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FOREWORD

This report represents the final report on the NASA Grant NSG-22-59.
It is essentially a continuation of the work done on the general study of
the physics of a low density ionized gas assuming no collisions. The aim
of this study is to familiarize ourselves with the properties of such a
dilute plasma in the hope to gain insigh£ into phenomena such as instabil-
ities, discontinuities and the all-important derivation of the "magneto-
hydrodynamic" equations from a kinetic theoretical point of view.

The project is directed by Professor R.S.B. Ong of The University of
Michigan. The contents of this report will be condensed and submitted for

publication shortly.
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LIST OF SYMBOLS

r = (rx,ry,rz) position vector pertaining to electrons
R = (RX,Ry,RZ) position vector pertaining tq ions
v (vx,vy,vz velocity vector pertaining to electrons
7= (Vx5 Vy, V) velocity vector pertaining to ions
¢(|?l-?2|) Coulomb potential between two electrons
d( [Ry-Rz]) Coulomb potential between two ions
$( |7-R]) Coulomb potential between an electron at position ¥
and an ion at position R
e electron charge
m electron mass
M ion mass
t time
B(7) induced electric field
T induced magnetic field



1. INTRODUCTION

In the case of Coulomb forces in a dilute plasma the effect of weak inter-
actions is more important than the effect of single collisions. Tn order to
give a good evaluation of these multiple interactions the two-particle distri-
bution function is used. The usual expression for the effect of binary col-
lisions in the kinetic equation is then replaced by an integral containing the
various two-particle velocity distribution functions. In the case of a di-
lute, fully ionized hydrogen plasma the basic equations are of the following

forms (for the meaning of the symbols see page V).
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The function fl(?l,zi;t) is the single electron velocity distribution func-
tion defined in such a way that f£1(¥;,¥1;t)d¥1d¥, (where d¥; = dryxdriydry,
and d%l = dledvlydvlz) gives the probability of finding an electron at a
given instant t located within the element d?l of the coordinate space and
having velocity vectors with their end points in the element d?l of the
velocity space. The subscript 1 under the space coordinate T and veloclity
>

¥ indicates that a typical electron is being considered. The function

fo(F1,Fs,V1,Vost) is defined in such a way that fo dF1dFodV1d%s gives the



probability of finding electron 1 at the instant t located within d%1dV1 to-
gether with electron 2 located within dT-dVo at the same instant. The inte-
gration with respect to d;g and d%2 in the multiple integral must be ex-
tended over the entire coordinate space and velocity space available to elec-
trons. The function fg(;,§,$,v;t) is defined in such a way that fo d?dﬁd%d%
gives the probability of finding electron 1 at the instant t located within
d¥1d%1 together with an ion located within dRAV at the same instant. Note
that capital letters refer to ilon positions and velocities while lower case
letters indicate electron positions and velocities. The integration with
respect to dﬁ and AV must be extended over the entire coordinate space and
velocity space available to ions.

An equation similar to (1.1) applies for the distribution function
F1(R,V;t) for single ions. Furthermore Eq. (1.1) is one equation of a
hierarchy of equations for the multi-particle distribution functions of in-
creasing order; the analogous Bogoliubov-Born-Green-Kirkwood-Yvon equations

for a dilute pl'asma.:L Along with Eq. (1.1) we shall be concerned with the

equation for fo(T1,%s,V1,Ve;t) which has the form:
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The three-particle distribution functions f5 are defined similarly as the

definition of fo and the integrations with respect to d?s and d@s must be ex-

tended over the entire coordinate space and velocity space available to elec-

trons and those with respect to dR and av again over the entire coordinate

space and velocity space available to ions.

A similar equation also holds for the corresponding two-particle dis-

tribution function Fé(§1,§2,$l,$é;t) for the ions. Since this equation is

exactly analogous to Eq. (1.2), hence there is no need to write it down.

However, we will be concerned with the equation for the electron-ion dis-

> > > > )
tribution function fo(r;,Ry,vy,Vy;t) which is of the form:
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The problem is how to deal with these functions without running into an end-
less chain of higher order distribution functions. Obviously, expressions
must be found giving the fa's in terms of the fi's and fo's for both elec-
trons and ions. This will then yield a bona fide kinetic equation for a
dilute plasma which is analogous to the Boltzmann equation for neutral gases.
For the general case of a spatially non-homogeneous plasma this leads to a
rather complicated kinetic equation. For the special case of a spatially
homogeneous plasma we have the less complicated Balescu-Guernsey equation.
At any rate, in order to derive the macroscopic magneto-hydrodynamic equa-
tions from kinetic theoretical principles two preliminary studles are re-
quired.

1. Study of the approach to equilibrium.

2. Derivation of the general conservation laws.



The study of the approach to equilibrium should reveal the character of
the relaxation times, which in turn would be very useful in the attempt to
seek for approximate solutions to the complicated kinetic equation. The
conservation laws are usually obtained by taking moments of the kinetic equa-
tion. They are equations giving relations between the various macroscopic
variables, e.g., density, temperasture, mass average velocity, pressure, etc.
Unfortunately they form an open set of equations and in order to close them
we need to overcome our ignorance concerning the characteristic relaxation
times of a dilute plasma. However, it is important to note that only the
complete set of macroscopic (in this case magneto-hydrodynamical) equations
are of physical interest. Hence, although we are still far from obtaining
the full set of magneto-hydrodynamic equations derived from first principles
of physics, yet it is of interest to study the open set of general macro-
scopic conservation equations. This is usually obtained by taking moments
of the kinetic equation. However, it is also possible to obtain these con-
servation equations directly from the B-B-G-K-Y hierarchy, i.e., from Egs.
(1.1), (1.2), (1.3), and the corresponding ones for the ions. They will
clearly exhibit the role which the two-particle distribution functions

play in the various macroscopic quantities.



