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Abstract 

This study assessed the ecological impacts of the Belize Aquaculture Ltd (BAL) and 

Aquamar shrimp farms in southern Belize.  Water and in situ periphyton samples (measuring 

nitrogen content, δ15N, carbon/nitrogen ratios, and growth) indicated that shrimp farm effluent 

was influencing receiving waterways.  At BAL, periphyton sampling showed significant 

elevation of nitrogen content, δ15N, and growth within the group of sites below the effluent 

release creeks.  Compared to other BAL sampling sites, nitrate, phosphate, and TSS were the 

highest and DO the lowest at sample sites in Santa Maria Creek, the major effluent release point 

at BAL.  Seagrass distribution decreased significantly in the middle portion of Placencia Lagoon 

between 2003 and 2007, coinciding with increased nutrient loading from BAL and adjacent 

development in the area.  At Aquamar, sampling showed significantly higher δ15N and 

significantly lower carbon/nitrogen ratios within the group of sites closest to the effluent source 

(<2500 m).  Compared to other Aquamar sampling sites, Nitrate and TSS were highest and DO 

lowest in Plantation Creek, the major effluent release point at Aquamar.  The suite of parameters 

used in this study helped elucidate the magnitude and extent of the influence of shrimp farm 

effluent on the two receiving waterways.  The results of this study also revealed the strengths and 

weaknesses of this novel periphyton bioindicator protocol as an effluent monitoring tool.      
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Introduction 

World aquaculture production has increased by 8.8% annually since 1970, spurred by the 

increasing demands of a growing world population and stagnant or declining global seafood 

stocks (FAO, 2007).  Shrimp is the world’s most valuable seafood commodity, with an export 

industry worth $10.9 billion in 2007 (FAO, 2009).  About half of this production is from 

aquaculture, which grew six fold from 1984 to 2004 (FAO, 2006).  Often an economically 

important industry for developing countries, shrimp farming has been heavily criticized for 

adversely impacting coastal environments.  Primary environmental problems associated with 

shrimp farming include eutrophication of receiving waters, destruction of coastal habitat, disease 

transfer, non-native species introduction, and net protein loss in feed conversion (Boyd and Clay, 

1998, Naylor et al., 1998; Naylor et al., 2000; Paéz-Osuna, 2001; Primavera, 2006).   

Of great concern to many critics are the impacts of effluent from shrimp farms on 

receiving waterways (Costa-Pierce, 1996; Sansanyuth et al., 1996; Hargreaves, 1998; Naylor et 

al., 1998; Boyd, 2003).  Shrimp feed is high in nitrogen (N) and retention by shrimp is often less 

than 25% of N inputs (Briggs and Funge, 1994; Boyd and Tucker, 1998; Burford et al., 2003a).   

Nitrogen remaining in the ponds is generally flushed into surrounding waters, either periodically 

to alleviate shrimp stress, or at harvest.  Excess N can cause eutrophication of receiving 

waterways, potentially resulting in water chemistry alteration, harmful algal blooms, increased 

turbidity, low dissolved oxygen, and altered food chains (Ryther and Dunstan, 1971; Paerl, 1988; 

Kennish, 1992; Nixon, 1995; Smith et al., 1999).  Eutrophication resulting from multiple nutrient 

sources has been implicated in reducing seagrass abundance (Duarte, 1995; Burkholder et al., 

2007; McGlathery et al., 2007; Wazniak et al., 2007; Fox et al., 2008).  In some circumstances, 

shrimp effluent has negatively impacted shrimp farms themselves by polluting intake water, 

affecting crop growth, or promoting disease (Pruder, 1992; Phillips et al., 1993; Hargreaves, 

1998).        

While the damage caused by shrimp farm effluent can be serious, it is often difficult to 

measure the extent of its impacts.  Research using traditional water sampling techniques to 

measure effluent has been the norm (Samocha and Lawrence, 1997; Funge-Smith and Briggs, 

1998; Islam et al., 2004), but is often seen as inadequate (Jones et al., 2001; Boyd, 2003; 

Costanzo et al., 2004; Lin and Fong, 2008).  A traditional water quality sampling protocol, where 

periodic samples are taken for analysis, gives only a snapshot of impacts.  Such a protocol will 

  2



   

often miss inconsistent nutrient flows and pulses (Wolanski et al., 2000; Fong et al., 2004)  

typical of shrimp farm effluent timed to farm releases, tides, or weather events (Burford et al., 

2003a).  In attempts to assess bioavailable N that may be missed in traditional water sampling, 

some researchers have begun using in situ flora or fauna as a bioindicator, particularly deployed 

macroalgae (Costanzo et al., 2001; Jones et al., 2001; Lin and Fong, 2008).  Algae and other 

organisms can indicate the fate of biologically available N via tissue percent nitrogen (%N) and 

the carbon to nitrogen ratio (C/N), with a greater %N (Fong et al., 1994; Naldi and Wheeler, 

1999; Lin and Fong, 2008) and lower C/N ratios (Hillebrand and Kahlert, 2001; Nelson et al., 

2001; Jiménez and Niell, 2003) generally associated with more available nitrogen.    

Given the interest in identifying the sources of extraneous nitrogen, many researchers use 

the unique isotopic signatures of source N as a tracer in the biotic and abiotic environment (Rau 

et al., 1981; Heaton, 1986; Peterson and Fry, 1987).  For example, inorganic fertilizer produced 

using the Haber–Bosch process has a δ15N value (ratio of 15N to 14N) close to 0, while fishmeal-

based feeds, flocculated particles in shrimp ponds, wastewater effluent, and organic fertilizers 

tend to have elevated δ15N values due to biological reprocessing (Costanzo et al., 2001; Fry, 

2006; Fertig et al., 2009).  An elevated δ15N signal of source material can often be detected in the 

tissues of organisms (McClelland and Valiela, 1998; Jones et al., 2001; Cohen and Fong, 2005; 

Lin and Fong, 2008), providing an indicator of the source of N in the environment.  Assessing 

biological indicators for δ15N is often superior to direct δ15N measurements of the water column 

or sediment (Tucker et al., 1999), as these measurements reduce geographic and temporal 

variability (Fertig et al., 2009).  Measuring in situ %N, C/N, δ15N, and maximum growth of 

organisms that assimilate N quickly can supplement traditional water sampling to give a more 

comprehensive picture of the temporal and spatial impacts attributed to specific sources.      

A review of the relevant literature suggests that this is the first study to use in situ 

periphyton to assess shrimp farm effluent impacts.  Compared to some macroalgae techniques 

(Jones et al., 2001; Costanzo et al., 2004; Lin and Fong, 2008), growing periphyton in situ may 

enlarge the range of possible sampling locations given that it does not require finding a suitable 

species, a “pristine” harvest site for that species, or incubation in a flow-through tank. 

The aim of this study is to assess the ecological impacts of two shrimp farms using 

traditional sampling techniques and in situ periphyton as an N bioindicator.  The two farms were 

selected based on similar total production levels as well as varied production techniques and 
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effluent release areas.  While comparisons between farms are made, the primary focuses of this 

study are to 1) assess the impacts of each farm on its effluent receiving waterways; and 2) assess 

periphyton parameters to evaluate the usefulness of each metric in an effluent monitoring 

protocol.  Given the intense interest in shrimp farm monitoring expressed worldwide by 

producers, consumers, retailers, governments, and NGOs, collecting off-farm data and testing 

new sampling methods are critically important.    

 

Study Area 

This study was conducted in Stann Creek District, Belize between 16⁰25’ and 16⁰40’ N 

latitude and 88⁰20’ and 88⁰26’ W longitude.  The hydrology of this coastal area is influenced by 

freshwater drainage from the Maya Mountains to the west and by the Caribbean Sea to the east.  The 

Mesoamerican Barrier Reef is adjacent to the study area and provides shoreline protection from wave 

action.  Salinity in the study area ranges from 1 ppt in the creeks to 35 ppt near the mouth of the 

estuaries.  Tides are microtidal and mixed semidiurnal with fluctuations measuring from 12 to 45 cm 

(PASCO, 2002).  The mean temperature is 25.3 ºC with a mean summer temperature of 27 ºC (Boyd 

and Clay, 2002).  Average rainfall is 2203 mm (Boyd and Clay, 2002) with a distinctive wet season 

occurring from July to October, during which freshwater discharge exceeds dry season discharge by a 

factor of five to nine (Heyman and Kjerfve, 1999).  Lagoon bottom sediments are relatively uniform 

mud or fine sand with some areas covered in mangrove detritus.   

Shallow (1.5 m average depth), mangrove-fringed lagoons characterize this system (Ariola, 

2003).  Seagrass covers much of this area, with Thalassia, Halophila, and Haladule meadows and 

macroalgae Chara spp. being prevalent in some areas.  Smith and Mackie (2005) found that grazers 

and the major fishery species in the area derive most of their carbon from seagrass and epiphytes 

rather than phytoplankton.  The study region is home to numerous threatened and endangered species 

(e.g., West Indian manatee (Trichechus manatus), jabiru stork (Jabiru mycteria), hawksbill turtle 

(Eretmochelys imbricata), and Morelet’s crocodile (Crocodylus moreletii), provides forage areas for 

dolphins and sharks, and serves as a nursery ground for reef and other fishes. 

Human settlements and industries have a major impact on the study region’s landscape. 

