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I was a student of Fred Smith at the University of Minnesota

during 1952–1959. Smith was an Englishman who came to the

USA to work on the Manhattan Project to build the atomic

bomb. He was an outstanding carbohydrate chemist who was

mentored by Sir Norman Haworth, Nobel Laureate in Chemistry

for the synthesis of vitamin C (ascorbic acid). Smith was at the

University of Birmingham when he received the call to come to

the United States to work on ‘‘the bomb’’ because of his exper-

tise in fluorine chemistry, a necessary technique for the separa-

tion of the 238 isotope of uranium as the hexafluoride.

My work in Smith’s Lab involved studies on periodate oxi-

dation products of glycosides. On receiving my PhD I stayed on

as a postdoctoral fellow and instructor for two additional years.

Happily for me, I was awarded a Guuggenheim Fellowship

which allowed me to spend 2 years in Europe, first with Bill

Whelan at the Lister Institute of Preventive Medicine in Lon-

don, then with Bengt Lindberg in Stockholm. My work in both

places involved the isolation, characterization, and chemical and

enzymatic synthesis of oligosaccharides from natural sources.

These were two wonderful years to work in and experience the

scientific and cultural milieu of two different European labora-

tories. Bill Whelan was an enthusiastic and a helpful mentor.

We both smoked at that time, and each morning ‘‘after lighting

up,’’ we discussed my research. He always provided insightful

and valuable ideas and approaches to pursue.

My habit of arising early and getting to the lab in the early

morning persisted while in London. At first, this did not go

over well with the janitorial staff at the Lister. But after some

time we became good friends and they greeted me with much

enthusiasm each morning. There was another advantage from

arriving early: I had the first use of equipment which was, at

times, in short supply.

While at the Lister I also had the opportunity of meeting

Walter Morgan and his colleague Winifred Watkins. They had

been studying the chemistry of human blood group substances

for many years and were in a fierce competition with Elvin

Kabat, Prof. of Immunochemistry at Columbia University. They

were always first to grab a copy of the latest journal to see if

Kabat had scooped them. Little did I realize, at the time, that

our paths would converge. They did indeed when my lab took

up a study of the lima bean lectin which they had used to assay

for human type A blood group substance. I had many interest-

ing and fruitful discussions with these colleagues during the

following years.

My first independent position was at the University of New

York at Buffalo. To assist a colleague in the characterization of

glycogen from microorganism, I decided to prepare concanava-

lin A from jack beans (Canavalia ensiformis) which was shown

to precipitate glycogen. I followed the procedure of James

Sumner who first prepared the protein. I decided to pass the

purified protein through Sephadex, crossed-linked dextran, to

assess its homogeneity. It did not emerge from the column! In

an attempt to displace it from the column I suggested to a grad-

uate student to add glucose. Pure concanavalin A was eluted!
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My graduate student and I rushed to publish this interesting

result and sent it to Biochem Biophys Res Commun. It came

back by return mail: ‘‘This represents a modest advance in an

obscure area. Manuscript rejected.’’ Subsequently it was pub-

lished as a note in the Biochem J (1). Reasoning that the protein

had a binding site(s) for a carbohydrate molecule, my laboratory

set out on a trail of research to characterize the Con A binding

site. We determined there were four carbohydrate binding sites

per molecule (2) and that a-D-mannose (3) was the most avidly

bound monosaccharide. Such carbohydrate-binding proteins

were termed lectins by William C. Boyd, from the Latin legere-

to pick out or to choose. We then turned our attention to find

other carbohydrate binding proteins in plant material—seeds,

tubers, and fungi. The study of lectins opened up many doors

and avenues of research concerned with the structure, biosyn-

thesis, and function of these fascinating proteins. The use of

lectins in biochemical research also led us to many interesting

applications in numerous biological fields.

It was also at this time that I received an invitation to pres-

ent a seminar in the Department of Biological Chemistry at the

University of Michigan as a possible candidate for the position

of Associate Professor. I was flattered and excited, especially

because Saul Roseman, the outstanding glycobiologist was

there. I gave a seminar on my lectin research; it went over well.

A week later, I was offered the position; I accepted with alac-

rity and have been here for the past 44 years.

