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and biphenyl to 1700A,8 it is assumed that the intro­
duction of a methylene bridge (fluorene is 2,2'-methyl­
ene-biphenyl) results in an approximately planar struc­
ture in which the phenyl groups are not symmetrical 
about an axis through the 4,4'-positions. This is in 
agreement with dipole moment measurements which 
favor this configuration.9 The band positions change 
due to alkyl substitution (bathochromic shift) and the 
intensities of the IBb bands decrease as is indicated by 
the decrease in i-values. It is to be noted that essen­
tially the same occurs in the comparison of the spectra 
and the i-values of anthracene and phenanthrene. 

Similar regularities (bathochromic shifts and de­
crease in i-values) are also observed in the spectra of 
2-phenylnaphthalene and its methylene derivative, 
1,2-benzfluorene, and in 2-phenylazulene and its 
methylene derivative, indeno-azulene, as can be seen 
from the data in Fig. 3 and Table II, although in these 

8 J. R. Platt and H. B. Klevens (unpublished results). 
9 Hughes, LeFevre, and LeFevre, J. Chern. Soc., 202 (1937). 
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compounds the decreases are smaller due probably to 
less bending of the molecule. There is seen in these 
compounds only the normal bathochromic effect due 
to alkyl substitution and not the marked changes in 
intensity normally associated with twisting of double 
bonds and twisting of rings from planar positions. The 
IC b band, transversely polarized to the long axis of the 
molecule, increases in intensity upon loss of C2v sym­
metry about this long axis as is seen in a comparison 
of the i-values of 0.28 for anthracene and 0.60 for 
phenanthrene. A similar increase is observed for the 
same transition in 2-phenylazulene and indeno-azulene 
with i-values of 0.41 and 0.55, respectively, although 
this increase is also smaller than that observed in the 
case of the more highly bent polyacene, phenanthrene. 
The approximated i-values of this singlet IC b(?) band 
in biphenyl and fluorene, and 2-phenylnaphthalene and 
1,2-benzfluorene are to be expected to show a similar 
small increase in going from the linear to the slightly 
bent methylene derivative. 
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Recently a controversy has arisen between J. De Boer and H.' S. Green concerning the notion of pressure 
in a canonical ensemble. According to Green, only classically is the pressure as derived from the partition 
function equal to that obtained from the virial theorem, while at low temperatures, at which quantum 
effects become important, there will be considerable deviations between the two. De Boer attempts to 
prove that the two pressures are actually identical. We have come to the same conclusion, and shall show 
this in several ways; first, by considering a simple example (Section 2), and then in general using the energy 
representation (Section 3). We believe that the discrepancy between the two pressures which Green has 
found is in fact due to improper handling of the effect of the wall of the vessel in which the particles are 
contained. Finally, we are of the opinion that Green's criticism of De Boer's calculation is not justified, 
and in the last section arguments are given to show that the traces of all commutators of interest in quantum 
statistical mechanics are zero. 

1. INTRODUCTION 

RECENTLY a controversy has arisen between J. 
De Boer and H. S. Greenl concerning the notion 

of pressure. in a canonical ensemble. According to 
Green, the pressure as derived from the partition 
function Z: 

p= 1/{3Z·aZ/av, (1) 

where {3= (kT)-t, is not necessarily equal to the pressure 
as derived from the virial theorem: 

(2) 

where K is the, kinetic energy, .p is the virial of the 

1 J. De Boer, Physica XV, 843 (1949); Nuovo Cimento Supple­
ment to the Statistical Mechanics Conference at Florence (May, 
1949), p. 199 and discussion. H. S. Green, Physica XV, 882 (1949). 
Compare also J. Yvon, Comptes Rendus 227, 763 (1949). 

