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The stabilizing effects that a beam of longitudinally nonuniform density imposes on beam-plasma
instabilities are investigated using a hydrodynamic model adapted for an infinite, one-dimensional
beam-plasma system. The electron beam is characterized by either of two types of longitudinal
inhomogeneity—square-wave or sinusoidal. The results, for the square-wave type of inhomogeneity,
indicate a disappearance of the convective instabilities below a threshold frequency as well as a reduction
in the growth rate for the remainder of the spectrum. Similar results are obtained for the case of a
high-frequency sinusoidal pulsation of the beam density. Effects resuiting from finite temperature plasma

electrons are also discussed.

I. INTRODUCTION

Experimental studies!? have shown that the excited
oscillations in a plasma, which are due to the inter-
action of a beam of longitudinally nonuniform density
with the plasma, will have considerably smaller growth
rates than those due to the interaction of a uniform
density beam with the plasma, so long as the spatial
wavelength of the beam inhomogeneity, measured in
the moving frame of reference attached to the beam,
is considerably smaller than the wavelength of the
excited oscillations. By a beam of longitudinally non-
uniform density we mean an electron beam for which
the density is a function (here periodic) of the spatial
coordinate (along which the beam particles are drift-
ing) measured in the frame of reference attached to
the beam. Therefore, the space-time variation of the
density of such a beam, written in the inertial frame
of reference attached to the beam, is given in the form

nb(;, t) =n0b(§) +nlb(§-) exp(jwt)v (1)

where { is the longitudinal coordinate measured in
the moving frame and 7 ({) and #(¢) are the zeroth-
and first-order perturbation terms of the total beam
density, n(¢, ¢), respectively. The suppressive effects
that such a beam exhibits on beam-plasma instabilities
have been qualitatively explained by the argument of
phase destruction advanced by Fainberg?

From a broader viewpoint, the rf excitations are
also used to suppress the so-called drift-wave insta-
bilities associated with particle drifts in an inhomo-
geneous plasma. Recently, there has been a growing
interest in devising means of suppressing the above-
mentioned instabilities because of the resulting en-
hanced diffusion of the plasma across the magnetic
field % The present work deals with the effects of a
beam-produced rf excitation in suppressing the con-
vective instabilities that generally arise in a beam-
plasma system.

II. MATHEMATICAL FORMULATION

The following assumptions are made in the course
of formulating the problem:

1. The plasma is cold, stationary, and uniform with
infinitely heavy ions which serve as a neutralizing
background.

2. The electron beam is cold and drifting with a
velocity uo parallel to the applied dc magnetic field
Bo= 0,

3. The perturbations are assumed to be of small
magnitude so as to make a linear analysis possible.

4. Nonrelativistic mechanics applies.

5. The quasistatic assumption is appropriate.

On the basis of the preceding assumptions, hydro-
dynamic equations of motion are written for both
beam and plasma particles. The beam and plasma
space-charge waves are coupled through an ac electric
field and this coupling is expressed mathematically by
Gauss’ law.

The linearized equations of motion, the continuity
equation, and Gauss’ law, when written in an inertial
frame of reference attached to the beam, have the
following form:
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where the subscript 1 denotes the first-order pertur-
bation quantities, subscripts b and p refer to the
beam and the plasma parameters, respectively, and {
is the longitudinal coordinate in the moving frame
of reference. A steady-state solution to these equations
can be sought by making-all the first-order quantities
assume an exp( jwf) variation in time. If this con-
sideration is made, a combination of (2)-(6) yields
the following differential equation for the longitudinal
ac electric field:

(o ) [o(e, ) EQtetBi=0, (1)

where e(w, {) is the beam dielectric constant defined as
e(w, §) =1—[enp(¢)/mews?]. (8)

A transformation of the dependent variable can be
made to standardize the preceding differential equa-
tion. Hence, if Z({) is defined as

Z(g‘) Eeb(wy !‘) El(g-) eXP[‘"](w/“o)fl (9)

a direct substitution into (7) yields the following dif-
ferential equation for Z (g‘):

ZO) + = Z()=0. (10)

U ( 9}
A differential equation of this form has been discussed
in detail by Cesari’ who gave the exact solution of
the equation for an arbitrary form of &(w, {). A special
case of particular interest is when &(w, ¢) is periodic,
in which case (10) is called Hill’s equation. However,
the exact methods of solving such equations suffer
from a lack of applicability to equations of order
higher than two.