Calbiochem contacted me to assist them in the preparation

of Con A on a commercial level. In return for my services they

sent me a quantity of Griffonia simplicifolia seeds obtained

from Ghana. The discovery of five isolectins in these seeds was

a great revelation: the isolectins were labeled A4, A3B, A2B2,

A3B, and B4 to account for the specificity of the A-subunit to-

ward N-acetylgalactosamine, the determinant sugar in human

blood group type A substance, and the B-subunit toward galac-

tose, of human blood group type B substance (4). The most val-

uable isolectin was B4 which showed a remarkable specificity

toward a-D-galactosyl end groups. That made it an extremely

valuable reagent for the detection of a-D-galactosyl end groups

in biological materials. We employed this B4 isolectin for the

assay of human type B erythrocytes (5) and labeled it with fluo-

rescein, as a tool for the visualization of terminal a-D-galactosyl
end groups. We discovered this carbohydrate group in Ehrlich as-

cites tumor cells (6), in cryostat sections of rat kidney cortex, in

capillaries of cardiac and skeletal muscle (7), and in murine lam-

inan (8). In its immobilized form, it proved an efficient matrix

for the isolation and characterization of a series of a-D-galacto-
syl-containing glycoproteins from Ehrlich ascites tumor cells (9).

The a-1,3-galactosyltransferase responsible for the syntheses of

these oligosaccharide chains was purified from the Ehrlich cells

(10). The fluorescein isothiocyanate (FITC)-labeled B4 isolectin

was also shown to label porcine tissue due to its presence of a-
galactosyl end groups which make porcine tissue incompatible

for transplantation into humans (11). Interestingly, our lab also

showed that the GS-I B4 isolectin bound to stimulated but not to

resident murine macrophages indicating the presence of a-galac-
tosyl end groups in stimulated macrophages (12).

An investigation into the isolation, characterization, and bio-

logical properties of the lima bean lectin proved to be extremely

profitable. This lectin, which recognizes a-D-N-acetylgalactosa-
minyl-end groups specifically agglutinates human type A eryth-

rocytes.

We isolated the lectin on immobilized blood group type A

substance (13). The lectin is composed of two active species of

molecular weight of 247,000 and 125,000 with identical amino

acid compositions and subunits of 31 Da. Lima bean lectin does

not contain methionine but possesses two half-cysteine residues

per 31,000 molecular weight subunits (13). One of the sulfhy-

dryl-containing subunits is free, the other being involved in a di-

sulfide linkage between two subunits. The free sulfhydryl group

was shown to be essential for carbohydrate binding activity (14). A

peptide containing this sulfhydryl (SH) group was isolated by pro-

teolytic digestion and characterized (15). Maximum homology was

found with a sequence in concanavalin A and other legume lectins.

The presence of one carbohydrate binding site per subunit was

shown by equilibrium dialysis (16). A second seminal finding was

the presence of a specific, high affinity binding site for adenine on

the lima bean lectin molecule (17, 18). We also identified the pres-

ence of adenine binding sites in other legume lectins (Dolichos

biflorus, Phaseolus vulgarus, and soybean) (18). This high affinity

adenine binding site on the lima bean lectin was labeled with the

photoaffinity probe 8-azidoadenine (19) and the peptide containing

the label isolated following digestion with trypsin and shown to

possess extensive homology to adenine binding sites in other leg-

ume lectins (19). The adenine binding site was also studied by

electron spin resonance (ESR) using a spin-labeled probe (20).

The search for lectins that bind sialic acid proved to be very

rewarding. These 9- carbon acidic sugars are omnipresent in the

animal world. They are typically found at the termini of N- and

O-linked glycans. We discovered several of these lectins which

are now used routinely by scientists world-wide. The first was

isolated from elderberry bark (Sambucus nigra) which recognizes

the Neu5Aca2-6Gal/GalNAc sequence (21). In its immobilized

form this lectin recognizes and binds sialylated glycoproteins and

glycopeptides and proved useful for the fractionation of

sialylated oligosaccharides glycopeptides and glycoproteins (22).

A second sialic acid binding lectin was isolated form the fruting

body of the polypore mushroom Polyporus squamosus (23). It

recognizes the sequence Neu5Ac a2-6Gal b1-4Glc/GlcNAc
which occurs ubiquitously in glycoproteins and glycolipids. It

has found wide application as a histochemical stain for identifica-

tion of this epitope (24). This lectin has been crystallized and its

X-ray structure, combined with its sialylated oligosaccharide,

determined (25). The sialic acid binding lectin from the slug,

Limax flavus, has also been studied. It recognizes terminal sialic

acid groups (26). The lectin was cloned in our laboratory;

therefore, its amino acid sequence is known (27).

We later conducted studies on the banana lectin. We carried

out an in-depth study of its carbohydrate binding specificity and
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found it to exhibit some extraordinary properties. Besides its

known property of recognizing terminal, nonreducing a-manno-

syl/glucosyl groups we determined it to bind to internal a-1,3-
mannosyl/glucosyl groups and also to reducing terminal b-1,3-
glucosyl units as occur in laminarin, the polysaccharide from

the brown alga Laminaria digitata (28, 29). The lectin precipi-

tated with elsinan, a linear polysaccharide containing internal a-
1,3-glucosyl linkages and nigeran which contains, on the aver-

age, alternating a-1,3- and a-1,4-glucosidic bonds. This is the

first instance of a mannose/glucose-binding lectin reacting with

internal a-1,3-linked glucosyl group (28). The X-ray structure

of the lectin was determined with a laminaribiose molecules in

its binding sites (30). The structure has a B-prism-I fold similar

to other family members, but differs from them in its mode of

sugar binding. The presence of a second, previously unreported

sugar binding site, was also identified.