Inland population centers in the study region’s watershed include Mango Creek, Santa Rosa, San 

Roman, Maya Mopan, Georgetown, Independence, Big Creek, Riversdale, South Stann Creek, Bella 

Vista, and San Juan, with a cumulative estimated population of over 5,000 in 2000 (Belize Central 
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Statistics Office, 2000).  Major industries for this region are banana, citrus, shrimp farming, and, to a 

lesser extent, coffee production.  Big Creek, adjacent to the southern study sites, is the second largest 

deep-water port in Belize and serves as a major shipping port for commodities originating from 

southern Belize.  The villages of Maya Beach, Seine Bight, and Placencia are located on Placencia 

Peninsula with an estimated population of over 1,300 in 2000 (Belize Central Statistics Office, 2000).  

This area has experienced considerable increases in development and tourism over the last decade.   

Since the establishment of the country’s first shrimp farm in 1983, the shrimp farming 

industry in Belize has experienced rapid expansion followed by contraction as prices fell with 

increased global production.  There are currently 11 farms operating in Belize, down from a 

maximum of 19 in 2003 (Linda Thornton, Aquamar, August 2008, pers. comm.).  In 2007, 

production totaled over 5,400 metric tons (Mt) ($21 million US) with a production area of 12 

km2 (Smith, 2008).  This was down from over 8,000 Mt ($34 million US) and 21 km2 in 2006 

due to the closure of Lady Nova Shrimp Farm (Smith, 2008).  While a diversity of farming 

techniques and stocking densities exist in Belize, there has been a marked trend towards higher 

intensity production systems over time.  Business failure has been linked to low stocking density 

in Belize, though this may oversimplify the situation given that solvency of intensive farms may 

be linked to the capital reserves of owners.  Of the 11 active farms, 8 are located in the study 

region.  This study focuses on the two most productive shrimp farms in southern Belize: Belize 

Aquaculture Ltd. and Aquamar. 

Belize Aquaculture Ltd 

Belize Aquaculture Ltd. (BAL) is a 73 ha super-intensive shrimp farm with a processing 

plant and hatchery facilities.  The farm currently has 51 ponds in operation and produces 2-3 

crops year round.  Ponds are stocked at 135 postlarvae (PL)/m2, are 2.3 m deep in the center, and 

1.6 ha in area.  For growout, shrimp are fed 25 % protein feed supplied by the Archer Daniels 

Midland Company (Decatur, Illinois).  Molasses is added to ponds to stimulate heterotrophic 

bacteria communities (flocculent) that provide more stable water quality and an extra food 

source for shrimp (Burford et al., 2003b; 2004).  In order to prevent erosion, ponds are lined with 

plastic and drainage canals have buffer strips.  BAL claims that their water management has 

“zero exchange” at this time, meaning there was no water discharge except during harvest.  In 

the past, BAL had a primarily closed, recirculating system that did not release effluent directly 
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into the environment even at harvest (see Boyd and Clay, 2002).  In 2007-2008 BAL did not 

recirculate their water and discharged directly into Santa Maria and Hensley’s creeks.  BAL has 

been seen as a model farm for production and environmental best management practices, as 

evidenced by a 2002 report by Boyd and Clay, participation in World Wildlife Fund’s (WWF) 

incipient certification program, and their status as the first farm to take part in the Wegmans 

Food Markets Inc. shrimp purchaser standards program. 

BAL is located on Santa Maria Creek near the western shore of Placencia Lagoon.   

Placencia Lagoon is semi-enclosed, 3.4 km at its widest extent, 20 km long, and covers 30 km2 in 

area (Ariola, 2003).  The middle and upper lagoons are heavily influenced by rainfall and 

subsequent watershed drainage and have low water exchange with the sea.  Santa Maria Creek, 

which flows into Placencia Lagoon approximately 13 km from the lagoon’s mouth, is the 

primary conduit by which effluent is released from the farm.  Effluent flows 4 km before 

entering Placencia Lagoon proper; 2.5 km of that stretch is mangrove lined.  A portion of Santa 

Maria Creek has been channelized to improve drainage of BAL operations (David Aguilar, BAL, 

July 2008, pers. comm.).  The watershed for Santa Maria Creek is 247 km2 with approximately 

12.7 km2 permanently inundated and 32.7 km2 prone to flooding (Ariola and Morgan, 2000).  

Effluent is occasionally directed down Hensley’s Creek, which enters the lagoon 1.5 km south of 

Santa Maria Creek (David Aguilar, BAL, July 2008, pers. comm.) . 

Aquamar  

Aquamar is a 405 ha farm with a processing plant and hatchery facilities.  There are 83 

operating ponds with four categories of stocking density ranging from extensive to super-

intensive.  During the course of this study, extensive earthen ponds, averaging 7.7 ha in area, 

were stocked at 8-10 PL/m2; semi-intensive earthen ponds, averaging 6.4 ha in area, were 

stocked at 11-21 PL/m2; intensive earthen ponds, averaging 5.4 ha in area, were stocked at 41-71 

PL/m2; and plastic lined intensive to super-intensive ponds, averaging 1.5 ha in area, were 

stocked at 61-162 PL/m2.  Aquamar used 25% protein feed for semi-intensive and 35% protein 

feed for intensive and super-intensive ponds from the Areca Corporation (Guatemala City, 

Guatemala).  Molasses was added at 67 kg ha-1 day-1 in lined intensive and super-intensive ponds 

to promote microbial production.  Within the study period close to 20 million shrimp were 

produced in 36 ponds, with water discharged into Plantation Creek.  Aquamar practices limited 
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water exchange for extensive and semi-intensive ponds and had “zero exchange” for intensive 

and super-intensive ponds during the growout period, after which the water was released.  

Aquamar is currently participating in WWF’s incipient certification program. 

Aquamar is located southwest of the mouth of Placencia Lagoon and is connected to 

coastal waters by several creeks and lagoons.  Aquamar’s major release point (60 ponds) is into 

Plantation Creek, which runs for 2 km before entering Plantation Lagoon.  The creek has a dense 

riparian mangrove forest with a main channel and several small side lagoons.  Plantation Lagoon 

is 1 km by 1.5 km and is adjacent to an extensive lagoon system to the south going towards 

Monkey River village (12 km) and the sea to the east (300 m).  Plantation Creek is more saline 

and slower flowing than Santa Maria and Hensley’s creeks.  Bel-Euro, a 93 ha extensive shrimp 

farm, also releases effluent that reaches the western side of Plantation Lagoon.  Other Aquamar 

release points include an outlet behind Harvest Caye (15 ponds) and two outlets into Big Creek 

(8 ponds).    

Methods 

Data for this study were collected between 10 June and 5 August 2008.  Methods and site 

locations were adapted from a 2007 pilot study (S. Ledwin, University of Michigan, May-August 

2007, unpublished).  Seagrass survey data from this pilot study was also used.     

Periphyton samples were taken at 25 sampling sites, with 10 and 15 sites respectively 

located in the effluent receiving waterways of Aquamar (see Figure 1) and BAL (see Figure 2).  

A series of 1.2 m long, 2.5 cm diameter PVC poles were staked into the bottom sediments using 

a randomized spatial pattern at the major effluent release points and at control areas adjacent to 

BAL and Aquamar.  Periphyton was sampled from the poles at intervals of 8 days a total 8 times 

per site.  Removal of periphyton was performed using pressurized distilled water.  The material 

and distilled water were immediately pumped through a 0.7 μm Whatman filter (GF/F, 47 mm) 

(Waukesha, WI, GE Heathcare).  Any visible consumer organisms were removed from the filter 

with sterile forceps.  Enough periphyton was collected to cover the filter with a minimum of 5 

mm thickness.  For poles without sufficient growth on the top 15 cm of the submerged part of the 

pole, periphyton was also collected from a larger area lower on the pole.  After sampling, the 

poles were scrubbed, cleaned, and replaced.  Samples were wrapped in tinfoil and put in a cooler 

with ice for transport.  Periphyton were then separated from the filter, dried at 70 ºC for 24 hours, 
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ground to a fine powder, and packed into 8x5 mm tin capsules.  Analysis of periphyton %N, %C, 

C/N, and δ15N was performed at the University of Michigan School of Natural Resources and 

Environment using a Finnigan Delta Plus isotope ratio mass spectrometer (IRMS) (Bremen, 

Germany, Thermofinnigan).  The δ15N values were determined by the ratios of light nitrogen 

compared to the normative standard of N2 in air (defined as 0 ‰).  The δ15N values were 

calculated with the equation [(Rsample – Rstandard)/Rstandard] x 103 where “R” is the ratio of 15N/14N 

(Peterson and Fry, 1987).  Shrimp feed (n=6) from BAL and Aquamar and flocculent from BAL 

(n=6) were also collected and analyzed for δ15N.     

Grayscale analysis was used to estimate maximum periphyton growth on PVC poles.  

Digital images of each pole were taken every 8 days before periphyton sampling.  These TIFF 

files were then imported into the ImageJ image processing program (Bethesda, MD, National 

Institute of Health).  A 1 cm2 square patch with the highest percent coverage was chosen on each 

image for analysis.  This area was then scanned into ImageJ creating a histogram scaled from 0 

(black) to 255 (white).  Analysis was performed at the Eastman Kodak Company in Rochester, 

NY.          