On the other hand, the method of averaging, as
demonstrated by Bogoliubov and Mitropolsky,® can
be successfully used to determine the approximate
solution to the differential equations of the same type
as (10) as well as equations of higher order. The
applicability of this method hinges upon the require-
ment that e(w, ) be periodic in { with a periodicity
much smaller than the periodicity of the natural oscil-
lations of the system. This condition is equivalent to
the assumption that the wavelength of the excited
oscillations is much longer than the wavelength of
the beam inhomogeneity, measured in the moving
frame of reference. In the following, the use of this
method is illustrated by its direct application to (7).
For purely analytical reasons, Eq. (7) is rewritten in
terms of the electric flux density Dy:

d
("" o d;) bt o6 e,,(w, 0

For an electron beam whose density profile is periodic
with a spatial wavelength of 2r/k,, the beam density
and the dielectric constant can be expanded in Fourier

D,=0. (11)
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series. In particular, it is asserted that

[e(w, ) T =2 en(w) exp(—jnkes).  (12)

In accordance with the method of averaging, D;({)
can be decomposed according to the following:

Di(§) =D () +Di @ (5) =D ()
+2 du(w) exp(—jnkol),

n0

(13)

where D@ (¢) is the fast oscillatory part of the solu-
tion Di(¢), whose amplitude is small compared with
that of D,@(¢). Direct substitution of (12) and (13)
into (11), separating the zeroth- and nth-order terms
and setting each equal to zero, yields the following
results:

(jw I §‘) DO+ to(w) D@
F0 2 X en(@)dn(w)=0 (14)
w0
and

— (wtnkotte)*dnw) +wlon(w) Di®
+w,? Z’ Pnm (@) dm(w) =0;
m#<)

(=1, 22, -++). (15)

The next step is to ignore the term

Z" Pnm (@) dm (@)

m40,n
in (14) and (15). Neglect of this term is equivalent
to stating that the spectrum of the fast oscillatory
part of the excited field has nonzero components only
at those wavelengths for which the spectrum of the
beam pulse has nonzero components. In this fashion
the possibility of getting a cascade in wavenumber
space and obtaining a Kolmogoroff spectrum is ex-
cluded and a limit is put on the number of degrees
of freedom for the system. Both of these are in ac-
cordance with the dynamical features of weakly-tur-
bulent plasmas®!® and therefore neglect of the sum

E" ‘Pn—m(w) am (w)

mz0,n

can appropriately be termed ‘‘the weak turbulence
approximation.”’

The remaining is straightforward and a combination
of (14) and (15) resolves into a dispersion relation
which, after a Doppler transformation w—wp=w—kuo,
is reduced to

‘ ‘Pn(‘-"D) |2
=1 nPwi— wlp0(wp)

¢o(wp) — —+2 : =0, (16)
where wo=Fkt4g. It is noted that in the limit when
on—0, i.e., when the beam is homogeneous, (16) re-
duces to the Bohm-Gross dispersion relation.!
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Fic. 1. Normalized growth rate 8,/6¢ vs v for square-wave

inhomogeneity.

III. RESULTS (COLD PLASMA CASE)

A. Square-Wave Inhomogeneity

For this case (16) will lead directly to

f= w + @ (1—72“’132/“’2)1/2,

w o\ 1—w,t/0?
where terms of order (wp}/wy’) and higher were ne-
glected and w; is the beam plasma frequency defined
by wi=e*tw/me. In (17), k is the propagation con-
stant and v is a measure of the fraction of time that
the beam remains turned off [y=(1—A)"%, A is the
duty cycle]. From (17) the region of instability can
easily be found as

(17)

y<w/wp<1. (18)

It is noted that square-wave pulsation places a lower
limit on the extent of the instability region measured
on the w scale. Throughout the region of instability,
the growth rate is diminished by a factor of
[1—~2(w,2/w?) /2. The effectiveness of the suppression
of convective instabilities by means of a high-fre-
quency, square-wave pulsation is shown in Fig. 1,
where variations of the normalized growth rate 4,/8
are shown as a function of v, with the normalized
frequency w/w, taken as a constant, with 6, defined as

hom wp (1_720)1)2/‘02)1/2
" o\ wwr—1/
(19)
v<w/w,<1, 0<y<1.

