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ABSTRACT

A circular uniform plasma sheath of complex conductivity is enclosing a unit

electric line source at the origin.

The plasma sheath has an infinite axial slot of

rectangular cross section. It is shown that the slot supports propagating modes

which transport power to the external space. Radiation is calculated for a narrow

plasma slot that supports the propagation only of the lower order mode. It is

shown that radiation in the forward direction is comparable to that of the unit line

source radiating in the free space as long as the lower order mode is propagating.
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INTRODUCTION

When the plasma sheath enclosing the electric line source is of a sub-
stantial thickness it is well known that for signal frequency w less than plasma
frequency wp negligible amount of power leaks through the sheath. If one openg
a slot in the plasma sheath as shown in Fig. 1, then it appears that the slot
will act as a waveguide in transporting the power from the source in the
cavity to the outside free space. The power transfer in the waveguide takes
place via the propagating modes. In this report the radiation of a unit electric
line source is calculated on a basis that exploits the waveguide properties of
the plasma slot. This is a continuation of a previous study (Olte, 1965) in
which the integral equation approach was used to solve for the plasma current.
That method was found to be useful for cases where at least some radiation
leaked through the sheath. For the parameters of the present study negligible
radiation leaks through the sheath itself and under these conditions the integral
equation method becomes too unwieldy.

We are dealing with a two dimensional problem in which the non-zero
components for electric field are Ez(r,gb) and for the magnetic field Hr(r,ﬂ)
and H ¢(r, jb). Thus we have to solve for Transverse Electric Modes in the
plasma waveguide. This is done in Section II for the parallel face plasma
waveguide. The properties of the Symmetric Transverse Electric Modes are
derived and eigenvalues calculated for both loss-less and slightly lossy
plasma. A wedge waveguide is a natural one to consider in a cylindrical
coordinate system. However, for a finite plasma frequency it does not support
uncoupled radial modes. Therefore we selected the parallel face guide because
it is the only configuration that leads to a uniform waveguide for a finite

plasma frequency.
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FIGURE 1: THE CONFIGURATION OF THE PROBLEM
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Since we are primarily interested in narrow plasma slots we may limit
the plasma guide problem to a single propagating mode. The power transport
out of the cavity is then via this mode. Knowing that aperture antennas
are efficient radiators we may neglect the reflection at the outside aperture
and hence we have to calculate only the amplitude of the outwardly propagating
mode. This is the most difficult part of the problem. The approximation
that opening a narrow slot leaves the magnetic field in the cavity unchanged
is the basis for the calculation of the outwardly traveling mode amplitude.
This is done in Section III.

Knowing the electric field in the external plasma slot aperture we may
easily compute the radiation field by using the Green's Function for the
perfectly conducting cylinder. This entails the assumption that the electric
field is negligible for the rest oi the cylinder surface. This analysis is
carried out in Section IV and leads to the practical results of this study, i.e.,
to the radiation power density in the free space as a function of the plasma
sheath electron density, collision frequency, radius and thickness, and
the width of the plasma guide. The study concludes with a discussion of the
results and the main conclusions of this report.

The rational MKS system of units is used and the time dependence

jwt .
e] is assumed.
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II

SYMMETRIC TRANSVERSE ELECTRIC MODES IN A
PARALLEL PLASMA SLAB WAVEGUIDE

The waveguide is formed by two semi-infinite plasma slabs separated a
distance 2d. We introduce a cartizian coordinate system (x,y,z) with the
y - axis normal to the plasma slabs and the origin at the half way point
between them. For the electromagnetic parameters we take the permeability
and permittivity of free space (i.e., u = M and € = eo) and the electrical

conductivity of the plasma
2

p
v+ijw

€W
_ (o)

(1)

The plasma, collision, and signal frequencies are wp, v, and w. The TM-
modes will have the following non-zero field components for propagation along
the x - axis: EZ(X’ ), HX(x, V), Hy(x, y). Each of these field components

satisfies the scalar wave equation. For the symmetric TE-modes we then

have
H (x,y) = A B ¢ sy (2a)
= Bsin(K y) e X -d<y<d (2b)
S L (2¢)