intermolecular forces, and where the ( ... )AV means an 
average over the canonical ensemble. * Green asserts 
that the first pressure (which he calls the thermody­
namical pressure) is the one exerted by the system in 
the equilibrium state, while the second (kinetic pres­
sure) is the one occurring in the hydrodynamical 
equations.2 Only in classical statistical mechanics would 
these two pressures be identical. However, according 
to Green, as soon as quantum effects become important 
(as would be the case at very low temperatures) an 

* Compare, for instance, Tolman, Principles of Statistical 
Mechanics, Chapter IX. If F is any kind of operator then in the 
energy representation; 

1 
(F n)Av=Z~F n exp( -fiEn), 

where Fn is the average of F in a state of energy En. 
2 H. S. Green, Proc. Roy. Soc. A194, 244 (1949). 
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appreciable difference between the two pressures will 
occur. 

On the other hand, De Boer has attempted to show 
that the two pressures as given by (1) and (2) are 
always identical. Since the argument does not seem to 
have been completely settled, and since Green's result 
is so different from the usual conception, a further 
analysis seems justified. In the following we will confirm 
De Boer's result using a slight modification of his 
method of proof. Green's criticism of De Boer's proof 
cannot, in our opinion, be justified. The origin of the 
discrepancy between Green's kinetic and thermody­
namic pressures lies, in our opinion, in the treatment 
of the boundary conditions due to the potential of the 
wall of the vessel in which the system is enclosed. 
Green (and also De Boer) represents the vessel by a 
sudden infinite potential jump, and it is well known 
that with such potentials the formulas of the transfor­
mation theory have to be used with caution. 

2. A SIMPLE EXAMPLE 

In order to illustrate in an explicitly soluble case that 
with a non-singular wall potential the two pressures (1) 
and (2) are identical, consider the following simple 
example: two equal one-dimensional particles bound 
together by a harmonic potential, moving in a "vessel" 
represented by another, but very weak, harmonic 
potential. The Hamiltonian for the system is: 

X= (P12+P22)/2m+!mw2(q12+q22)+!ma2(ql-q2)2 

or, introducing the center of gravity and relative 
coordinates Q, q: 

X=F2/4m+p2/m+mw2Q2+l-mw12q2 

where: 

Clearly the energy values are: 

EN ... = (N+!)hw+(n+!)hw 1• 

To find the "pressure" from the partition function 
Z = LN." exp( -(3EN ... ) one has to identify the "vol­
ume" of the vessel with 1/",. To prove, therefore, the 
equality of the thermodynamic and kinetic pressures, 
one has to show that: 

(3) 

The factor t in (2) must be omitted since the problem 
is one dimensional. 

Because of the harmonicity of the forces one has 
immediately: 

On the other hand: 

(3Z a", 

",2 aEN ." 

=- L --exp(-{3EN.,,) 
Z N.n a", 

="'/ZL {EN.n -(n+!)2ha2/",d exp(-{3EN.,,) 
N.n 

so that (3) is evident. 

3. THE GENERAL PROOF 

To perform the differentiation of Z with respect to 
the volume in general, Green and also De Boer use the 
trick of measuring all coordinates with a unit L, which 
is characteristic of the vessel. In this way they were 
able to shift the differentiation with respect to the 
boundary to a differentiation of the operator exp( -(3X). 
To show how this works, we will use as in Section 2 
the energy representation of all operators. If V = La, 
then from (1): 

1 aE" 
p= --LL- exp( -(3En). (4) 

3VZ" aL 

In order to determine aE,,/ aL we must go to the 
Schroedinger equation for the whole system: 

(5) 

where Vint is the potential of the intermolecular forces 
and where we have explicitly introduced the potential 
W due to the wall. It is best to consider W as a smooth, 
though nearly step-like, function near the boundary, 
becoming infinite for q.-± DO. There is then no need 
to impose a boundary condition on \ji'" (except for the 
usual one that \ji',,-to as q.-± DO), and all the coordi­
nates qi can be taken from - DO to + DO. Since W 
depends on L, \ji' n and En are also functions of L. Now 
let us replace qi by Lqi, and then differentiate (5) with 
respect to L, considering the qi as constant. Thus: 

ax a\ji'" aE.. i)\ji' .. 
-\ji',,+X--=-\ji',,+En--. 
aL aL aL aL 

Multiplying on the left by \ji',,* and integrating over all 
coordinates, one obtains: 

