center of mass coordinate system.

Iambgu studied the resonance capture of slow neutrons by atoms bound
in a crystal and developed a criterion for using the ideal gas model in
calculating the resonance cross section. The criterion depends on the
Debye temperature of the crystal, the natural width of the resonance, the
mass of the absorber nucleus, the neutron energy, and the environmental
temperature. According to ILamb's criterion the gas model is a good approx-
imation for the lowest resonance of U-238 (6.68ev) when the absorbing atoms
are bound in the metallic crystal at room temperature, and the approxima-
tion improves in accuracy with increase in temperature or with the higher

resonance levels. The uncertainty of the Debye temperature for uranium
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dioxide does not allow reliable application of Lamb's criterion. The large
discrepancy among measurements and calculations of the Debye temperature

of uranium dioxide has been noted by Belle?l who reported estimates vary-
ing from 160°K to 800°K. He does indicate that there is more evidence for
correctness of lower values, which would fulfill Lamb's criterion.

In 1960 Jackson, Bollinger, and Coté>9 performed an experiment for
determining the shape of the effective neutron cross section over the 6.68
ev. resonance peak of U-238. They observed no significant crystalline ef-
fect in uranium metal or U508 at room temperature. However at liquid ni-
trogen temperature a large discrepancy was noted between the observed shape
of the cross section in UBOS and that predictgd by the gas model correspond-
ing to the effective temperature given by Lamb. The authors used a Debye
temperature of about 450°K for UBOB which corresponds to about the mean
in the Debye temperature range reported by Belle for UO,. Since reactors
used for power purposes have fuel temperatures considerably above room
temperature, it appears that the gas model approximation is acceptable for
determination of the U-238 resonance cross section in both uranium metal
and UOp.

The second assumption is substantiated by the experimental work of

Lo

Rosen, Dejardins, Rainwater, and Havens ™~ in which they were able to re-
solve the individual resonances of U-238 in metal foils up to about 1000
ev. All but a few of the resonances were observed to be clearly separable.

Furthermore the resonances were sufficiently isolated that resonance pa-

rameters could be determined from the experimental data by a theoretical
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analysis using the single level Breit-Wigner formula and the Maxwell-Boltz-
mann distribution. In fact the authors use the same expressions for the
Doppler broadened cross sections as those given by Egs. (4-42) through
(4-50).

The derivation of the Doppler broadened cross sections, using the sin-
gle-level Breit-Wigner formula to describe the center of mass interaction
probability and using the Maxwell-Boltzmann distribution to describe the
motion of the struck nuclei, has been extensively investigated. Bethe and
]PlaczekB’LLl and Dresner11L2 make a basic approximation in their method,
namely that the term involving the square of the ratio of atom speed di-
vided by the neutron speed can be neglected in determining the kinetic en-
ergy of the neutron relative to the struck atom. This approximation is
known as the Bethe approximation. Solbrig,MB and Osborn (footnote in ref-
erence LL) both derive a more exact expression for the cross section, in
which Solbrig later introduces approximations which he shows to be valid
for incident neutron energies above .0Olev and for heavy absorbers at tem-
peratures not less than room temperature. Nordheim9 has also investigated
this latter method.

For the conditions present in this work, i.e., incident neutron and
resonance energies above thermal energies, and fuel temperatures above
room temperature, both methods produce the same expressions for the Doppler
broadened neutron resonance cross sections. Since the experimentally de-
termined resonance parameters are obtained from measurements in the labo-

ratory coordinate system, the parameters in the usual expressions of Dop-
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pler broadened cross sections should be appropriately modified by the ra-
tio of neutron mass to reduced mass to take account of this fact. However
for fuel nuclei this correction amounts to less than %% and will accord-
ingly be neglected. Therefore all parameters in the following expressions
for cross sections represent values in the laboratory coordinate system.
The Doppler broadened microscopic cross section for the .capture of

neutrons in the neighborhood of an isolated resonance is

L,, [ WV (x,6) (4-h2)
v %o B ’
The Doppler broadened microscopic cross section for the elastic scatter-

ing of neutrons in the neighborhood of an isolated resonance is

US(E)T) = Up + GSO V (X,Q) + gOPOSO‘X‘ (X)g) (l;._)_;B)