From the Maxwell equations we obtain that

9
H (x,y) = - Y — H(xy , -d<y<d  (3a)

y 21 y

0]
Y ) )
- < d 3b
5T oy Hx(x,y) , Y (3b)
v + K
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Jukt 5
EZ(X,Y) "33 By HX(X,Y) , —d<y<d (4a)
\ Y +k
- _]w_____uo D Hxy , y>ld (4b)
- 2 2 ay X ;y ) y ’ I
Y tkK
where «k = wlu €' and kK =k | 1-j 2" . since (1) has to satisfy the
o 00 we
scalar wave equation we have
2 2 2
Yy +k_= K, (5)
0 o}
and
2 2
N (6)

From the boundary conditions at the plasma interfaces we obtain

A -Kd B )

X © - X cos (Kod) = 0 (7a)
)

A e—Kd - B sin(KOd) = 0. (o)

For a non-trivial solution of (7) we require that its determinant must vanish

and thus we obtain

K
0

— = tan K d . (8)
0

Eliminating vy between (5) and (6) we obtain

k - K (9)

and thus (8) may be written as

‘ 2 1/2
. O 0
[] e <_K—> -1 :l = tanKOd R (10)
0 0
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The appropriate roots of this equation determine the eigenvalues K0 L’ K

02’
KoS’ . . . of the TE modes. In order to further discuss (10) we introduce
Kd=zu (11)
0
1 2d
—_ Eh = —
= Kod®h x (12)
o
Y=y (13)
W
wp
-Zo—— =X s (14)
then (10) becomes
2 1/2
ﬂ._).o__g- -1 = tanu . » (15)
(1-jYu

For the loss-less plasma (Y = 0) we expect the eigenvalues to be real. We

treat this case first.

2.1 The Loss-Less Case

In the loss-less case we may write (15) as

f(hX, u = tanu (16)

2 1/2
f(h X, u)5[<—7:1-11- X) - J , (17)

The intersections of tan u with f(h X, u) are shown in Fig. 2. The abscisas

where

of the intersections U, Uy, Ug, ... are the real roots of (16). We see that

for 0<h X <1 we have only one real root: u; for 1 <h X< 2 we have two
real roots: u, and Uy etc. Further we see that as X —> o the number

of real roots becomes infinite and they are given by u = (2n - 1) 7/2,
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n=1,2, 2, ... . This limit corresponds to the perfect conductor parallel
plate guide.
Whenever the tan u may be approximated by a single term in the series,

then we may solve for the roots of (16)algebraically, By a simple analysis

we obtain
ul’:ﬂhX , hX<«1 (18)
and
T 1
ul_? TS A hX>>1 . (19)

From the last two formulas and Figure 2 we record in Table I some of the

lower order roots that we will make use of later on .

TABLE I: THE LOWEST ORDER REAL ROOTS OF (17)

h X u1 u2 u3
0 0

1

T 0.63

1

5 0.93

1 1.18

3

=2 . LT

5 1.30 3.78

2 1.35 4.03

3 1.42 4,23 7.02
4 1.45 4.36 7.23

The eigenvalue for the TMn mode is given by

S (20
Kon d
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and hence from (5) the propagation constant

u N\ 2 1/2
Y, [ —a-—> kS } . (21)

From (9) and (20) we obtain

o 2 < un> 2 1/2
Ky~ [J'Jé“o ke "\ T (22)

and for the loss-less case

9 u 2 112
n [‘KOX’ '(T J | (29
Y

+ 1
N Qn j Bn (24)
and from (21) obtain for Ky < un/ d

<un>2 ; "
“ I\ q. —Ko ;Bn:O’ (25)
and for k >u /d

o  'n

9 u \2 1/2
a =0; B = [K _<__n_> : (26)
n n o d

In the first case we say the mode is beyond cut-off, in the second case the
mode is propagating.

I
I

We let

The mode is at cut-off when

o | X (27)
Using (12) we re-write (27) as

7h = u(h,X (298)
n

where we have indicated that the root u depends on h and X. Notice

from (12) that h measures the guide width in terms of the free space wave-

9
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length. On the h-X plane equation (28) defines the common boundary between
the cut-off region and the propagation region for the n-th mode.
Also from Fig. 2 and the subsequent discussion it is clear that the n-th

mode will exist either as a propagating or a non-propagating mode only when
hX>(n-1, n=1, 2, 3, ... (29)

The parabola

hX = (n-1) (30)
on the h - X plane is the boundary between the regions of existence and non-
existence for the n-th mode.