(6) 

since the terms in (i)\ji',,/aL) cancel using the Hermitian 
property of x. Since, in terms of the qi: 

h2 a2 

X=--L-
2mL2 i aql 

+ Vint(Ltl1, "', LqN)+W(Cl1, "', qN) (7) 
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in (aX/aL) the wall potential drops out and one verifies 
easily: 

L(ax/aL)= -2K -1>, (8) 
where 

aVint 
1>=-Lq,-

i aqi 

is the virial of the intermolecular forces. From (6), 
therefore, 

L(aE,,/aL) = -2K,,-1>n 

and substituting in (4) gives the virial theorem (2). 

4. DISCUSSION OF GREEN'S CALCULATION 

Green uses the coordinate representation of all oper­
ators, instead of the energy representation used in the 
previous section. The partition function is now written 
as: 

Z= Jdq(ql exp(-{3X) I q), (9) 

where q stands for the coordinates ql, "', qN of all the 
particles and where, if the wall potential is included in 
X, the integrals may be taken from - r:TJ to + r:TJ • 

Introducing the reduced coordinates qi= qiL-t, one 
finds: 

az L az 
V-=--=NZ 

av 3 iJL 

L3N

J 
a 

+- dqL-(Lq I exp( -(3X) I Lq). (10) 
3 iJL 

To carry out the differentiation, one expands the matrix 
exp( -(3X) in its power series in X, and then differ­
entiates term by term. Following Green, one obtains 
for the first term, going back to the original variables 
q i after the differentiation is completed: 

a 
L--(Lq I X I Lq') 

iJL 

where 

= (q.~+q' .~)<q Ix I q')+(q l1>walll q'), 
iJq iJq' 

iJW 
1>wall = - Lq,-

i iJqi 

is the virial of the wall potential. Analogously, one can 
proceed in the differentiation of the matrix elements of 
the higher powers of X, and one can show by induction: 

a 
L-(Lql exp( -(3X) I Lq') 

iJL 

= (q.~+q' .~)<ql exp( -(3X) I q') 
aq iJq' 

00 (3m+1 
- L: (q!,um exp(-{3x)lq'), (11) 

m~O (m+1)! 

where ,uo=1>w, and ,um=[.um-I,X], and the square 
brackets indicate as usual the commutator. Introducing 
(11) in (10) and using (1), one easily verifies: 

p=_i -fdq(ql [P'q, exp(-{3X)Jlq) 
3{3hVZ 

1 00 (3m J 
-- L dq(ql,um exp(-{3X) Iq). 

3VZ m=0 (m+1)! 
(12) 

The first term in (12) is identical with Green's expres­
sion for the pressure. The reason that he does not 
obtain the second term in (12) is clearly due to the 
fact that he does not include the wall potential in the 
Hamiltonian, but instead restricts his coordinates qi to 
the finite range O~ qi~ L. Omitting the wall potential, 
the matrix element of exp( -(3X) in the coordinate 
representation is apparently a function of q, q' alone. 
Therefore with the reduced coordinates the differentia­
tion operation L(iJ/iJL) is apparently equivalent to the 
differentiation operation q' (iJ/iJq)+q'· (iJ/iJq') on the 
original matrix element. The second term in (11) would 
not be there and one would obtain Green's result for 
the pressure. We do not believe that this is correct, 
because the matrix element of exp( -(3X) besides being 
a function of q, q' is also implicitly a function of L 
because of the boundary condition imposed on the wave 
functions. One can see this, for instance, by going back 
to the energy representation. One has: 