1
where ca(§j and o represent the background "

e 111

- absorption cross section

and potential scattering cross section respectively and where

T
0o = ST (l-lik)
B Fno bl
9o = o (4-45)

The unbroadened cross section for the formation of the compound nucleus,

with neutron energy corresponding to the resonance peak, is

r
0, = birZg —> (4-146)
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where
E = energy of neutron in laboratory system.
Eo = energy of neutron corresponding to resonance peak.
Ko = éﬁ% AOiStthe neutron wave length at resonance peak.
2J+1
g = ETEE:IY » L,J are the spins of target and compound nucleus

respectively.

I = FnO+P7 = total resonance width, full width at half the maximum

peak.
I'yo = neutron width with E = Eo'
F7 = capture width.

The Doppler broadening functions, also called spectroscopic integrals be-

cause of their original use in optics, are defined as

)2

y 00 (X_y —
Y (x - 1 ST &
Vo = = [T

where
E-E
_ o)
T T
2
bmk TE
6 = —_—
(m+M T
m = mass of neutron
M = mass of target nucleus

T = Temperature of resonance medium

(L-b7)

(4-148)

(L-49)

(4-50)
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It is noted that the temperature dependence of the microscopic cross sec-
tions appear solely in the Doppler broadening functions. The potential
scattering cross section is temperature independent for neutron energies
above thermal.

In accordance with the restriction that there is no interaction be-
tween neighboring resonance levels and with the approximations discussed
above, the total macroscopic cross section for a neutron of energy E is

given by a simple sum of contributions from all the resonances, i.e.,

Zt(E,T)

1]
=
f=
Q
3
+
Q
mA
[
~
<
~—

+

R L e LT
}j !i(oéo j-—;g + Oéo) W(x,0h) + Z\/Eopoéo (xl,Gl)J (4-51)

where 1 represents the index of the resonance levels and ¥ is the atom
density of the resonance absorber.

For the sake of convenience in the mathematical description of the
estimators and kernels in the random walk process, the cross sections
will be written explicitly for only one resonance, the nearest dominat-
ing resonance, although the effect of the summation of resonances will be
implied. In practice, for a given neutron energy the one resonance of
U-238 or Th-232 with Eo nearest the neutron energy is dominant and all the
rest of the resonances make a negligible contribution to the total cross
section.

In the case where the fuel is a mixture of resonance atoms and non-

resonance atoms, e.g., UOs, let o,(1/v) and g, be respectively the back-
s 2 a i
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ground absorption and potential scattering cross sections per atom of res-
onance absorber. Also let the total cross section in a reactor lattice
composed of separate fuel and moderator regions be represented by the fol-

lowing notation:

L (1) = [NA(U"; + b (1/v)) + 22 fEEﬁ— W (x,6)

_ (k-52)
s ng Y (x,0) + zii-}u(xjg):]n(T) + NM(og +o§ (1/v)) | »(r)
Where
Z(;a _ NAOIC\.O (4-53)
A
ng = NA Oso (4-5k)
Zﬁi = NA Bjéog 020 (4-55)

where the superscripts M and A denote the moderator and the resonance mate-
rial respectively, and where 7 and v are heterogeneity factors defined as
( 1, if the neutron position r lies in the fuel.
n(r) =4
{ 0, otherwise.
( 1, if the neutron position r lies in the moderator.
3
| 0, otherwise.
Recall that T is the phase space vector of the neutron and thus denotes
(r,E,0). Also it is remarked that the temperature T is a function of r,
and hence of T, since a general temperature distribution is allowed in the

fuel. Thence the derivatives with respect to temperature of the cross sec-

tions are
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o e Y () + 2T (r ,
a—T‘zrt(T) = 3 Xa(T) + Tzs( ) (4-56)
Sy - [® ﬁ_i”J

dT Za () -Zra E QT ntr) (4-57)
'B%ZS(T) = _'ng %/‘fﬁi %}H(T) (L-58)

Methods of evaluating the derivative of the Doppler broadening functions
are discussed in Appendix F.