In Fig. 3 we present these curves for the two lowest order modes, i.e.,
the first and the second mode (n =1 and n = 2, respectively). We are con-
cerned only with the first quadrant of the h - X plane, because for obvious
physical reasons h>0 and X> 0. For the first mode we have from (30) that
hX = 0 and thus the first mode exists for any h and X values. The bound-
ary curve between the beyond cut-off and propagating regions for the first
mode is given by (28) with n=1. It is shown as the solid curve in Fig. 3.
For the second mode we have from (30) for the non-existence boundary the
parabola h X = 1 which we have plotted in Fig. 3 as a dotted curve. For
any (h,X) below this curve the second mode does not exist; above it the mode
exists. The existence region is split into the beyond cut-off and the propa-
gating regions by a curve from (28) with n=2. This curve starts at (1,1)
and curves to the right and sharply upward. Viewing Fig. 3 one should
consider it as two independent figures superimposed in order to save space.
The solid curve refers only to the first mode, and the dotted curves refer
only to the second mode.

Next we examine the penetration of the mode fields into the plasma.

For this purpose we substitute (12) in (23) to obtain

10
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un 2 ]’/2
Kn - KoX ‘il - (’/ThX) } ’ (31)

The n-th mode skin depth 6n we define in the usual manner by setting

K6 =1. (32)

As a fraction of the free space wavelength >Lo the skin depth 6n then

A w2 -1/2
LD P' th) : (33)

From (33) and Table I we observe that for the first mode when h X> 1 we

is given by

h;
ave N

5, 2 =

1 271X (34)

and for the second mode when h X > 4 62 is also well approximated by (34).
We conclude that for any appreciable X the field penetration in the plasma

is small for the various modal fields.

2.2 The Lossy Case

For the lossy plasma

1

1
u iu =1,2,3, ... 35
n—eun+3n , n (35)

1 1"

where u and u are both real because the medium making up the waveguide
n

is passive. The set of roots (35) satisfies (15). Since

1 1 1" KO 1 1"
= — + i = —_— +
Kon d [un ) un_] Th [un ) un} (36)

we obtain from (5) for the n-th mode propagation constant

'yn = ozn + ]Bn (37)

12
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k (-a +b)1/2
o' n n

K {a
o(n

(13),

+b )1/2
n

n

- @

7h

2u u
nn

(7rh)2

The skin depth of the n-th mode now is given by

MICHIGAN

Oﬂﬂ

(14) and (35) we obtain

SN\1/2

(38)

(39)

(40)

(41)

(42)

(43)

(44)

(45)

(46)

(47)
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To discuss these formulas requires many more cases to be considered as well

as much more numerical work than for the loss-less case. For these reasons

we limit the discussion to a slightly lossy plasma, i.e, Y << 1. For this
1

1
condition we expect u /u << 1 and hence from (15) by equating the real

and imaginary parts we obtain

—W,i >2 - 1J 1/2 ~ tan u’ (48)
u >
1

1
u

" ~
v - 2 Y (49)

1+C

with 1 / 9

1 u' 2 u' 2
€ X ( '> {1 ) (th) ' (50)
COoS u

Of most practical interest is the case of the first mode. From (48) we ob-

serve that

u1 ol u1 of (17), (51)

1
i.e., the y to a good approximation is the same as for the loss-less case
which we have already calculated. As an easy second step we compute from

(49)

1" ~ 1 1
w =5 Y T+ ¢, (52)
with 1 ul 5 u, )2 1/2
_ L (L 53
Cl 7hX (cosu1> 1 <7th . (53)

Numerical studies indicate that the approximate formulas are valid for Y<O0.1.
The propagation constant and the skin depth for the slightly lossy plasma are
only slightly modified as compared with the loss-less plasma case. The larg-

est differences are noticable at the cut-off.