(ql exp( -(3X) I q')= L: exp( -(3En)'I',,*(q)'iI!n(q'). 
n 

Following Green, one would neglect, for instance, the 
dependence of En on L. This, however, just gives, as 
shown in the previous section, De Boer's result. The 
other terms (including those of Green) obtained from 
the L(iJ/iJL) differentiation must, therefore, be zero. 
This is in fact, we think, the case. Contrary to Green, 
and in accordance with De Boer, we are of the opinion 
that the traces of the commutators which occur in the 
usual applications of quantum statistics and in partic­
ular in (12) are all zero,t so that (12) reduces to the 
trivial res ul t : 

(13) 

In order to obtain (2) from (9) one must carry out 
the L-differentiation more directly, essentially as De 
Boer does. Since 

and 
(ql exp( -(3X) I q')= exp( -(3Xop)o(q -q') 

o(Lq-Lq') = 1/ Lo(q-q'), 

one can write for the partition function 

Z= f f dqdq'o(q- q') exp( -(3Xop)o(q-q'). 

t For some further comments on this point see Section 5. This 
is the main point of the criticism which Green made against 
De Boer's method of proof. 
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Now L appears only in JCop (compare Eq. (7», and one 
proves that 

where again Jl.m= Utm-l, JC], but where now 

according to (8).tt Omitting the traces of all commu­
tators, this leads immediately to (2).' 

5. ON THE TRACES OF COMMUTATORS 
IN QUANTUM STATISTICS 

Green remarks that the trace of the commutator of 
two matrices A and B is not necessarily zero, since it 
depends on the convergence of the double integral (or 
double sum) : 

f f dq'dq"(q'IA I q")(q" I BI q'), (15) 

and this may not be the case if A and B are singular, 
as, for instance, p and q. However, in quantum sta­
tistics one of the matrices occurring is always the 
density matrix : 

p(q, q')= (ql exp( -PJC) I q') 

= 1: exp( -PEn)'iJ! n *(q)'iJ! n(q'). 
n 

For the usual types of Hamiltonians p(q, q') is an 
analytic function of q and q', vanishing exponentially 
for large values of q and q'. This follows from the fact 

tt Equation (14) is equivalent to (I) in De Boer's paper after 
a slight error is corrected. 

, (13) would result if one carries the L-differentiation out 
without introducing the reduced coordinates /i •• One can then 
use (14) again, but now 

liosL(aW /aL) = +<Pwall. 

that p(q, q') is the fundamental solution of the parabolic 
differential equation :11 

iJip(q, fj) h2 

-JCoP'P= -A'P- V'P. 
ap 2m 

For instance, for the harmonic oscillator with 

JC = Hp2+W2q2) ; 

(16) 

p(q,q')={ w }texp[_ w 
21ih sinh(hwfj) 2h[1-exp( -2hwfj)] 

. {(q2+q'2)(1+exp( -2hwfj)-4qq' exp( -hwP)I]. 

For such functions we believe that the integrals of 
the type (15) are always convergent, and therefore the 
order of integration may be interchanged, as is necessary 
in order to prove that the trace of the commutator is 
zero. For example: 

hJ'" (ap ap
) Tr[p, exp( -PJC)]=-: dq -+-, 

'1 -00 aq aq q=q' 

=~ rlaPdq+~q']' 
'fJo iJq oq' 

where C is the path q= q' from - 00 to + 00. The line 
integral is clearly zero since p is zero at infinity. Analo­
gously, one shows that the trace of the commutator 
of p2 and of p.q with exp( -PJC) is zero. In general, 
the theorems: 

Tr (A B) = Tr(BA) 
Tr(ABC) = Tr(CAB) = Tr(BCA) 

and so on, will be valid if only one of the matrices A, 
B, C, ... is the density matrix. The other matrices 
may then be of the singular kind as, for example, the 
impulse and coordinate matrices are. 

II This means that p(q, q'} is the solution of (16), which for 
(3=O becomes o(q-q'). Of course, certain regularity conditions 
are necessary for V(q). 