For the purposes of statistical analysis, the 25 periphyton sampling sites were divided into 

four groups based on their spatial relation to effluent discharge points.  At BAL, sites were 

divided based on their location above (upcurrent or above BAL; sites A-F) or below 

(downcurrent or below BAL; sites G-O) of Santa Maria Creek.  This distinction was based on the 

fact that Santa Maria Creek is BAL’s major effluent outlet and the prevailing water movement is 

southward.  Sites M, N, and O are likely influenced to a greater degree by effluent from 

Hensley’s Creek, which has its mouth at site M (Figure 1).  At Aquamar, sites were divided 

based on their proximity to the effluent release point at site Z (Figure 2).  Near (Q – T) and far 

(U – Z) sites were classified as being respectively within or beyond 2500 m from the effluent 

release point.  This distance was measured along the shortest possible path along the water’s 

surface, reflecting the shortest possible path along which effluent might disperse.  At each farm, 

the two groups were compared for %N, δ15N, C/N, and maximum periphyton growth both 

overall and by sampling time using a repeated measures mixed-model ANOVA.  Additional 

comparisons between individual sample locations and sampling dates were made using Tukey-

Kramer post hoc tests.  All analyses were performed using SAS software version 9.13 SP4 (Cary, 

North Carolina, SAS Institute Inc).   
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Increased fractionation lowering δ15N often occurs in high N environments (see Wada 

and Hottori, 1978; Cifuentes et al., 1989; Yonemaya et al., 1991; Fogel and Cifuentes, 1993; 

Pennock et al., 1996; Waser et al., 1998; Altabet, 2001; Lake et al., 2001) which can confound 

the ability to accurately assess uptaken source N (Wada and Hottori, 1978; Cifuentes et al., 1989; 

Yonemaya et al., 1991; Fogel and Cifuentes, 1993; Pennock et al., 1996; Waser et al., 1998; 

Altabet, 2001; Lake et al., 2001).   Given that previous sampling in 2007 demonstrated this 

occurrence at sites directly adjacent to the effluent sources (sites G, H, I at BAL and sites Z and 

Y at Aquamar), group analysis was conducted both with and without these sites for δ15N.  All 

means for %N, δ15N, C/N, and maximum periphyton growth are reported in text with  1 

standard error (SE).  

Water samples were taken every 8 days at 11 of the periphyton sampling sites for a total 

of 8 samples per site.  Whole water samples were collected at the surface, placed in a cooler with 

ice for transport, and frozen within three hours.  Samples were brought to Aquamar for tests of 

nitrate nitrogen, nitrite nitrogen, phosphate, total suspended solids (TSS), pH, alkalinity, and 

salinity.  

Water samples were analyzed using Hach methods (Hach, 2005) unless otherwise 

specified.  The spectrophotometer used for relevant methods was the Hach Odyssey DR2500 

model (Loveland, CO).  Nitrate was determined using a cadmium reduction method (8171).  

Nitrite was determined using a diazotization method (8507).  Phosphate was determined using 

the PhosVer® 3 method (8048).  A pH Testr Z (Vernon Hills, IL, Oakton Instruments) was used 

to determine pH.  Alkalinity was determined using a phenolphthalein and total alkalinity method 

(8203).  Total suspended solids (TSS) were quantified using a photometric method (8006).  A 

YSI 6600 V2 Sonde (Yellow Springs, Ohio, YSI Inc) was used to measure dissolved oxygen 

(DO).   

Seagrass was sampled at 80 sites by anchor drops (Danforth anchor 14-3/4”and 10-

1/2”fluke length) during the 2007 pilot study.  The anchor was dropped at a random location 

within 15 m of the site at least 3 times per site on a transect line to assess presence or absence of 

seagrass.  Data from these samples, along with data found in Garcia (2003), were entered in Arc 

GIS 9.2 (Redlands, CA, ESRI).  A map of seagrass coverage in the sampled regions was created 

using Theissen polygons representing each sample site.  A Z-test for proportions (Zar, 1999) was 

used to compare 2003 and 2007 data, with the null hypothesis that the two frequencies were 
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equivalent (α = 0.05).  Only presence or absence data were used to ensure methodological 

consistency with Garcia (2003).    

Figure 1. A map of Belize Aquaculture Ltd ponds and sample sites for this study.  See Table 9 
for UTM coordinates of each site.   
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Figure 2. A map of Aquamar ponds and sample sites for this study.  See Table 10 for UTM 
coordinates of each site.   
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Results 

Belize Aquaculture Limited 

 There was a significantly higher level of periphyton %N at sites below Santa Maria Creek 

compared to sites above, indicating the likelihood of increased nitrogen at these sites.  Mean %N 

values were 1.10  0.04 % above (sites A-F) and 2.02  0.13 % below (sites G-O) Santa Maria 

Creek (Figure 3).  Mean values at sites M (the mouth of Hensley’s Creek) and G were 

significantly higher than all other sites except H (Table 1).  These results suggest that there is 

more biologically available nitrogen below Santa Maria and Hensley’s creeks, the sites of BAL’s 

effluent discharge.       

Figure 3.  Box and whisker plot of periphyton %N at sample sites above and below BAL 
effluent creeks.  Plots shows mean, median, 25th and 75th quartiles, and range.     
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             There was a significantly higher level of periphyton δ15N at sites below Santa Maria 

Creek compared to sites above, indicating that shrimp farm derived nitrogen is likely reaching 

the downstream sites.  Mean δ15N values were 3.54  0.09 ‰ for sites above and 4.73  0.14 ‰ 

for sites below Santa Maria Creek (Figure 4).  Preliminary data collection in 2007 showed 

unexpectedly low periphyton δ15N at sites closest to the effluent source.  Increased fractionation 

(lowering δ15N) can occur in conditions of surplus N (Wada and Hottori, 1978; Cifuentes et al., 

1989; Yonemaya et al., 1991; Fogel and Cifuentes, 1993; Pennock et al., 1996; Waser et al., 

  12



   

  13

1998; Altabet, 2001; Lake et al., 2001) and likely influenced the results at sites closest to the 

effluent sources.  Given this issue, analysis was also conducted omitting samples G, H, and I, 

which were within the area previously shown to have unexpectedly low δ15N.  This modified 

group had a mean δ15N value of 5.01  0.15 ‰, which was also significantly elevated compared 

to the above Santa Maria Creek group.  Shrimp feed and pond flocculent at BAL had δ15N 

signals of 5.27  0.12 ‰ and 7.37 0.33 ‰ respectively.  Mean δ15N values at sites J and M 

were higher than for all other sites (Table 1).  These results indicate that shrimp farm effluent is 

the likely source of most of the extraneous nitrogen below Santa Maria and Hensley’s creeks.   

Figure 4. Box and whisker plot of periphyton δ15N at sample sites above and below BAL 

effluent creeks.    

 

             There was not a significant overall difference between the above and below Santa Maria 

Creek groups for periphyton C/N ratios.  This unexpected outcome may have resulted from 

increased carbon availability for the heterotrophic component of sampled periphyton given 

molasses additions on the farm (increasing C/N in samples below BAL) or less nitrogen 

limitation above the farm (lowering C/N in samples above BAL).   Mean C/N ratios were 6.98  

0.13 for the above Santa Maria Creek group and 7.15  0.12 for the below Santa Maria Creek 

group (Figure 5).  There were significant temporal differences between sampling dates (see 



   

Table 2) but no strong relationships between dates and likely pond releases.    

 

Figure 5. Box and Whisker plot of periphyton C/N at sample sites above and below BAL effluent creeks.   
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There was significantly higher maximum periphyton coverage at sites below Santa Maria 

Creek compared to those above, indicating that there are likely more nutrients available for 

growth at the former set of sites.  Mean grayscale values were 140.10  7.50 for the above and 

78.46  4.65 for the below Santa Maria Creek group (Figure 6).  Mean values at sites A and B 

above BAL at the northern end of Placencia Lagoon had significantly less maximum coverage 

than all sites below Santa Maria Creek (Table 1).  These results suggest that there is more rapid 

growth of periphyton below Santa Maria Creek given the increased nutrients coming from BAL. 
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Figure 6. Box and whisker plot of maximum periphyton coverage grayscale analysis at sample 
sites above and below BAL effluent creeks.  Scale: 0 (black) to 255 (white).     
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Table 1.  Mean values at each site for percent nitrogen, δ15N, carbon/nitrogen ratios, and maximum periphyton grayscale analysis. 
Belize Aquaculture Ltd                             

Site A B C D E F G H I J K L M N O         

%N 1.1a 1.0a 1.2a 1.0a 1.1a 1.2a 3.3d 2.5cd 2.0bc 1.5ab 1.5ab 1.7b 3.1d 1.9bc 1.4ab 

δ15N  3.4a 3.4a 3.4a 3.3a 3.9ab 3.8ab 4.6ab 4.0ab 4.4ab 5.4b 5.1b 4.5ab 5.2b 5.0b 4.8ab 

C/N 6.3 7.1 7.1 7.2 6.9 7.2 7.4 6.7 6.8 7.5 7.4 7.1 7.0 7.0 7.3 

Grayscale 191.5a 168.1a 106.2abc 139.5ab 135.1ab 109.2abc 75.8b 55.7c 67.5c 75.4bc 96.1bc 99.3bc 84bc 100.2bc 100.0bc 
Means with different superscripts were significantly different at p < 0.05. 
 
 
 
Table 2.  Mean values on each sample date for percent nitrogen, δ15N, carbon/nitrogen ratios, and maximum periphyton grayscale 
analysis. 
Belize Aquaculture Ltd  

 Sampling Date 10-Jun  18-Jun 26-Jun 4-Jul 12-Jul 20-Jul 28-Jul 5-Aug
%N 1.7 1.2 1.7 1.5 1.8 1.3 1.8 1.6
 
δ15N without sites 
G, H, and I 4.5 4.2 4.3 4.2 4.0 4.0 4.4 4.5
 
δ15N 4.1 4.1 4.1 4.1 3.9 3.8 4.4 4.4
 
C/N 6.5c 7.3ab 6.8bc 7.7ab 6.7bc 7.7a 7.1ab 6.7ab

 
Grayscale 153.8a 111.1ab 88.0b 80.3b 125.2a 115.2ab 95.9b 127.4a

Means with different superscripts were significantly different at p<0.05.
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Most water quality parameters showed impacts at the sites directly below BAL in Santa 

Maria Creek.  Mean nitrate, phosphate, and TSS were higher and DO lower at site G (the site 

closest to BAL in Santa Maria Creek) than at all other sites, although only DO was significantly 

different (Table 3) for those parameters.  At site G, values ranged widely from 0.0-9.7 for nitrate, 

0.0-5.45 for phosphate, and 11-320 for TSS.  Only alkalinity was significantly different 

comparing all sites by sample date (Table 4).   