One further approximation is necessary before writing explicitly the
kernels governing the random walk chain. Once a scattering collision oc-
curs, the scattering angle and new neutron energy must be selected from
the collision kernel. When the neutron collides with a non-resonance nu-
cleus there is no difficulty since the well known scattering frequency
(4-60) for elastic collisions with struck particle at rest can be used
for the neutron energies of interest, i.e., above thermal and below in-
elastic threshold energies. ZFor collisions with resonance nuclei, this
same frequency (4-60) is used for the scattering distribution. The assump-
tion of struck particle at rest is harder to justify for collisions involv-
ing resonance nuclei and is investigated in Appendix E, where the reso-
nance scattering frequency is formulated for the case of the target nu-
cleus in moticn, (E-8). Although the resonance cross section is effected
by the motion of the struck particles, once a collision occurs and the de-
cision is made that it is of a scattering type, then the dynamics of the

scattering are similar to that in which the target is at rest since
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the incident velocity of the neutron is much greater than that of the nu-
cleus.

The collision kernels defined in Chapter II can now be written,

Ye(r',E")
C(E,Q|E',Q';r') dEAQ = Lo(z,E') F(E'>E;r') A 8(0 - @' - g(E,E'))
= - = Zt(z"E') - - - L
(4-59)

Also F(E'+E,r') becomes F(E'+E), once a decision is made as to the kind
of nucleus involved in the scattering collision. The scattering fre-
quency for an elastic collision with the struck nucleus of mass number A

at rest is

2 - 2
F(E'-E) dE = (A +1)” dE ; when A - l) E' <E<E'
LA E! A+1 - =
(4-60)
= 0 ; otherwise

Also

N _ A+l [E _A-1 [E ]
snm) - AL [Eoast B (n-61)

By utilizing the definition of the transport and collision kernels in
Chapter IT and Egs. (4-59) and (4-60), the kernel H (4-5) for the non-

analog process described in Section IV-B becomes

fﬂﬂﬁ

i 2t (E,r-QRR')dR' (E,r)

H(T!-r')d'rr:e 0 o) _Z.L___i_
(4-62)

dQ
- F(E'>E,r') 4B 5(2-Q' - &(E,E"))

Thence the kernel K defined in Chapter II becomes
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Az-r'|
- Z%(E,I—QRR') dR' % (E,r)
K(r|r')ar = % (28 T
(4-63)
Z I, '
. —Eﬁg;—ﬁ-l F(E'»E,r') dE 5(Q-0' - g(E,E")) da
Zy(r',E") - -~ bt
The derivative with respect to temperature of the kernel K is then
|-z
o g o |1 9 S
5o Kl - {ztm RRAR [ 57 2(7) B
(4-6h)
1 ) 1 )
= 25(1") - - ' K !
ey s = Ty s ) | Kl

In practice the initial phase point of the random walk chains are
selected from the conventional 'birth' source S, rather than the collision
source §, and the position of the first collision is selected from the
transport kernel. Since the energy of the source is established above
the resonance energy region, the cross sections are temperature independ-
ent ‘at source energy. Therefore the derivative of the source S with re-
spect to temperature appearing in (4-31) and (L4-32) is set equal to zero.

With the random varisble w defined as
Z, (1)
2y ()

(L-65)

w(t) =

the problem of estimating the resonance capture probability and Doppler
coefficient in a heterogeneous lattice can now be solved by using the

Monte Carlo method to process the random walk chains described in Sec-
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tion IV-B. Referring to Egs. (4-59) through (4-64), the partial estimator

(4-27) and partial derivative estimator (L4-30) can be explicitly described

as follows:

2 (Tp)
Pl ) = S (e, ) (4-66)
and
2, (7,)
DI* (7 ,-+7,) = Zi('rz) Wy (Tosrmemy) D (T, em)  (4=67)
where
ZS('rm) 2o (7o)
, _ 4-68
R e ey (4-68)
and
W (t)) = 0 (4-69)
and form= 1
d LN
1
DW, yeee = — - —_— dR
(7o o) Y (rn) O Zg () [ ST e (7)
(4-70)
+ Km_l + nl
where
5 by
1 )
Ky = — 2o (T,) - — dR L-71)
n S Ty o Z 5 (
and
by = Im - I';my (k-72)
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It is remarked that derivatives with respect to temperature of the total

cross sections do not appear outside the integrals in (4-70) even though

w is defined as (4-65). This is because all factors of Zt(T) cancel from
the product of

K...K g
W(Tm) m 1 ©

Estimates by the Monte Carlo method of capture probability and Doppler co-

efficient of reactivity are given by the following:

P = 1-1 (k-73)
and
1(®) _ _-m ]
s5\3r/ T T-°% (b-74)
where
N o n
= % Zz Ez }z Xn(3) T¥p(7ose o my) (%-75)
J=1 n=0 m=o0
and
N, o= on
DI = %z Z Z Xo(J) DI* (75 ey (4-76)
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CHAPTER V

MONTE CARLO PROCEDURE AND COMPUTER PROGRAM

A. DESCRIPTION OF MONTE CARLO PROCEDURE

The procedure for processing Monte Carlo histories and for evaluating
the Doppler coefficient and the resonance capture probability on a digital
computer is described in this chapter. The procedure utilizes the mathe-
matical theory developed in the preceding chapters.

A semi-infinite lattice cell with a heterogeneous mixture of fuel and
moderator is considered for this problem. The fuel is contained in a cyl-
inder which has its axis colinear with that of the cell. Stated in brief,
Monte Carlo is used to generate a history by tracing neutron propagations
through the lattice cell as the neutron is degraded in energy by scatter-
ing collisions from source energy to cutoff energy. The value of the cut-
off energy is preset above thermal energies and below the energy of the
fuel resonances.

Decisions regarding the behavior of neutrons in a reactor lattice are
determined by random variables selected from the probability density func-
tions governing the random walk chains of Chapter IV. Data is collected
as the neutron histories are generated and is used to estimate values of
the desired reactor parameters, i.e., resonance capture probability and
Doppler coefficient of reactivity (Egs. 4-73 and L4-74). The application

of sequences of pseudo-random numbers to select random variables from prob-

72
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ability density functions which depict physical processes has been dis-
cussed by many authors.u5)"'48 The assumption that the pseudo-random
numbers are uniformly and independently distributed on the interval be-
tween zero and one is a very good one for numbers generated by the Method
of Congruenees,u%'”53 which is also used here. The mathematical details
regarding the selection of random variables from the appropriate distri-
bution functions are given in Appendix G. The verbal description of the
Monte Carlo procedure for this problem follows.

1. Each history is started by selecting a pseudo-random number from
the first random number generator (G-1), which is used to initiate the se-
quence of pseudo-random numbers generated by the second random number gen-
erator (G-2). This latter sequence of pseudo-random numbers is used to
determine the behavior of the neutron for the given history. Since the
number of random numbers used in each history depends upon its length and
the paths taken in the cell, the use of two random number generators allows
one to know beforehand the initial random number of each history.

2. The initial energy, position, and direction of the neutron is
selected from the source distribution functions, Appendix G-3. The neutron
source is taken to be isotropic in direction, uniformly distributed in the
cell, and a line source in energy. The initial weight of the neutron is
set equal to one (L4-68).

3. Upon knowing the neutron energy, direction, and position at the
source point (or last collision point), the distance, measured in terms

of optical thickness, to the next collision point is selected from the
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exponential distribution law of attenuation, Appendix G-4. The actual
position of the next collision is determined by knowledge of the total
macroscopic cross section, taking into account the crossing of boundaries
separating dissimilar media, the variation of the resonance cross section
due to the temperature distribution in the fuel, and the reflection of
the neutron path on the outer cell boundary. At the outer cell boundary,
the angle of reflection is set equal to the angle of incidence.