2. DERIVATION OF THE GENERAL CONSERVATION LAWS

We start with Eq. (1.1) of the preceding section. Integrating with re-
spect to $1 from -« to +w and assuming that the distribution vanishes as 31

goes to « we obtain the equation:

J .
S a(F ) + L (YY) = o (2.1)
Sra
where
[ee]
n(r,t) = J/\ £1(T,Vv;t)dv; = the number density.
=00
(o]
UT,t) = L d/\ ¥,f1d¥; = the macroscopic density.
o

=00
The terms in (1.1) involving the two-particle distribution function fs do

not contribute anything, for e.g.,
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since J[\ L2 dvii = O (i = 1,2,3)
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The subscript 1 in n and U is not needed anymore and to conform with the
usual notation for the macroscopic quantities it i1s therefore omitted. Equa-
tion (2.1) yields the equation for the conservation of mass:

T



% o(%,t) + % [o(F,t)ug(F,t) ] = © (2.2)

where
o(7,t) = m(F,t) = electron mass density.
Equation (1.1) is now multiplied by v,i and integrated with respect to v

from -o to +o, We then obtain:
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In (2.3) we have put vy = ui+Us; U = thermal velocity. ng(?,t) is the famil-
iar expression of the pressure tensor due to the kinetic motion of the mol-

ecules. Using (2.1) Eq. (2.3) may be written in the form:
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Now it can be shown that
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where P¢1(r t) is defined by
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Furthermore p' = R-%; and A' is defined such that
1
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Pfﬁ(?,t) is the stress tensor due to the potential between pairs of elec-

<i>2

trons and Pj r ,£) is the stress tensor due to the potential between pairs
of electrons and ilons.

Thus Eq. (2.5) becomes:
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K
Pis(F,1) = Piy(Ft) + P¢l(r £) + BY3(%,1)

Hence Pij(?,t) is the total stress tensor and it is symmetric.

Proof of Equation (2.6): (See S. T. Choh and G. E. Uhlenbeck, "The

(2.10)

Kinetic Theory of Phenomena in Dense Gases," U.M.R.I. Report, Feb. 1958).

We define the pair density distribution:
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no(¥,,7o;t) is a symmetric function of the two points T, and Ts.
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Equation (2.8) can be derived in a similar menner. Equation (2.10)
is the equation for the conservation of momentum. To get the equation
for the transport of the kinetic energy density we multiply (1.1) by
% mv5 and integrate over %l. After rearranging terms and making use of the

equation (2.10) scalarly multiplied by E we obtain:
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where
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1 5 i ’
rent density.
K o
e (T,t) = jgljp dv,USF1(T1,V13t) = thermal energy density.
-00
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Next we derive the transport equation for the potential energy density. For
this we need to use Egs. (1.2) and (1,5) of the B-B-G-K-Y hierarchy as de-
scribed in Section 1. Multiplying Eq. (1.2) by hne2¢(|?l-?2[) and inte-

. > > > .
grating over To,V;, and V- we obtain:
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where
0]
€d>(?;t) = hne® f ATedV1aVad( [T1-Fo|) f2(F1,72,%1,V2st)
-00
= the potential energy density resulting from the potential
between pairs of electrons.
q?(?,t) = Lne® fd?gdvgdvlcﬁ( |#1-F2]) Urifa(Fy,T2,%1,725t)

= the electron-electron potential part of the heat current

density.

Equation (2.13) is the transport equation for the potential energy density

resulting from the potential between pairs of electrons. In a similarly

way we obtain the transport equation for the potential energy density re-

sulting from the potential between single electrons and single ilons.

this we multiply Eq. (1.3) from Section 1 by -hneg¢([?-§|) and integrate
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= the potential energy density resulting from the potential
between pairs of electrons and ions.
x
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the electron-ion potential part of the heat current density.

Equation (2.14) is the transport equation for the potential energy density
resulting from the potential between pairs of electrons and ions. The trans-
port equation for the total electron potential energy is obtained by adding
(2.13) and (2.14). After rearranging terms and msking use of the equation

for the conservation of mass this may be written as:
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Combining (2.11) and (2.15) we obtain the transport equation for the total

electron energy density. This may be written as:
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where
e(F,t) = "(Ft) + P(F,t)
= the electron energy density.
> K
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Similarly,
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Hence using (2.17) and (2.18) we can write (2.16) in the form:

n
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Hence, if we define

e
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-
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the heat current density for the electromns.

Then the transport equation for the total electron density may finally be

written in the form:
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Note that the heat current density vector Q;(¥,t) depends only on the thermal
velocities of the electrons and ions.
In a completely similar way we can obtain the conservation laws analogous

to Egs. (2.2), (2.10), and (2.20) for the ions. Hence, in summary, the con-

servation laws for electrons and ions may be written in the form:

P . ok w
t + S;& (p7uz) = © (2.21)
¢ DUy aPig + Lot
+
+D (e"\, O of _ _ptpt -+ ¢
0 5t_<;;>+ Sro Q, = -P D * (uﬁ uB) ara (P 2) (2.23)

where the superscript plus refers to the ions and minus to the electrons.
By summing up over the electrons and ions in (2.21), (2.22), and (2.23)
we can write the conservation laws for a dilute plasma considered as a mix-
ture of electrons and ions. We would then obtain equations analogous to
those derived by Chandrasekhar for the simpler case where the collision-

less Landau-Vlasov equations were used as the starting point.u
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