Table 3. Mean surface water physical/chemical parameters at each site.  
Unless specified, units are mg/L. 
 
 Above BAL  Below BAL      
Site A   G H M O 
Salinity 
(ppt) 17.13b  3.00a 6.00a 6.13a 14.13b 

pH 7.86b  7.89b 7.49ab 7.30a 7.64ab 
Alkalinity 56.14  24.80 39.17 31.43 46.43 
Nitrite  0.00  0.02 0.04 0.00 0.00 
Nitrate 0.46  2.17 0.66 0.03 0.03 
Phosphate 0.01  1.20 0.49 0.04 0.00 
TSS 17.75  56.86 14.13 12.25 17.88 

DO 7.02c   1.38a 2.08a 3.73b 7.21c 
Means with different superscripts were significantly different at p < 0.05. 
   
Table 4.  Mean surface water physical/chemical parameters at all sampled sites for each 
sampling date.  Unless specified, units are mg/L.    
Date 10-Jun 18-Jun 26-Jun 4-Jul 12-Jul 20-Jul 28-Jul 5-Aug 
Salinity 
(ppt) 11.60 12.60 12.80 5.60 9.00 6.75 9.00 7.60 
pH 7.30 7.78 7.50 7.80 7.50 7.83 7.48 8.00 

Alkalinity 52.60ab 71.67b n.a.  34.20ab 38.20ab 49.25ab 25.80a 26.20a 
Nitrite  0.02 0.08 0.00 0.00 0.00 0.00 0.00 0.00 
Nitrate 1.12 3.25 0.90 0.10 0.00 0.00 0.20 0.00 
Phosphate 0.39 0.60 1.29 0.00 0.13 0.02 0.04 0.06 
TSS 15.00 16.20 32.40 14.40 14.00 13.25 14.00 12.20 
DO 4.52 5.39 3.56 4.73 n.a.  3.72 5.12 4.35 

Means with different superscripts were significantly different at p < 0.05. 
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Between 2003 and 2007, seagrass distribution shrank significantly in the middle section 

of Placencia Lagoon (Figure 7).  Seagrass coverage within the sampled area was approximately 

83% in 2003 and 7% in 2007.  In 2007, Seagrass was only present at the northern and southern 

edges of the sampled area.  Production of shrimp at BAL and the development of the 

surrounding coastal area both accelerated between 2003 and 2007, with BAL operations 

releasing minimal or no effluent before 2003 (Boyd and Clay, 2002; Smith and Mackie, 2005).  

Figure 7. Seagrass sample sites in 2003 (Garcia) and 2007.  The map represents results of the 
Theissen polygon nearest neighbor analysis using presence or absence data.         

 

Map from Google Earth.  Imagery Date 28 November, 2004 (Mountainview, California, Google 
Corporation).    

Aquamar 

             Sites Z and Y, which were within Aquamar’s effluent creek, had the highest %N values.  

There was, however, no significant elevation of %N within the group closest (<2500 m) to the 

effluent release point compared with the group farther away.  Mean %N values were 1.03 ± 0.05 

% for the near group and 0.88 ± 0.06 % for the far group (Figure 8).  This may indicate a low 

magnitude of influence on sites outside of the effluent creek.  
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Figure 8.  Box and whisker plot of periphyton %N at sample sites near and far from the largest 
Aquamar effluent release point.    
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Analysis of δ15N was performed both with and without sites Z and Y, in order to account 

for the possibility of perturbed δ15N signals in high N environments (see Wada and Hottori, 

1978; Cifuentes et al., 1989; Yonemaya et al., 1991; Fogel and Cifuentes, 1993; Pennock et al., 

1996; Waser et al., 1998; Altabet, 2001; Lake et al., 2001).  Similar issues were found at BAL 

and are explained above.  Without Z and Y, there was a significantly higher level of periphyton 

δ15N at near sites compared to far sites, indicating that shrimp farm derived nitrogen is likely 

reaching the former set of sites.  When all sites were included, the mean δ15N values were 3.11 ± 

0.24 ‰ for the near group and 3.13 ± 0.18 ‰ for the far group (Figure 8).  However, when sites 

Z and Y were removed, the near group had a mean of 3.8 ± 0.15 ‰.  Shrimp feed at Aquamar 

had δ15N signals of 3.01  0.12 ‰ for the Areca 25% protein feed and 4.10  0.15 ‰ for the 

Areca 35% protein feed.  The mean δ15N value at site X (the site directly outside of Aquamar’s 

effluent creek) was significantly higher than values at sites nearest to (Z, Y) and furthest from 

(Q, R) the effluent discharge point (Table 5).  There was also a significant temporal difference 

between sampling dates (see Table 6), with the lowest mean δ15N occurring on August 5th after 

no discharge occurred during the previous eight days (Linda Thornton, Aquamar, August 2008, 

pers. comm.).          
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Figure 9. Box and whisker plot of periphyton δ15N at sample sites near and far from the largest 
Aquamar effluent release point.   

 
 

There was a significantly lower C/N ratio for near sites compared to far sites, indicating 

that nitrogen may be less limited closer to the farm effluent.   Mean C/N ratios were 7.24 ±0.13 

for the near group and 8.68 ±0.17 for the far group (Figure 10).  The mean C/N ratio at site Z 

was significantly lower than at all other sites (Table 5).  The results suggest that N emanating 

from Aquamar is likely influencing the immediate area around the shrimp farm.   

Figure 10: Box and whisker plot of periphyton carbon/nitrogen at sample sites near and far from 
the largest Aquamar effluent release point. 
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Near sites had higher mean maximum periphyton coverage than far sites, but the 

difference was not significant.  Mean grayscale values were 129.70 ±6.98 for the near group and 

154.68 ± 10.63 for the far group (Figure 11).  This result suggests that nutrient additions from 

Aquamar may not have spurred much additional growth in periphyton.  This result may also be 

due to confounding factors such as the poor adhesiveness of periphyton in the effluent creek.  

There were significant differences between sites (Table 5), but it is unclear why site V had the 

highest mean maximum growth.    

Figure 11. Box and whisker plot of maximum periphyton coverage grayscale analysis at sample 
sites near and far from the largest Aquamar effluent release point.  
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Table 5.  Mean values at each site for percent nitrogen, δ15N, carbon/nitrogen ratios, and maximum periphyton grayscale analysis. 
Aquamar   

Site Z Y X W V U T S R Q 

%N 1.3c 1.4c 0.9ab 0.8ab 0.8ab 1.0bc 0.9ab 0.8ab 1.1bc 0.7a 

δ15N  1.5a 1.9a 4.1d 3.2bcd 3.9cd 4.0cd 3.9cd 3.0bcd 2.4ab 2.9abc 

C/N 5.9d 7.1c 7.6abc 7.5bc 7.5bc 7.8abc 9.0a 8.4ab 8.4ab 8.9a 

Grayscale 116.6bc 138.0bc 130.7bc 109.5bc 94.2c 186.9ab 133.8abc 169.0ab 194.1a 137.0bc 
Means with different letters are significantly different at p < 0.05. 
 
Table 6.  Mean values on each sample date for percent nitrogen, δ15N, carbon/nitrogen ratios, and maximum periphyton grayscale 
analysis. 
Aquamar 
 
 Sampling Date  10-Jun  18-Jun  26-Jun    4-Jul   12-Jul   20-Jul   28-Jul 5-Aug 
%N        0.9       1.0       0.9       1.0 0.9 1.0 1.0 1.0 
δ15N  without sites 
Z and Y 

 
3.5ab 3.3ab 3.4ab 3.6ab 3.7b

 
3.6ab 4.2b 3.0a 

δ15N 2.8 2.8 3.2 3.2 3.5 3.4 3.8 2.2 
C/N 7.8 7.7 8.4 8.2 8.0 8.1 7.8 7.5 
Grayscale 136.2 115.9 145.2 159.4 138.5 145.2 117.0 179.6 

Means with different superscripts were significantly different at p < 0.05. 
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Most water quality parameters showed impacts at the sites directly below Aquamar. 

Mean nitrate and TSS were much higher at site Z than at all other sites, although not significantly 

so (Table 7).  Site Z had values that ranged widely from 0.0-7.0 for nitrate and 7-85 for TSS.  

DO was significantly lower throughout Plantation Creek from site Z to Y.  Only pH was 

significantly different comparing all sites by sample date (Table 8).       

 
Table 7. Mean surface water physical/chemical parameters at each site. Values are in mg/L 
unless otherwise specified.  

Site Z Y V U T R 
Salinity 
(ppt) 11.88a 17.29ab 19.00ab 20.50b 22.75b 23.86b 

pH 6.94a 6.96a 7.32b 7.63b 7.73b 7.68b 

Alkalinity 36.50a 47.00b 64.00bc 66.57bc 82.86c 85.14c 
Nitrite  0.03 0.01 0.00 0.00 0.00 0.00 
Nitrate 1.11 0.43 0.03 0.29 0.19 0.31 
Phosphate 0.01 0.04 0.01 0.04 0.00 0.01 

TSS 26.13a 6.86b 12.33ab 8.75b 17.25ab 12.40b 

DO 3.53a 3.24a 6.33b 6.70b n.a.  7.26b 
Means with different superscripts were significantly different (p < 0.05). 
 