4. TUpon knowing the position in the cell at which the collision
takes place, the species of the interacting nucleus is selected by random
variables according to the contribution to the total cross section at the
phase point of the collision. A scattering type collision is then forced
to occur by virtue of the modified kernel H (L4-62) in Chapter IV and the
weight of the neutron is multiplied by the ratio of scattering to total
cross section (4-68). The derivatives with respect to temperature of the
Doppler broadening functions are integrated over the neutron path in the
fuel, and the partial estimators for p and Bp/BT are calculated by Egs.
(4-66) and (L-67). If the neutron weight is less than a preset constant,
say .001l,* the history is terminated and the procedure is continued as in
paragraph 6, otherwise the history is continued as in paragraph 5.

5. The scattering angle in the C.M.C.S. is selected from an isotropic

*The use of Russian roulette for deciding termination of a history was
provided for in the program and probably should be used if the input con-
stant is made considerably larger than .00l. Russian roulette was tried
but did not produce an advantage in time or statistics over the straight-
forward use of the preset constant .00l.
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distribution, Appendix G-5. The new direction in the L.C.S. is deter-
mined by a transformation of coordinate systems, and the neutron energy
after the scattering collision is calculated, according to the species of
interacting nucleus, Appendix G-5. If the neutron energy is now greater
than the preset thermal cutoff energy the history is continued by again
following the procedure in paragraph 3, otherwise the history is termi-
nated and the procedure in paragraph 6, is followed.

6. Once a decision has been made to terminate the history, either
by conditions in paragraphs 4 or 5, the contributions of the history to
p and Op/dT are added to the sums in Egs. (4-75) and (4-76). If the total
number of histories processed is less than a preset maximum, another his-
tory is processed by again starting with the procedure in paragraph 1.
Otherwise the Monte Carlo estimate is obtained for the resonance capture
probability and Doppler coefficient of reactivity by evaluating Egs.
(L-73) through (4-76). 1In practice the histories are processed and the
above estimates obtained for subgroups of histories so that trends can be
observed and statistical variations noted. Also estimates of the variance
of capture probability and its derivative are obtained by first calculat-

ing the average values of the square of the partial estimators (4-66) and

(4-67).

B. BRIEF DESCRIPTION OF PROGRAM
Since part of the purpose of this work is to provide a computer pro-

gram which utilizes the theory presented in the preceding chapters and
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which is capable of handling the case of a non-uniform temperature distri-
bution in the fuel, a brief description of the program is appropriate here.
Most of this program was written in the MAD language (Michigan Algorithm
Decoder5u) for the IBM 709 digital computer. The Random subroutine discus-
sed in paragraph 6 was written in symbolic machine language. The program
requires a machine with 32,768 words in fast access memory. Because of
the large size of the program, it was necessary to break it into component
parts that could be separately translated by the MAD compiler. The divi-
sion of the program according to separate functions has facilitated de-
bugging and will make future modifications discussed in the succeeding
chapters much easier. The program, called REPAD (Resonance Escape Proba-
bility and its Derivative with respect to temperature) includes the fol-
lowing routines:

1. The Main routine generates neutron histories and follows them in
energy degradation and spatial propagation through the fuel and moderator
regions of the reactor lattice. When the option of a non-uniform tempera-
ture distribution is selected, the following routine is used for the neu-
tron propagation through the fuel.

2. The Non-uniform Temperature subroutine computes the optical thick-
ness of the neutron path (and its derivative with respect to temperature)
through the temperature zones of the fuel, using cross sections obtained
from the Cross Section subroutine, and determines the next collision point.
If the neutron energy is such that resonances need not be taken into ac-

count, this subroutine is bypassed.
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5. The preparation subroutine prepares input data, cross sections
of resolved resonances evaluated at the peak energy, and macroscopic cross-
sections for the program. The radial temperature distribution can be com-
pletely arbitrary, however if the parabolic temperature distribution is
selected, this subroutine calculates the value of the temperature in each
of the desired temperature zones.