14
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2.3 The Mode Fields and Power Flow

From (2) to (7) we obtain for the field components of n-th mode propaga-

ting in the positive x-direction

K (y-d) -vx
(n) _ . n n
Hx (x,y) = Bn sin (Kon d) e e , y>d (54a)
_fYnX
= Bn s1n(Kony) e , -d<y<d (54b)
Kn(y + d) —’Ynx
= —Bn sm(Kond) e e Ly<-d . (54c)
Y -K (y-d) -v x
(n) _ n n , y>d (55a)
H W (x,y) = Bn g cos (Kond) e e
on
'Yn "Ynx
= —Bn 7 cos (Kony) e , -d<y<d (55b)
on
A Kn(y +d) - X
= -Bn % cos (Kond) e e , y<-d . (55¢)
on
(n) JWH ()
E(x,y) = - H Ly) - 56)
. y T y (x,) (

The modes propagating in the negative x—direction are obtained by substituting
1

in the above expressions Bn - Bn and vn —> -vn. The time average

power flow per unit length, Pn(x), for the mode propagating in the positive

x-direction we compute from

8

(n)><

E(n) (x,y) Hy (x,y) dy

Z
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2
) Bn 2 ' cos (Kond) l
= = +
7 WP IR '
on K
n
1 1"
sin (2K d) sinh (2K d) 20 X
d ' on + _ on o n (57)
2K d 2K d
on on

16
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I
THE CAVITY COUPLING TO THE PLASMA WAVEGUIDE

A plasma cavity of diameter 2a is formed in Fig. 1, by letting d — 0.
Then for b > a and X sufficiently greater than one the electromagnetic

fields to a very good order of accuracy are given by

EZ (r,0) = -}l—wuo [—Hiz) (KOI‘) + D1 JO (KOI')] , 0 <r<a (58)
= % WK D2 Hf)z) (kr) , T >0D (58b)
H (r,f) = 2 j K -H(z) (k ¥) + D_J (k1) 0 <r<a, (59)
p z % 1 ‘o 110 ’ ’
1. (2)
= 7 Ik D2 H1 (k) , > a , (59Db)
Hr (r,d = 0 (60)

From the continuity of the fields at r = a we obtain

2)

H(z) (ka) D2 = Hf)

J (k a) D, - (k a) (61a)
0O O 1 o) 0
(2)

1

(2)

K, J1 (Koa) D1 - K H1 (ka) D2 = K H (icoa) (61b)

and hence the cavity fields are specified with the computing of

¢ 12 5?2 - «B8? ka) B (k a)
D _ 0o o 1 0 1 0 0 . (62)

1
2
Ky Hi)z) (ka) J1 (Koa) - K H(l )

Opening a waveguide in the plasma sheath as shown in Fig. 1 the plasma

(ka) JO (Koa)

cavity excites the waveguide. For a finite X only a finite number of modes

may be excited of which only a few may propagate. The others are beyond

17
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cut-off. Restricting the guide width to h < 1 we observe from Fig. 3 that
only the lowest order mode may propagate, i.e. TE E This, then, is the mode
which transports the power from the cavity to the free space. The
object of this section is to compute the amplitude of the outward traveling
TE1 mode. The mode is expected to radiate without suffering appreciable
reflection at the external plasma guide aperture. Therefore we neglect the
reflected TEl mode in the further discussions.

Any exact formulation of the problem to compute the amplitude of the
outward traveling TE 1 mode leads to a mathematical morass. Instead, we
shall compute the mode amplitude by relying on physical perception for the
approximations. Narrow waveguides opening in the cavity tend to leave the
magnetic field at the cavity wall undisturbed. We may match in some sense
this field to the transverse magnetic field of the outward traveling TEl mode
by requiring that the circumferential infegral is continuous across the wave-

guide aperture. From (55b) and (59a) we then obtain

1 . (2) -
2 ]¢1Ko [—Hl (Koa) * D1 Jl (Koa)] B

)
v ~v,a cos i}
B, dp cos [Kol a sm’bi\ e (63)
ol
_¢1

where

h>‘o
= i 4
[bl arcsin —— (64)
Performing the integration for-the case (hko)/ (2a) << 1 we obtain
. 2
T e T U &

B ~ - — - (65)

1 2 hA v, sinu

o'l 1

18
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where
p = -B?(ka) + D J (ka - (66)
1 - 1 Ko 11 o
Substituting (62) in (63) we obtain
2k H(2) (ka)
: ﬂnoa 1
D, = @ (67)