Table 8.  Mean surface water physical/chemical parameters at all sampled sites for each 
sampling date.  Values are in mg/L unless otherwise specified. 
Date 10-Jun 18-Jun 26-Jun 4-Jul 12-Jul 20-Jul 28-Jul 5-Aug 
Salinity 
(ppt) 20.80 21.80 22.33 22.00 16.50 19.17 19.00 12.00 

pH 7.40ab 7.54ab 7.45ab 7.67b 6.83a 7.27ab 7.47ab 7.50ab 
Alkalinity 74.20 84.67 n.a.  66.83 63.00 69.33 60.67 46.40 
Nitrite  0.01 0.05 0.00 0.00 0.00 0.00 0.00 0.00 
Nitrate 0.56 1.78 0.43 0.25 0.83 0.20 0.83 0.80 
Phosphate 0.00 0.04 0.05 0.00 0.00 0.03 0.00 0.02 
TSS 11.20 6.60 11.50 22.00 15.17 9.00 11.17 11.20 
DO 5.01 n.a.  5.29 n.a. n.a.  5.33 4.49 6.49 

Means with different superscripts were significantly different (p < 0.05). 
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Discussion 

Shrimp farm waste from both BAL and Aquamar had an influence on surrounding 

waterways.  Water quality and periphyton bioindicators revealed spatial and temporal impacts of 

effluent on these receiving waterways.  At BAL, periphyton sampling showed significant 

elevation of %N, δ15N, and maximum coverage at sites below effluent creeks.  Nitrate, 

phosphate, and TSS were highest and DO lowest at sample sites in Santa Maria Creek, the major 

effluent release point at BAL.  Seagrass distribution has been reduced dramatically in the middle 

portion of Placencia Lagoon between 2003 and 2007 above and below Santa Maria Creek, 

coinciding with increased nutrient loading from BAL and adjacent development in the area.  At 

Aquamar, sampling showed significantly higher δ15N (when sites Z and Y were removed) and 

significantly lower C/N ratios in the group closest to the effluent source (<2500 m).  Nitrate and 

TSS were highest and DO lowest in Plantation Creek, the major effluent release point for 

Aquamar.  The suite of parameters used in this study helped elucidate the magnitude and extent 

of the influence of shrimp farm effluent on the two receiving waterways.  The results of this 

study also reveal the strengths and weaknesses of these parameters as monitoring tools.      

The %N in periphyton (Stelzer and Lamberti, 2001, Hillbrand and Kahlert, 2001; Lepoint 

et al., 2007) and plant (Duarte, 1990; Horrocks et al., 1995; Invers et al., 2004) tissue is a 

potential indicator of biologically available nutrient concentrations.  Results addressing %N 

confirmed expectations that this parameter would be highest at sites closest to effluent sources 

with rapid attenuation to background levels at increasingly distant sites due to dilution effects, 

assimilation by organisms, and denitrification.  At both farms considered in this study, sites 

closest to shrimp farm effluent release points had the highest %N.  This result was similar to the 

findings of Lin and Fong (2008) for deployed macroalgae, where increased %N occurred near a 

shrimp farm effluent release point, but not at intermediate distances away from the farm.  BAL 

had more than twice the mean periphtyon %N as Aquamar at sites closest to the effluent release 

points and significant elevation of %N at sites outside of the effluent creeks, indicating more 

intense effects and greater spatial influence. 

The δ15N composition of primary producers often reflects external N sources (Heaton, 

1986; Fry, 2006) and can be used to assess the influence of shrimp farm effluent  on receiving 

waterways (Jones et al., 2001; Costanzo et. al., 2004; Lin and Fong, 2008; Piñón-Gimate, 2009).  

At both farms, feed inputs had higher δ15N than background waters and periphyton δ15N was 
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significantly elevated in the groups closest to effluent release points, but not at the specific sites 

closest to these points.  At Aquamar, both sites in the effluent creek actually had the lowest δ15N 

signals.  This counterintuitive result may be explained by increased fractionation during the 

uptake and internal processing of DIN by periphyton under conditions of surplus DIN.  Several 

studies have demonstrated such fractionation occurring in plants, bacteria, and algae under 

surplus nitrogen conditions (Wada and Hottori, 1978; Cifuentes et al., 1989; Yonemaya et al., 

1991; Fogel and Cifuentes, 1993; Pennock et. al., 1996; Waser et al., 1998; Altabet, 2001; Lake 

et al., 2001).  Given high nitrate levels and high self reported levels of TAN from discharge 

ponds (BAL Annual Supplier Report, 2007), surplus nitrogen levels were the likely cause of 

depleted δ15N in periphyton at these sites.     

The δ15N composition at other sites in the below Santa Maria Creek group at BAL was 

generally in the range of feed, flocculent, and literature values of 4.2-7 ‰ (Jones et al., 2001, 

Costanzo et al., 2004; Lin and Fong 2008, Piñón-Gimate, 2009).  Lower δ15N values at Aquamar 

compared to BAL were likely the result of lower initial feed δ15N as well as less concentrated 

shrimp waste.  These results suggest that periphyton at the sites nearest to the effluent release 

points derived more of their nitrogen from shrimp effluent than from inorganic fertilizer runoff 

from the watershed (usually around 0 ‰) (Heaton, 1986).  There are no human settlements on 

Santa Maria or Plantation Creeks so there should be little or no sewage effluent (usually around 

10 ‰: Costanzo et al., 2001)   While δ15N generally did not show significant temporal 

differences during sampling in 2008, the sampling date with the lowest periphtyon δ15N value 

coincided with the only sampling period that had no discharge at Aquamar (Linda Thornton, 

Aquamar, August 2008, pers. comm.).  This indicates that δ15N uptake in periphyton may be a 

sensitive indicator of nitrogen dispersal from shrimp farms. 

            The ratios of C/N for periphyton and plant tissue have been found to demonstrate relative 

nutrient loading in receiving waterways (Atkinson and Smith, 1983; Nelson et al., 2001; Fry et 

al., 2003; Chessman et al., 2009).  Significant group and site differences at Aquamar met 

expectations given the attenuation of N from the effluent source; results at BAL did not.  This is 

likely due to the character of the farms’ respective waterways and the nature of the effluent 

emanating from each farm.  Sampling sites outside of Plantation Lagoon (2500 m away from the 

Aquamar release point) in Plantation Creek were located in some of the area's most pristine 

waters and were probably not exposed to significant anthropogenic nitrogen from non-shrimp 
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farm sources.  Placencia Lagoon is more likely less nitrogen limited given adjacent development 

and agriculture.  Fry et al. (2003) had a similar result using green macroalgae tissue where only 

the least impacted estuary showed an inverse relationship between C/N and DIN values.     

The growth of aquatic producers are often limited by nitrogen and/or phosphorus and can 

be used as indicators of anthropogenic nutrient additions to the environment (Nichols et al., 

1986; Fong et al., 1994; Oviatt et al., 1995; Bricker et al, 2003; Cosgrove et al., 2004; Lin and 

Fong, 2008).  The maximum growth of periphyton in effluent exposed areas differed for the two 

farms.  BAL sampling sites down-current of effluent creeks had significantly higher maximum 

periphtyon growth than upstream sites, while no discernable pattern emerged at the Aquamar 

sampling sites.  While growth responses were most likely linked to nutrient concentrations 

(higher levels of both N and P inputs and larger spatial extent at BAL), other factors (e.g. 

differential grazing pressure, water movement, etc.) may have influenced the results.   

Traditional physical and chemical water quality parameters indicated that the impacts of 

shrimp farm effluent on both farms’ effluent creeks included increased nitrate, TSS, and 

significantly lower DO.  Santa Maria Creek at BAL had higher maximum nutrient and TSS 

levels and lower DO than Plantation Creek at Aquamar, including much higher concentrations of 

phosphate.  Higher phosphate levels found in Santa Maria Creek are consistent with in-pond 

measurements by Burford and effluent measurements at the delta of Santa Maria Creek by BAL 

(mean soluble phosphorus 9.5 mg/L) (Burford et al., 2003b; BAL Annual Supplier Report, 

2007).  The effluent  in Santa Maria Creek was characterized by a high density of flocculated 

particles, resembling that of the BAL ponds near harvest.  Hensley’s Creek at BAL did not have 

high nutrient levels or TSS, but did experience low DO.  Given that elevated %N, δ15N, and 

maximum periphyton growth occurred at the mouth of the creek, it is likely that traditional 

sampling missed nutrient pulses.  Except for the steady, low DO found in this study in all 

effluent creeks, the physical and chemical water parameters showed a restricted pattern of spatial 

and temporal impacts with short term fluctuations similar to other studies (Samocha and 

Lawrence; 1997; Trott and Alongi, 2000; Wolanski et al., 2000; Costanzo et al., 2004). 

Increased epiphyte production, increased turbidity, and anoxic conditions caused by 

shrimp farms all have the potential to cause seagrass decline (McGlathery, 1995; Burkholder et 

al., 2007).  Nutrient additions generally increase epiphyte production (Harlin and Thorne-Miller, 

1981; Wear et al., 1999; Cancemi et al., 2003) limiting the amount of light available to seagrass 
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for photosynthesis (Sand-Jensen, 1997; Hemminga, 1998), increasing competition for CO2 

(Sand-Jensen et al., 1985), and possibly escalating deleterious herbivory (Karez et al., 2000).  