L. The Cross Section subroutine determines the appropriate macro-
scopic scattering, absorption, and total cross sections in the fuel for
the current value of neutron energy. In the neutron energy region of un-
resolved resonances, the neutron width is selected from the Porter-Thomas
distribution,uo and the unbroadened resonance scattering, absorption, and
interference scattering cross sections are calculated. In the region of
resolved resonances the decision is made whether the neutron energy is in
a limited range between resonances where the resonance cross sections are
negligible with respect to the potential scattering cross section or not.
If not, the unbroadened cross sections are determined for the appropriate
resonance or resonances. The Doppler broadening of resonances is accounted
for in the next subroutine. The ”l/V” absorption cross section is calcu-
lated if it is important with respect to potential scattering cross sec-
tion for the given neutron energy.

5. The Psi-Chi subroutine evaluates the Doppler broadening functions
for the appropriate resonance parameters and fuel temperature to a pre-
scribed accuracy, and calculates their derivatives with respect to tempera-
ture. Mathematical details of calculating these functions are given in

Appendix F.
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6. The Random subroutine generates pseudo-random numbers and vari-
ables used in the problem. Selection of random variables from uniform,
exponential, polar cosine, azimuthal sine and cosine, and parabolic dis-
tributions are required.

7. The Random Input/Output subroutine accepts the initial random
numbers for input and prepares initial, final, and intermediate random
numbers for output. This routine is necessary for running a series of
many histories on the digital computer with the same physical conditions
but different random numbers.

8. The Edit subroutine computes averages, and estimated variances
and standard errors of the reactor lattice parameters for subgroups of
histories and for the completed problem. The parameters include reso-
nance capture probability and its derivative with respect to tempera-
ture, resonance escape probability and Doppler coefficient of reactivity.
The first two parameters are also given for three separate energy groups.
This subroutine also punches output cards to be used as input for succeed-
ing problems.

The program REPAD is written for a cylindrical fuel rod and lattice
cell, both of arbitrary dimensions. Both cell and fuel rod are circular

and have colinear axes.



CHAPTER VI

RESULTS

A. PROGRAM CONSTANTS AND INPUT PARAMETERS

For the total time available on The University of Michigan IBM 709
computer for this problem, it was decided that for purposes of comparison
it would be better to run only a few cases with 12,000 Monte Carlo histo-
ries rather than more cases with fewer histories and larger statistical
error. The production runs were for a .25 in. diameter rod of U25802 fuel
and a l/l fuel to moderator volume ratio. These and other input parameters,
such as fuel surface temperatures and non-resonance cross sections, were
selected to be compatible with those appearing in practice and consistent
with those in WCAP-1572 in order to make a comparison with the results of
Arnold and Dannels15 for the case of uniform fuel temperature. Values of
input parameters that are common for all the runs are given in Table T.
The recent resonance parameters determined at Columbia University by

ko are used for U-238. Since the

Rosen, Dejardins, Rainwater and Havens
resonance parameters used in REP16 were older measurements which included
only 28 resolved resonances, this number of resonances was also used in
the production runs with REPAD.

Unresolved resonances were not included because a considerable savings
of computer time could be realized by omitting the unresolved resonances,

and because it seemed incongruous to select unresolved resonances parameters

from a probability distribution when actually another 27 resonances are

9
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now resolved. According to the results presented in WCAP-1572 for a uni-
form fuel temperature, the 28 resonances of U-238 below 545 ev, which also
include the strong resonances, contribute more than 80% to both the reso-
nance capture probability and the Doppler coefficient; it is, therefore
eSpecially important to investigate the effects of a non-uniform tempera-
ture distribution due to these resonances. Furthermore, for fuel tempera-
tureé above 800°K, unresolved resonances corresponding to the average re-
duced neutron width (< FE > =< PnO/JEO>) are broadened sufficiently so
that at peak energies the average neutron path through the fuel rod is of
the order of 1 mean free path, and consequently neutrons incident on the
fuel rod have a good chance of passing through most of the temperature re-
gions in the fuel. It is expected therefore that the concept of an aver-
age fuel temperature would have more meaning for the unresolved resonances

than the resolved resonances.

B. NUMERICAL RESULTS AND DISCUSSION

The running time of REPAD is about .01 min/history for uniform fuel
temperature and .02 min/history for non-uniform fuel temperature on the
IBM 709. The latter time is for 24 temperature regions in the fuel.

Runs of 12,000<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>