Ky Hi)z)(zca) J1 (Koa) - k H. '(ka) JO(KOa)

1
When the Hankel asymptotic forms hold then

2
T K.Oa
0 , (68)

T K T
-si ) F+ o -
sin (Koa 1 ) + p cos (Koa 2 )

K
K

c—
2

K0a>> 1, ka >> 1

For a plasma with X > 1 and Y << 1 the time average power per

unit length picked up by the TE_ mode at the plasma guide inside aperture

1
(x = a) we compute from (57) as

1 3 B1 2 sin 2u1 —2ala
P (a)ﬁ—fﬁ- WH Bl (hxo) Tl— 1+ ——-ﬁ—l—— e ) (69)

In the above formula we have essentially neglected the fields which penetrate
the plasma through the guide walls. The time average power per unit length
for the electric line source radiating in the free space we easily compute as

1
PO = ?(.OI«LO . (70)

It is convenient to normalize (69) with respect to (70), i.e., we express the
time average power picked wup by the plasma guide as a fraction of the

line source radiation in the free space

19
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(n)

Py

(a) =

(71)

We compute that

B, |2 sin 2 u -2 a
(m) 1 3 1 1 1
P1 (a) 5 ,81 (h)xo) —u—£ [1+ ——5—‘11_—] e . (72)

Substituting (65) in (72) we obtain for the case of ;bl = arcsin (i) d -Z— )
a

Y << 1, and X>1

h B .k u 2 sin 2 u 2
P(ln) (a) = -ZrT 2 1 (i)Z (sin1u> [1 * 2u 1} D; - (713
a + Bl 1 1

Since U, @, and Bl are functions of h,X, and Y we cannot discuss (73)

without some numerical work. In Fig. 4 we have plotted curves of P(ln)(a)

as a function of X with h as a parameter and Y =0.1. The plasma
cavity radius is kept at one free space wavelength, i.e., a = lko. For
h=0.25, 0.30, 0.35 and 0.4 the curves start at about 0.02 for X = 1,

peak towards 1.0 and then break and fall abruptly. The break is because

the mode becomes beyond cut-off. When h = 0.5, then the mode approaches
cut-off only as X — ®. When h> —;—; there is no cut-off and also no
peaking as may be seen for the case h=1. Cut-off occurs when 2 is
at minimum; in the loss-less case 71 minimum is at zero. The peaking

is caused by the transverse magnetic field of TE. modes decreasing to a

low value at the cut-off as can be judged from (55;. In fact the transverse
magnetic field would be zero at the cut-off for the loss-less plasma guide.
Because of this modal field behavior one can see from our approximate

scheme (63) that B

is peaked when | v, | is at a minimum. We expect

1 1
(63) to be more approximate at the cut-off than elsewhere and therefore have

20
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indicated those portions of the curves by a dotted line. The curves would be
only slightly modified for the loss-less plasma (Y = 0). One general obser-
vation may be made from Figure 4: for the guide width considered the guide
picks up from the cavity when the TE 1 mode is propagating on the order of
one tenth of the line source radiation in the free space, when the mode is
non-propagating then the guide picks up essentially no time average power.
Hence we may conclude that for the non-propagating condition the guide iso-
lates the cavity source from the free space and for the propagating condition
on the other hand we may expect a close coupling in at least some free space

directions.

22
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v
THE RADIATION

For r > b the non-zero field components are Ez(r, 0), Hr(r,[b), H¢(r,¢).

From Green's Second Identity and the Maxwell's equations we obtain

yie
(1) 1 1 (1) 1 IJ 1
E > = b’ ; i b] - b, ; 3 E b, d
0 = ) [0 gm0 1) 0.0 w0, AL

(1)

where EZ and H;bl) are the fields associated with the unit electric line

source at (r,¢). For the line source in the presence of a perfectly conducting

cylinder
EY .0 5 = 0 (75)
and hence from (74)
T
~ (1) 1. ! 1
E, (r,f) = - j-; Hy' (b, .0 E, (b,0) bap . (76)

It is an easy matter to find (Harrington, 1961)