Increased turbidity can also limit light available for seagrass to perform photosynthesis.  Anoxic 

conditions can impact seagrass through disruption of ion absorption in their roots (Hemminga, 

1998) and by promoting the production of sulfide compounds that are toxic to the plants (Carlson 

et al., 1994).  While findings of low dissolved oxygen and high TSS were limited to the shrimp 

effluent creeks in this study, the significantly higher periphyton growth in the areas surrounding 

the effluent creeks is likely a good proxy for increased growth of epiphytes on seagrass blades.  

BAL released little to no effluent before Garcia completed her seagrass survey of the area in 

2003 (Boyd and Clay, 2002; Garcia, 2003; Smith and Mackie; 2005).  While Smith and Mackie 

(2005) documented elevated N levels near the hatchery creek north of BAL and at the mouth of 

Hensley’s Creek, this was relatively local.  Given the expansion of the farm since 2004 and the 

cessation of closed system recirculation, it can be assumed that increased nutrient loading 

commenced between 2004 and 2007.  This increased effluent loading corresponded with 

seagrass declines but does not infer causation.  Short et al. (2006) noted that areas in Placencia 

Lagoon where mangroves were removed for development showed a reduced abundance of the 

seagrass H. baillonii and that areas adjacent to recent developments had more flowering plants, a 

possible sign of stress.  While limited information makes it impossible to partition contributions 

to seagrass decline in middle Placencia Lagoon, it is very likely that both increased shrimp 

effluent from BAL and commercial and residential development were major contributing factors.  

 

Biases and Limitations 

There were limitations and inherent biases in this study.  Without the appropriate 

equipment and chemicals, important water quality analyses like TN or TAN were not run, 

precluding comparison of DIN with periphyton variables.  Physical and chemical parameters 

were only measured at the surface, so despite mixing from wave and wind action, mid-column or 

benthic impacts may have been underestimated.  Lacking accurate farm release data, it was 

impossible to correlate the temporal aspects of discharge and loading rates with metrics 

describing the study area during the course of this study.   Without knowing the δ15N of DIN at 

the study sites, it was difficult to categorically distinguish whether depleted δ15N values found 

nearest to the farm effluent points were from the source DIN (e.g. possible contributions from 
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inorganic fertilizer, N fixation, atmospheric deposition, nitrification) or whether the source N was 

fractionated during uptake or catabolism (Kendall, 1998; Fry, 2006).   The issue of increased 

fractionation at high DIN concentrations is particularly problematic as δ15N values misrepresent 

the N source δ15N values (Fry et al., 2003).  Without explicitly identifying periphyton species or 

community composition, possible community structure differences at sites could impact 

measured variables (e.g. more heterotrophic organisms in heavily impacted sites).  The 

aforementioned uncertainties are similar to other studies and these results generally met 

expectations given farm effluent quality and location, the character of the receiving waterways, 

and prevailing currents.  While individual parameters had site specific limitations, the full suite 

of parameters showed a robust picture of the spatial extent and magnitude of effluent impacts.      

 

Conclusions 

Results of this study indicate that effluent discharge from shrimp ponds at both BAL and 

Aquamar influenced the farms’respective receiving waterways.  Periphyton bioindicators 

coupled with physical/chemical metrics helped elucidate the extent of such impacts.  The extent 

and intensity of shrimp farm influence varied but was generally strong in effluent creeks closest 

to the farms and much weaker further into the adjacent lagoons.          

The character of the release areas and intensity of the operations at BAL and Aquamar 

differed, influencing the measured variables in this study.   Aquamar has less intensive 

operations than BAL, drains fewer ponds into the study area due to multiple and dispersed 

release points, and is located in a more remote location.  Plantation Creek at Aquamar probably 

provided more nutrient buffering capacity than other release points given higher densities of 

mangroves and a greater increased in-stream residence time.  Furthermore, a section of Santa 

Maria Creek is channelized, so nutrient processing in the creek was reduced.  While anecdotal, 

the presence of seagrass adjacent to Plantation Creek and absence of seagrass adjacent to Santa 

Maria Creek may be related to different loading intensities and buffering capacity.     

            If current effluent loading levels continue or increase, BAL may have a significant and 

lasting impact on its receiving waterways.  While commenting on BAL’s proposed expansion in 

2002, and praising BAL for the farm’s many “environmentally friendly” practices, Boyd and 

Clay (2002) advised that BAL’s effluent system stay closed and that any releases should be 

directed into the sea, rather than Placencia Lagoon.  This advice was not heeded; probable 
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related consequences include increased eutrophication and reduced seagrass abundance in 

Placencia Lagoon.  As the only shrimp farm certified under the Wegmans Food 

Inc./Environmental Defense Fund purchaser standard (Bruce Hammond, Environmental Defense 

Fund, August 2007, pers. comm.) the effluent problem should be corrected so that purchaser and 

consumer confidence in the product can persist.             

This study demonstrated that periphtyon bioindicators are a useful tool for monitoring 

shrimp farm waste, despite certain limitations.  Detecting bioavailable N is extremely important 

when assessing potential anthropogenic impacts of shrimp farms.  While the sensitivity of 

individual parameters (e.g. %N, δ15N) was sometimes site dependent, the suite of parameters 

gave a fairly robust account of expected impacts.  This periphyton method can be performed with 

readily available materials and without on-site laboratory equipment (such as 

spectrophotometers), potentially expanding the range of areas that can be sampled.  Biological 

indicators provide many advantages over traditional physical and chemical water sampling 

(Jones et al., 2001; Constanzo et al., 2004; Lin and Fong; 2008) and should be incorporated into 

shrimp farm monitoring protocols and ecocertification program standards.  This periphyton 

method provides a novel approach for assessing impacts of shrimp farming, providing 

researchers and managers with another method in the monitoring toolkit.    

 

 

 
 

 

 

 

 

 

 

 

 

 

  29



   

References  

   
Altabet, M. A., 2001. Nitrogen isotopic evidence for micronutrient control of fractional 
N03 - utilization in the equatorial Pacific. Limnology and Oceanography 46, 368-380. 
 
Ariola, E., Morgan, P., 2000.  A Review of Hydrology in the Southern Region of 
Belize. Environmental and Social Technical Assistance Project. Ministry of Economic 
Development and the Interamerican Development Bank. 
 
Ariola, E., 2003. Characterization of a tropical estuarine system: The Placencia Lagoon. 
Report by the Belize Coastal Zone Management Authority. 
 
Atkinson, M.J., Smith, S.V., 1983.  C:N:P ratios of benthic marine plants.  Limnology and 
Oceanography 28, 568-574.   
 
BAL Annual Supplier Report, 2007.  Initial Annual Supplier Report provided by Belize 
Aquaculture, Ltd. (BAL) for the Wegmans Food Markets, Inc., Farmed Shrimp Purchasing 
Standards. http://www.edf.org/documents/7286_WegmansFarmedShrimpStandardsOct2007.pdf  
 
Belize Central Statistical Office, 2000. in: Abstracts of Statistics Belize 2001. Central Statistical 
Office, Ministry of Finance, Government of Belize.  
 
Boyd, C.E., Clay, J.W., 1998. Shrimp aquaculture and the environment. Scientific American 
278, 58-65.   
 
Boyd, C.E., Tucker, C.S., 1998. Pond Aquaculture Water Quality Management. Kluwer 
Academic Publishers, Boston.    
 
Boyd, C.E., Clay, J.W., 2002. Evaluation of Belize Aquaculture, Ltd.: A Superintensive Shrimp 
Aquaculture System. Report prepared under the World Bank, NACA, WWF and FAO 
Consortium Program on Shrimp Farming and the Environment, Bangkok, Thailand. 
 
Boyd, C.E., 2003. Guidelines for aquaculture effluent management at the farm level. 
Aquaculture 226, 101-112. 
 
Bricker, S.B., Ferreira, J.G., Simas, T., 2003. An integrated methodology for assessment of 
estuarine trophic status. Ecological Modeling 169, 39–60. 
 
Briggs, M.R.P., Funge-Smith, S.J., 1994. A nutrient budget of some intensive marine shrimp 
ponds in Thailand. Aquaculture and Fisheries Management 25, 789-811.   
 
Burford, M.A., Costanzo, S.D., Dennison, W.C., Jackson, C.J., Jones, A.B., McKinnon, A.D., 
Preston, N.P., Trott, L.A., 2003a. A synthesis of dominant ecological processes in intensive 
shrimp ponds and adjacent coastal environments in NE Australia. Marine Pollution Bulletin 46, 
1456–1469. 
 

  30



   

Burford, M.A., Thompson, P.J., McIntosh, R.P., Bauman, R.H., Pearson, D.C., 2003b. Nutrient 
and microbial dynamics in high-intensity, zero-exchange shrimp ponds in Belize. Aquaculture 
219, 393–411.  
 
Burford, M.A., Thompson, P.J., McIntosh, P.R., Bauman, R.H., Pearson, D.C., 2004.  The 
contribution of flocculated material to shrimp (Litopenaeus vannami) nutrition in a high-
intensity, zero-exchange system. Aquaculture 232, 525–537.  
 
Burkholder, J.M., Tomasko, D.A., Touchette, B.W., 2007.  Seagrasses and 
eutrophication. Journal of Experimental Marine Biology and Ecology 350, 46–72. 
 
Cancemi, G., Falco, G.D., Pergent, G., 2003. Effects of organic matter input from a fish farming 
facility on a Posidonia oceanica meadow. Estuarine, Coastal and Shelf Science 56. (5–6), 961–
968. 
 
Carlson, P.R., Yarbro, L.A., Barber, T.R., 1994.  Relationship of sediment sulfide to mortality of 
Thalassia testudinum in Florida Bay.  Bulletin of Marine Science 54, 733-746.   
 