One of the very few human type B blood group-specific lec-

tins was isolated from the mushroom Marasmius oreades. Our

laboratory purified it to homogeneity, cloned the gene for its

expression, and studied its carbohydrate binding specificity

(31, 32). The protein is a homodimer with two binding sites

(31). It has exclusive specificity for Gal a-1,3 Gal—containing

epitopes (31). This disaccharide sequence, present in porcine

tissues, poses a barrier to its use in animal-to-human organ

transplantation. The X-ray crystal structure of the lectin, com-

plexed with the linear trisaccharide Gal a-1,3 Gal b-1,4GlcNAc,
was determined at 2.4 Å resolution (33). The structure adopts a

ricinB/B-trefoil fold at its N-terminus while the C-terminal

domain serves as a dimerization interface.

A lectin with an unusual specificity for Gal a-1,4-Gal units
was isolated from the mushroom Lyopyllum decastes (34). It is

a homodimer composed of noncovalently associated monomers

of molecular mass 10,276 Da (34). Interestingly, it does not

show significant homology to any known protein sequence. The

Gal a-1,4-Gal disaccharide sequence is relatively rare in humans

but is present in the bacteria Shigella dysenteriae and E. coli

0157:H7, both of which are responsible for fatal food-borne ill-

nesses in humans.

A complete chapter in the work in my laboratory encom-

passes the lectin present in Amaranthus caudatus seeds. High in

its content of nutritious proteins, the seeds were used by

ancients in South America as an important component of their

diet. Isolated on a Synsorb-T affinity column, the lectin is a

homodimer with a molecular mass of 33 kDa with two binding

sites per dimer (35). It is not glycosylated and requires no metal

ions for binding activity. The lectin has a unique binding site

directed against the T-antigen (Gal b1,3GalNAc). Interestingly,
the T-antigen is expressed in carcinomas of the breast, pancreas,

lung, and colon and can be detected readily by the A. caudatus

lectin. The lectin was crystallized and its X-ray crystallographic

structure bound to the T-antigen determined (36). Numerous

contacts are observed between both the Gal and GalNAc moi-

eties of the T-antigen. A critical feature of the carbohydrate

ligand is the orientation of the C4 hydroxyl of GalNAc; this

group must be axial as opposed to equatorial for optimal lectin

binding (36).

A major group of lectins studied by our laboratory are found

in bulbs from the plant family Amaryllidaceae. These include

those from the spring flowers snowdrop (Galanthus nivalis),

daffodil (Narcissus pseudonarcissus), and amaryllis (Hippeas-

trum hybr.). They are all a-D-mannose-specific lectins which do

not recognize a-D-glucose. All these lectins occur as dimers.

Although they all contain cysteine residues the dimers are not

linked by disulfide bonds. A prime example is the snowdrop,

the first in this group of mannose-specific lectins studied (37).

It is a tetrameric protein composed of identical 12.5 kDa subu-

nits. The lectin protein has been sequenced and cloned and its

X-ray crystallographic structure determined (38). Not surpris-

ingly, its amino acid sequence did not reveal any significant

homology with several mannose/glucose binding lectins (Con

A, pea, lentil). However, bulb lectins belonging to the same

family as snowdrop (Amaryllidaceae), daffodil and amaryllis,

showed high amino acid similarity among each other (approxi-

mately 80–89%).

Most recently, my laboratory has been studying the carbohy-

drate molecules which decorate the surface of human embryonic

stem cells. Employing a panel of lectins and anti-carbohydrate

antibodies the carbohydrates that are present on day 12 of

human embryonic stem cells (hESC) differentiation as embryoid

bodies was determined (39). Among the carbohydrate epitopes

we identified were both terminal and internally linked a-D-man-

nopyranosyl groups, poly-N-acetyllactosaminyl chains and both

a-2,3- and a-2,6-linked N-acetylneuraminyl acid and b-D-galac-
tosyl groups. However, no terminal nonreducing a-D-galactosyl,
N-acetyl-b-D-glucosaminyl nor N-acetyl-a-D-galactosaminyl

groups were found by this approach. After 28 days increases in

GalNAc, the T-antigen (Gal b1,3GalNAc) and difucosylated

LacNAc were observed (40).

So, I feel as if I’ve been pretty fortunate to have had the op-

portunity to work in and supervise a laboratory for close to 50

years with the thrill of discovery and to work with a group of

outstanding students and colleagues, and happily, it continues to

this day.
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