Bl ey - - ow {-Hf’ (c |7 -5l) +
(00)]
J (k b) !
n o (2) (2) oin(p —fb)] (77)
Z . Tep p KD H (kr)e
= -0 n o

1
and for r < r

(2)
2 : H (¢1x)
(1) ' B 1 n - o jn(p - 9) _
Hﬂ (b,f; r,h = gl ) e (78)

n=-o H '(k b)
n o

We substitute (78) in (76) and interchanging summation with integration obtain
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aanlz)(:cor) ~ing
Ez(r,¢) = Z ——(—2—)———— € (79)

n= - Hn (Kob)

with

1

ap E, (b, g) P (80)

=

1
n 27

N

From (79) and the Maxwell's equations we derive the free space radiation field

-j(KOI‘ -7/4)

2_ o (81)

Ez(r, ) ~ F(P

TK ¥

(82)
(83)
where 00 n
" % -jnf
F(f) -= - °© (84)
n= -0 H “(k b)
n o

The radiation normalized with respect to the unit electric line source radiation

in the free space we define by

1 To' 2
_é— \ IJ-_— EZ (I‘, ¢) ‘
W (f) = OP , t>>b . (89
)
27T
Substituting (70) and (81) in (85) we obtain
16 € 5
wip) - = |F( (86)
[T
0 o
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We define the cylinder aperture gain function G (f) by

G - %‘-””B— - (87)
{ F(¢)’2d§b

Both of the last two formulas are of physical significance: W () tells us the

extent to which the plasma guide re-establishes the radiation as compared to

unit electric line source radiation in the free space. G () provides us with

information on the focusing properties of the plasma guide external aperture;

it is the radiation power pattern normalized with respect to an isotopic radiator.
In this section so far the formulas are exact. In order to compute F(f)

we have to find the Fourier coefficients a as defined by (80) which requires

1
the knowledge of E_ (b,f). We introduce the approximation

' (1) ' ' '
Ez (b,p) = EZ (bcosp, bsinf) , —¢o< p < ?50 , (88a)
=0 |, QSO <P < 27r—¢0 (88b)
with ha
¢o = arc sin< 21()) > . (90)

That is to say, we approximate the tangential electric field in the external guide
aperture by the electric field of the incident TE 1 mode, and for the remain-
der of the cylinder surface we set the tangential electric field equal to zero.

From (56), (80) and (88) we then obtain

¢o —'Ylb cos P + jng

jw“oBl

~ .

a ® S j dp cos [Kol b sin ¢] e (91)
ol )

(o)

For a narrow slot we may approximate (91) to
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+
(Kolb - n) ¢0

o quOB1¢O [ sin (K01b+ n) [bo
] +
n 27TK01 (K,olb n) ¢0

We observe that for (91) as well as for (92)

sin(K b -n)§ -v.b
ol oJe 1' (92)

a = a_, (93)
Substituting (65) in (92) and the resulting equation in (84) we obtain
l 1
Wk ¢0 0% D) -1 (b-a) o a_cos ng
F(p) = 8my, sinu © Z o (2) ’ (54)
1 1 n=0 H (k b)
n o
with
. + X _
A sin (Kolb n) ybo . sin (Kolb n) ;bo )
n (Kolb + n) ,bo (K b - n) ¢0
and
€ =1, n = 1
n
=2 n = 1,2 3, ...
Substituting (94) in (86) we have
1
2 -Zozl(b-a) i n ancosn
w(p) = e € ] . (96)
<27r sin £ (2)(K b)
n
From (94) and (87) we calculate
1
® a_cos nf 2
Z En]n (2)
a(py = 220 n(kob) (97)
00! a 2
. n
n= n (2)(K. b)
0
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Assuming that the TE 1 mode radiates without reflections we also may

calculate W(f) from
(n) -2 1(b—a)
1

G(f) (98)

w(p) = PV (a)

This form is particularly convenient for describing the process of radia-
tion. According to (98) the radiation depends on three factors: the power

coupled from the line source into the TE. mode, the guide attenuation, and

1
the gain function of the cylinder aperture. Equations (96) and (98) are not

exactly equivalent forms of W(@) approximation. In (96) the radiation is
computed from the assumption that in the aperture the electric field is that of
the incident TE ] mode while in (98) we assume that all incident power is
radiated. We expect both forms to agree at least to within a few db when
the TE 1 mode is propagating in the guide. This was confirmed by computa-
tions. When the waveguide is beyond cut-off (96) predicts less attenuation of the
free space radiation than (98). We feel that the former in this case is a better ap-
proximation than the latter, However, before we proceed with the discussion of
(96) we return to (98).