Chessman, B.C., Westhorpe, D.P., Mitrovic, S.M., Hardwick, L., 2009.  Trophic linkages 
between periphyton and grazing macroinvertebrates in rivers with different levels of catchment 
development.  Hydrobiologia  625, 135-150.   
 
Cifuentes, L. A., Fogel, M.L., Pennock, J.R. Sharp, J.H., 1989. Biogeochemical 
factors that influence the stable nitrogen isotope ratio of dissolved ammonium in 
the Delaware Estuary. Geochimica et Cosmochim.Acta 53, 2713-2721. 
 
Cohen, R.A., Fong, P. 2005. Experimental evidence supports the use of δ15N content of the 
opportunistic green macroalga Enteromorpha intestinalis (Chlorophyta) to determine nitrogen 
sources to estuaries. Journal of Phycology 41, 287–293. 
 
Cosgrove, J., Walker, D., Morrison, P., Hillman, K., 2004.  Periphyton indicate effects of 
wastewater discharge in the near-coastal zone, Perth (Western Australia). Estuarine, 
Coastal and Shelf Science 61(2), 331–338. 
 
Costanzo, S.D., O'Donohue, M.J., Dennison, W.C., Loneragan, N.R., Thomas, M., 2001. A new 
approach for detecting and mapping sewage impacts. Marine Pollution Bulletin 42, 149–156. 
 
Costanzo, S.D., O’Donohue, M.J., Dennison, W.C., 2004.  Assessing the influence and 
distribution of shrimp pond effluent in a tidal mangrove creek in north-east Australia. Marine 
Pollution Bulletin 48, 514-525.   
 
Costa-Pierce, B.A., 1996. Environmental impacts of nutrients from aquaculture: Towards the 
evolution of sustainable aquaculture systems.  Aquaculture and Water Resource Management. in: 
D.J. Baird et al. (Eds.), Aquaculture and Water Resource Management. Blackwell Science, 
Oxford, pp. 81-113.     
 

  31



   

Duarte, C.M., 1990.  Seagrass nutrient content.  Marine Ecology Progress Series 67, 201-207.   
 
Duarte, C.M., 1995.  Submerged aquatic vegetation in relation to different nutrient regimes. 
Ophelia 41, 87–112. 
 
FAO, 2006.  The State of the World’s Fisheries and Aquaculture.  Food and Agriculture 
Organization of the United Nations, Geneva, Switzerland.   
 
FAO, 2007. The State of the World’s Fisheries and Aquaculture.  Food and Agriculture 
Organization of the United Nations, Geneva, Switzerland. 
 
FAO, 2009.  Fisheries commodities production and trade 1976-2007.  FISHSTAT Plus, 
Universal software for statistical time series.  Food and Agriculture Organization of the United 
Nations, Geneva, Switzerland.   
 
Fertig, B., Carruthers, T.J.B., Dennison, W.C., Jones, A.B., Pantus, F., Longstaff, B., 2009.  
Oyster and Macroalgae Bioindicators Detect Elevated δ15N in Maryland’s Coastal Bays.  
Estuaries and Coasts 32 (4), 773-786.   
 
Fogel, M. L. and Cifuentes, L. A., 1993.  Isotope fractionation during primary production, in: 
Engel, M.H., Macko, S.A. (Eds.), Organic Geochemistry. Plenum Press, New York, 73–98.   
 
Fong, P., Foin, T.C., Zelder, J.B., 1994. A simulation model of lagoon algae based on nitrogen 
competition and internal storage. Ecological Monographs 64, 224-247. 
 
Fong, P., Fong, J.J., Fong, C.R., 2004. Growth, nutrient storage, and release of dissolved organic 
nitrogen by Enteromorpha intestinalis in response to pulses of nitrogen and phosphorus. Aquatic 
Botany 78, 83–95. 
 
Fox, S.E., Stieve, E., Valiela, I., Hauxwell, J., McClelland, J. 2008.  Macrophyte abundance in 
waquoit bay: effects of land-derived nitrogen loads on seasonal and multi-year biomass patterns. 
Estuaries and Coasts 31, 532–541.  
 
Fry, B., A. Gace, McClelland, J.W., 2003. Chemical indicators of anthropogenic nitrogen 
loading in four Pacific estuaries. Pacific Science 57, 77–101. 
 
Fry, B., 2006. Stable Isotope Ecology. Springer, New York, NY. 
 
Funge-Smith, S.J., Briggs, M.R.P., 1998. Nutrient budgets in intensive shrimp ponds: 
implications for sustainability. Aquaculture 164, 117–133. 
 
Garcia, L., 2003.  Placencia Lagoon Seagrass Report for Friends of Nature Belize.  Final Report.  
Placencia, Belize.     
 
Hach Company. 2005.  Water analysis methods published by the Hach Company. Loveland, CO.   
 

  32



   

Hargreaves J., 1998. Nitrogen biogeochemistry of aquaculture ponds. Aquaculture 
158, 181–212.  
 
Harlin, M. M., Thorne-Miller, B., 1981. Nutrient enrichment of seagrass beds in a Rhode Island 
coastal lagoon. Marine Biology 65, 221-229. 
 
Heaton, T.H.E., 1986. Isotopic studies of nitrogen pollution in the hydrosphere and atmosphere: 
a review.  Chemical Geology: Isotope Geoscience Section 59, 87-102.   
 
Hemminga, M. A., 1998. The root/rhizome system of seagrasses: an asset and a burden. Journal 
of Sea Research 39, 183–196. 
 
Heyman, W.D., Kjerfve, B., 1999. Hydrological and oceanographic considerations for integrated 
coastal zone management in southern Belize. Environmental Management 24, 229–245. 
 
Hillebrand, H., Kahlert, M., 2001.  Effect of grazing and nutrient supply on periphyton biomass 
and nutrient stoichiometry in habitats of different productivity. Limnology and Oceanography 
46, 1881–1898. 
 
Horrocks, J., Stewart, G. R., Dennison, W. C., 1995. Tissue nutrient content of Gracilaria spp. 
(Rhodophyta) and water quality along an estuarine gradient. Marine and Freshwater Research 46, 
975–983. 
 
Invers, O., Kraemer, G.P., Perez, M., Romero, J., 2004.  Effects of nitrogen addition on nitrogen 
metabolism and carbon reserves in the temperate seagrass Posidonia oceanic. Journal of 
Experimental Marine Biology and Ecology 300 (1), 97-114.   
 
Islam, M. S., Khan, S., Tanaka, M., 2004. Waste loading in shrimp and fish processing effluents: 
potential source of hazards to the coastal and nearshore environments. Marine Pollution Bulletin 
49, 103-110.   
 
Jiménez, C., Niell, F.X., 2003.  Influence of high salinity and nitrogen limitation on package 
effect and C/N ratio in Dunaliella viridis. Hydrobiologia 492, 201-206.  
 
Jones, A.B., O'Donohue, M.J., Udy, J., Dennison, W.C., 2001. Assessing ecological impacts of 
shrimp and sewage effluent: biological indicators with standard water quality analyses. 
Estuarine, Coastal and Shelf Science 52, 91-109.   
 
Karez, R., Engelbert, S., and Sommer, U., 2000. ‘Co-consumption’ and ‘protective coating’: two 
new proposed effects of epiphytes on their macroalgal hosts in mesograzer-epiphyte-host 
interactions. Marine Ecology Progress Series 205, 85–93.   
 
Kendall, C., 1998. Tracing nitrogen sources and cycling in catchments. in Kendall, C., 
McDonnell, J.J., (Eds.), Isotope tracers in catchment hydrology. Elsevier Science, St. Louis, 
519–576.  
 

  33



   

Kennish, M.J., 1992.  Ecology of estuaries: Anthropogenic effects. CRC Press, Boca Raton.    
Lake, J.L., R.A. McKinney, F.A. Osterman, R.J. Pruell, J. Kiddon, S.A. Ryba, Libby, A.D., 
2001. Stable nitrogen isotopes as indicators of anthropogenic activities in small freshwater 
systems. Canadian Journal of Fisheries and Aquatic Sciences 58, 870–878.  
 
Lepoint, G., Jacquemart, J., Bouquegneau, J.M., Demoulin, V., Gobert, G., 2007.  Field 
measurements of inorganic nitrogen uptake by epiflora components of the seagrass Posidonia 
oceanic (monocotyledons, posidoniaceae). Journal of Phylcology 43, 208-218.   
 
Lin, D.T., Fong, P., 2008.  Macroalgal bioindicators (growth, tissue N, δ15N) detect nutrient 
enrichment from shrimp farm effluent entering Opunohu Bay, Moorea, French Polynesia. Marine 
Pollution Bulletin 56 (2), 245-249.   
 
McClelland, J.W., Valiela, I., 1998. Linking nitrogen in estuarine producers to land-derived 
sources. Limnology and Oceanography 43, 577-583.   
 
McGlathery, 1995.  Nutrient and grazing influences on a subtropical seagrass community.  
Marine Ecology Progress Series  122, 239-252.   
 
McGlathery, K.J., Sundback, K., Anderson, I.C., 2007. Eutrophication in shallow coastal bays 
and lagoons: the role of plants in the coastal filter. Marine Ecology Progress Series 348, 1–18. 
 
Naldi, M., Wheeler, P. A., 1999. Changes in nitrogen pools in Ulva fenestrata (Chlorophyta) and 
Gracilaria pacifica (Rhodophyta) under nitrate and ammonium enrichment. Journal of Phycology 
35, 70–77. 
 