(n)

1n (a) factor we have already presented in Fig. 4 and discussed

in Section II. The guide attenuation factor exp 2a/l>xo is shown in Fig. 5

The P

as a function of X for Y =0.1 and the guide width h as a parameter.
The sharp drop-off in the curves indicates that the waveguide there is beyond
cut-off. Thus the first two factors in (98) indicates that when the waveguide
is beyond cut-off that it will very effectively isolate the cavity from the free
space, unless there happens to be a large cavity resonnance. The last factor
in (98) is the gain function G(f) of the axial slot excited cylinder of radius
b. We have shown G(f) in Fig. 6 for the case b = 37\0, Y =0.1, X =4,
and h as a parameter. We see that we have only a main forward lobe and
insignificant back-radiation. The essentially smooth single lobe gain function
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(i.e. the normalized radiation power pattern) arises from the three factors
1. insignificant radiation through the plasma sheath,

2. the slot width no larger than one wavelength with only the
principal mode propagating,

3. all the field components are continuous at the plasma cylinder
surface.

The gain is not a sensitive function either of the cylinder radius b or X
for b > 27&0 and Y < 0.1. From the 3 factors of (98) an appreciation is gained
for the source coupling in the various direction of the free space. Further
we see that for practical purposes it is sufficient to give the radiation only
in the forward direction i.e. @ = 0.

In Fig. 7 we present the normalized radiation in the forward direction
W(0) as computed from (96) as a function of X and the guide width h a
parameter, the cylinder radius b = 2)Lo ,and Y = 0.1. The normalization
is with respect to the unit electric line source radiation in the free space.
Thus W(0) = 1 means that the plasma slot has re-established the radiation
in the forward direction to the free space radiation level. The curves are
[shown dotted where the approximation is poor because of the P(ln)(a) behavior
as discussed in Section II. The W(0) curves exhibit the decoupling of the
source from the free space when h < 0.5 and X gets sufficiently large.
Whereas when h > 0.5 no decoupling will occur for any X. The surprising
feature is that the radiation decreases as X decreases to unity. However
for no X will the radiation in the forward direction be less than 10 db

below the free space case when the TE, mode is propagating. In Figure 8

1
we have presented W(0) for the same case as in Fig. 7, except b= SAO.
The only essential difference with the preceeding Figure is that the decoupling
curves are steeper. The other preceeding comments apply to this case as

well .
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FIG. 7: NORMALIZED RADIATION IN FORWARD DIRECTION OF UNIT ELECTRIC
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FIG. 8: NORMALIZED RADIATION IN FORWARD DIRECTION OF UNIT ELECTRIC
LINE SOURCE EXCITED SLOTTED PLASMA SHEATH AS A FUNCTION OF
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DISCUSSION AND CONCLUSIONS

The normalized forward radiation W(0) as shown in Figures 7 and 8
may be compared for some cases with the radiation from the integral equation
method (Olte, 1965) as given in Figs. 10 and 11 of that report respectively. Although
the plasma parameters correspond exactly for the two cases the slots are of
different nature: a parallel wall slot in this study and a 36° wedge slot in
the previous study for which calculations were carried out. The 360 wedge
slot inside opening is 0.615>u0 wide. The one half wavelength wide slot (h=%)
in the present case is the closest we may approach the 360 wedge slot.

When b = 2>LO the integral equation method yields 0.09 (0.15) for X = 1
and 0.125 (0.098) for X =]2,' and for b= 3%  we obtain 0.07 (0.23) for
X = 1. In the brackets we have included the corresponding numbers for
h = 0.5 parallel wall slot. The agreement is as good as can be expected
under the circumstances and lends some support to the present analysis.

In a study of this kind a number of approximations were necessary. Of
these the assumption that the principal mode radiates without appreciable
reflection at the plasma waveguide external aperture is justified on the basis
of our knowledge that apertures are efficient radiators. The most difficult
part in this study is to compute the power coupled from the source into the
principal mode. To carry out the computation we made the assumption that
opening the plasma slot leaves the cavity magnetic field unchanged. For
narrow slots this perhaps is not a bad assumption. For wider slots some
correction should be necessary. Some further work in the cavity coupling is
justified. The other approximations may be numerically justified in view of

the quantities we wanted to compute.
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In the case studied the plasma slot was opened by reducing the electron
density to zero. In a practical case we maysucceedonly in depressing the
plasma frequency in the plasma slot below the signal radian frequency. Is
this enough? How wide should the waveguide slot be under these conditions?
The study may be easily extended to this case. However, here we limit the
discussion to a few observations about the lower order mode under these condi-

tions. Replacing Ky in (5) by

R 01 ]
KlzKo\Il_J WE (99)
o
where 9
6owpl
1T Y Aie (100)

we obtain for (15)

2 2 1/2
7hY [ X 1 i
(u) [:l—jY - l-le-J —1} = tanu (101)

where the new variables

X = _pl . Y = 1 . (102)
For the loss-less case (101) simplifies to

2 )R
{(lul-‘xr) -11 = tanu (103)

where

X = X - X2 . (104)
T 1

Restricting to case X > X1 we observe that (103) is of the same

form as (16) and thus the results of Table I apply if we replace X by Xr
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in the first column. The root u 1 is reduced as compared to the k case
0
slot. The propagation constant for the lower order mode in the loss-less case

now will be given by
2

u 2 1/2 u
- _1> 2 g (1 2
@, = Ko{< — + X1 1} s Bl = 0 ’(1rh> +X1 > 1, (105)

2
@ = 0, Bl = Ko{l -{(%) + Xi] }1/2; (—:ﬁ—) 2+ X? < 1, (106)

the non-propagating and propagating case, respectively. From (106) we con-

clude that the mode is propagating when

u1/7r
h > -% (107)
1 - X1
\
The root u, assumes a maximum of 7/2 as X —» o and thus the mode
is propagating for any X as long as
0.5
h > ‘T—-:-'—r—XT—-’ (108)

1
As one may expect the pl\zisma slot for the lower order mode to propagate
for any X should be at least onehalfslot mediumwavelengthwide, which is an
obvious generalization of our study of a special case, i.e. Xl = 0. Exami-
nation of the other equations reveals that the other modifications because of
non-zero Xl will be minor compared to the impact of X1 on the minimum
slot width required in order to establish radiation in the forward direction.
If we do not depress in the slot the plasma frequency

below the radian signal frequency, i.e. if X1 > 1, then as indicated by
(105) the attenuation constant o 1 will be large for any slot width and a very

substantial waveguide attenuation of the radiation will result. For the loss-less
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plasma case this is explicitly given in (105), and for a lossy plasma may be
computed from (21) with kg replaced by Kl and the appropriate root
selected from (101).

We summarize the main conclusions of this study:

1) When the slot of the uniform plasma sheath may be approximated
as a parallel face slot then it assumes the properties of a parallel face wave-
guide that supports under some conditions propagating modes. These propa-
gating modes play very dominant role in the transfer of power from the source
to the outside free space. In fact the regions of blackout can be delinated
solely on the basis of non-propagation of all modes in the plasma slot wave-
guide. When the modes are propagating they suffer no attenuation in the case
of loss-less plasma. It has been shown that the lower order mode at least

suffers negligible attenuation also for low loss plasma.

2) It has been shown that symmetrically excited plasma slot of the
cylindrical sheath produces a broad forward lobe: 3 db width of the order
of 75o for —;— wavelength slot, and of the order of 50o for one wavelength
slot. The polarization of the electric field is entirely tangential to the cylinder
surface and the leakage through the plasma sheath is assumed to be insignifi-

cant. No significant back radiation exists.

3) This study extends to a larger class of parameters the conclusion
from the integral equation method that the slot effectively re-establishes
radiation in the forward direction. For plasma slot wider than -;— wave -
length the radiation in the forward direction is returned to the no-plasma
sheath levels, and at least to within -10 db for narrower slots as long as
the lower order plasma waveguide mode is propagating and the plasma is of

low loss type.
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