Naylor, R. L., Goldburg, R. J., Mooney, H., Beveridge, M., Clay, J., Folke, C., Kautsky, N., 
Lubcheno, J., Primavera, J., Williams, M., 1998.  Nature’s subsidies to shrimp and salmon 
farming. Science 282, 883-884.    
 
Naylor, R.L, Goldburg, R.J., Primavera, J.H., Kautsky, N., Beveridge, M.C.M., Clay, J., Folke, 
C., Lubchenco, J., Mooney, H., Troell, M., 2000. Effect of aquaculture on world fish supplies. 
Nature 405, 1017–1024. 
 
Nelson, S.G., Glenn, E.P., Conn, J., Moore, D., Walsh, T., Akutagawa, M., 2001. Cultivation of 
Gracilaria parvispora (Rhodophyta) in shrimp-farm effluent ditches and floating cages in Hawaii: 
a two-phase polyculture system. Aquaculture 193, 239– 248. 
 
Nichols, F., Cloern, J., Luoma, S., Peterson, D., 1986. The modification of an estuary. Science 
231, 567–573. 
 
Nixon, S.W., 1995. Coastal marine eutrophication: a definition, social causes, and future 
concerns. Ophelia 41, 199–219N. 
 

  34



   

Oviatt, C., Doering, P., Nowicki, B., Reed, L., Cole, Frithsen, J., 1995.  An ecosystem level 
experiment on nutrient limitation in temperate coastal marine environments. Marine  Ecology 
Progress Series 116, 171–179. 
 
Paerl, H.W., 1988. Nuisance phytoplankton blooms in coastal, estuarine, and inland waters.  
Limnology and Oceanography 33, 823-47.   
 
Páez-Osuna, F., 2001. The environmental impact of shrimp aquaculture: a global perspective. 
Environmental Pollution 112, 229–231.  
 
PASCO, 2002.  An EIA Addenda for a proposed excavation of a channel at the Placencia 
Peninsula. Ecoworks, Belmopan, Belize.   
 
Pennock J.R., Velinsky, D.J., Ludlan, J.M., Sharp, J.H., Fogel, M.L., 1996.  Isotopic 
fractionation of ammonium and nitrate during uptake of Skeletonema costatum: implications for 
d15N dynamics under bloom conditions. Limnology and Oceanography 41, 451–459.  
 
Peterson, B. J., Fry, B., 1987.  Stable isotopes in ecosystem studies. Annual Review of Ecology 
and Systematics 18, 293-320.  
 
Phillips, M. J., Lin, K.C., Beveridge, M.C.M., 1993. Shrimp culture and the environment: 
Lessons from the world’s most rapidly expanding warmwater aquaculture sector. in: Pullin, S.V., 
Rosenthal, H., Maclean, J.L. (Eds.), Environment and aquaculture in developing countries.  
ICLARM, Manila, Philippines, 171-197.    
 
Piñón-Gimate, A., Soto-Jiménez, M.F., Ochoa-Izaguirre, M.J., García-Pagés, E., Páez-Osuna, F., 
2009.  Macroalgae blooms and δ15N in subtropical coastal lagoons from the Southeastern Gulf of 
California: Discrimination among agricultural, shrimp farm and sewage effluents. Marine 
Pollution Bulletin 58 (8), 1144-1151.   
 
Primavera, J.H., 2006. Overcoming the impacts of aquaculture on the coastal zone. Ocean and 
Coastal Management 49, 531-545. 
 
Pruder, G. D., 1992. Marine shrimp pond effluent: Characterisation and environmental impacts. 
in: Wyban, J.A. (Eds.), Proceedings of the Special Session on Shrimp Farming. World 
Aquaculture Society, Baton Rouge, Louisiana, 187–194. 
 
Rau, G.H., Sweeney, R.E., Kaplan, I.R., 1981. Differences in animal 13C, 15N and D 
abundances between a polluted and an unpolluted coastal site: Likely indicators of sewage 
uptake by a marine food web. Estuarine, Coastal and Shelf Science 13, 701–707. 
 
Ryther, J.H., Dunstan, W.N., 1971. Nitrogen, phosphorus, and eutrophication in the coastal 
marine environment. Science 171, 1008-1013. 
 
Samocha, T. M., Lawrence, A. L., 1997.  Shrimp farms’ effluent waters, environmental impact 
and potential treatment methods, in: Keller, B.J., Park, P.K., MacVey, J.P., Takayanaji, K., 

  35

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T4D-47CY5J8-2&_user=3615566&_rdoc=1&_fmt=&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1092071928&_rerunOrigin=scholar.google&_acct=C000060967&_version=1&_urlVersion=0&_userid=3615566&md5=1d15cbf00022779ffb80e6b6c01865e3#bbib69#bbib69
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V6N-42G0KJP-B&_user=3615566&_rdoc=1&_fmt=&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1095749965&_rerunOrigin=scholar.google&_acct=C000060967&_version=1&_urlVersion=0&_userid=3615566&md5=8bbd2840e6c650e53120bac33040e446#bbib18#bbib18


   

Hosoya, K., (Eds.), Interactions between cultured species and naturally occurring species in the 
environment. UJNR Technical Report, Corpus Christi, TX, 33-57.  
 
Sand-Jensen, K., Revsbech, N.P., Jørgensen, B.B., 1985. Microprofiles of oxygen in epiphyte 
communities on submerged macrophytes. Marine Biology 89, 55–62.   
 
Sand Jensen, K., 1997. Effect of epiphytes on eelgrass photosynthesis.  Aquatic Botany 3, 55–63. 
 
Sansanyuth, P., Phadungchep, A., Ngammkontha, S., Ngdngam, S., Sukasem, P., Hoshino, H., 
Ttabucanon, M.S., 1996. Shrimp pond effluent: pollution problems and treatment by constructed 
wetlands. Water Science and Technology 34, 93–98. 
 
Short, F.T., Fernandez, E., Vernon, A., Gaeckle, J.L., 2006.  Occurrence of Halophila baillonii 
meadows in Belize, Central America.  Aquatic Biology 85, 249-251.   
 
Smith, V.H., Tilman, G.D., Nekola, J.C., 1999.  Eutrophication: impacts of excessive nutrient 
inputs on freshwater, marine and terrestrial ecosystems.  Environmental Pollution 100, 179-196.   
 
Smith, T.B., Mackie, R.I., 2005. Use of stable isotopes to describe food web structure and 
anthropogenic nutrients in Placencia Lagoon, Belize. Oak Foundation final report. 
 
Smith, T.B, 2008. Belize Shrimp Aquaculture 2008 Status and Review.  Prepared for World 
Wildlife Fund.  Placencia Village, Belize.     
 
Stelzer, R.S., Lamberti, G.A., 2001.  Effects of N: P ratio and total nutrient concentration on 
stream periphyton community structure, biomass, and elemental composition. Limnology and 
Oceanography 46, 356–367. 
 
Trott, L.A., and Alongi, D.M., 2000. The impact of shrimp pond effluent on water quality and 
phytoplankton biomass in a tropical mangrove estuary.  Marine Pollution Bulletin 40, 947–951. 
 
Tucker, J., Sheats, N., Giblin, A. E., Hopkinson, C. S., Montoya, J. P., 1999. Using stable 
isotopes to trace sewage-derived material through Boston Harbor and Massachusetts Bay. 
Marine Environmental Research 48, 353–375. 
 
Wada, E., Hattori, A., 1978.  Nitrogen isotope effects in the assimilation of inorganic 
nitrogenous compounds by marine diatoms. Geomicrobiology 1, 85-l01.  
 
Waser, N. A. D., Harrison, P.J., Nielsen, B., Calvert, S.E., Turpin, D.H., 1998. Nitrogen isotope 
fractionation during the uptake and assimilation of nitrate, nitrite, ammonium, and urea by a 
marine diatom. Limnology and Oceanography 43(2), 215– 224.   
 
Wazniak, C.E., Hall, M.R., Carruthers, T.B., Sturgis, B., Dennison, W.C., Orth, R.J., 2007. 
Linking water quality to living resources in a mid-Atlantic lagoon system USA. 
Ecological Applications 17, 64–78. 
 

  36



   

  37

Wear, D.J., Sullivan, M.J., Moore, A.D., Millie, D.F., 1999. Effects of water-column enrichment 
on the production dynamics of three seagrass species and their epiphytic algae. Marine Ecology 
Progress Series 179, 201–213.  
 
Wolanski, E., Spagnol, S., Thomas, S., Moore, K., Alongi, D.M., Trott, L.A., Davidson, A., 
2000. Modeling and visualizing the fate of shrimp pond effluent in a mangrove-fringed tidal 
creek. Estuarine, Coastal and Shelf Science 50, 85–97. 
 
Yonemaya, T., Omata, T., Nakata, S., and Yazaki, J., 1991. Fractionation of N isotopes during 
the uptake and assimilation of ammonia by plants, Plant Cell Physiology 32, 1211–1217. 
 
Zar, J. H. 1999. Biostatistical analysis. Prentice-Hall, Inc., New York.



   

Appendix  

Table 9.  UTM coordinates of sampling points for BAL. 

 A B C D E F G H I J K L M N O 
East/West 356597 356734 355365 355127 354845 354624 354031 354206 354175 354190 354135 353954 353838 353865 353958 
UTM 1840546 1839792 1839331 1838944 1838498 1838186 1838655 1838289 1838060 1837822 1837624 1837388 1836733 1836187 1835682 

 

Table 10.  UTM coordinates of sampling points for Aquamar.   

  Z   Y   X   W    V    U    T    S    R    Q 
East/West 346866 347419 347635 347410 347342 347999 348134 347125 347891 349082 
 UTM 1822787 1821707 1821453 1821125 1820834 1820902 1820399 1819408 1819151 1822786 
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