The quantity 8, corresponds to the imaginary part of
the wavenumber or propagation constant & [Eq. (17)].
8,/8 is a measure of the inhomogeneous beam growth
rate relative to that for a homogeneous beam. It is
seen that the suppression is more effective for the
lower-frequency modes. This is in agreement with the
argument of phase destruction which can be sum-
marized as follows,

Fainberg® has pointed out that, if an electron beam
is injected into a plasma, self-modulation of the beam

R. AGHEVLI AND J. E. ROWE

particles will occur as a result of synchronization
between the beam particles and the restoring electric
field, maintaining plasma oscillations. This will even-
tually lead to a coherent oscillation of the particles
in the beam, in phase with the restoring field, and
thus contributes to the effectiveness of the interaction
through enhancement of the field. Hence, on the basis
of the above argument, it would seem natural that
if the beam particles are somehow prohibited from
falling into phase with the restoring field, there will
be a disruption of the instabilities throughout the
spectrum. Previous bunching of the beam density at
a frequency other than that of the restoring field is
an effective means by which a phase destruction be-
tween the beam particles and the restoring field of
plasma oscillations is possible.

Consideration should be made of the parametric
resonances that a previously bunched beam excites.
These are resonances which occur at frequencies near
the bunching frequency. Experimental studies,!? how-
ever, have shown that parametric instabilities have a
narrow width, and so they may be weakened or even
disappear due to the inhomogeneities and collisions
that occur in actual systems.

The present theoretical investigation supports this
argument in two ways: in shrinking the region over
which instabilities exist and in reducing the growth
rate for the remainder of the spectrum.

B. Sinusoidal Inhomogeneity

The profile of the beam density in this case is
given by
70 (£) = ng (14 coske?) . (20)

It is straightforward to show that the dispersion rela-
tion (16) can be expressed as follows for the case of
a sinusoidal density profile:
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Frc. 2. Normalized growth rate 8./ vs normalized frequency
w/wp for sinusoidal inhomogeneity.
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where C.(a, b) is defined as
Cala, )= f
0

A three-term recurrence formula can be found*? for the

evaluation of C,. The results are Cnio=— (26/8)Cpy1—

Cpny C1=(r—aCy)/b, and Co=m(a®—b*)"V2sgn(a) for

|a]|>|b]|. An approximate solution to (21) can be
@ 1—o?

expressed as
oy 1/2
wEia .
Uo %y uﬂ([(wp4 w4)_.a2(wp4/w4_ 1)]1/2__ 1) ( )

The term wpt/wi—a® (w,Y/w!)—1] is always positive
(@< 1) and its value is greater than unity throughout
the range w/w,<1. Therefore, unlike the case of a
rectangular inhomogeneity, the range of instability in
this case is independent of the depth of modulation.
Throughout the region w/w,<1 the growth rate of the
convective instability is diminished by a factor given as

b w(1—gym

b (GA—0) PR e—g]
where 8, is defined as the imaginary part of % as ex-
pressed in (23), and u is defined as (1—a®)'? and @
is defined as w/w,. Figure 2 shows the variations of
the normalized growth rate 8,/ as a function of the
normalized frequency w/w,, with the depth of modula-
tion « taken as a parameter.

The results of both cases indicate diminished growth
rates with a higher degree of suppression predicted
for modes of lower frequencies. The width of the un-
stable region is narrowed for the square-wave modula-
tion but is unchanged for the sinusoidal pulsation and
exhibits no dependence on the depth of modulation.

d
cosnx dx . (22)
a+b cosx

b=

(24)

IV. FINITE-TEMPERATURE EFFECTS

In this section the analysis is extended to include
plasma-electron temperature effects as well as plasma-
ion motion. The hydrodynamic model is again adopted
for the beam and the plasma. It should be noted that
by adopting a fluid model for plasmas the effects of
such micromechanisms as Landau and cyclotron damp-
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ing are inadvertently ignored. The equations of mo-
tion for plasma electrons and ions, as well as beam
electrons, are written in the same manner as before
with an additional term in the force equation for
plasma electrons which is introduced to take into
account the effects of temperate electrons, Beam ions
are assumed to be infinitely heavy. In an inertial
frame of reference attached to the beam, the equa-
tions of motion and Gauss’ law are expressed as
follows:

I1pe 4
—=——&E 25
at e " (25)
MNipe 0
Z (mutne) =0, 26
5 +a; (mos2ise) (26)
a‘vl‘pe avlpe € a ( Plc )
Pipe e g2 27
a me 3 \ngpm.)’ (27
3111,,‘ 6v1,,.- [
P g P = 28
at %o ag_ m; 1y ( )
anlpe.t' anlpa.t' avlpc,s'
— =0 29
a1 Uo ac +10p ar y (29)
and
9 e
a_g‘_‘E1= a) (nlpi"' n‘lpe—”lbc), (30)

where the additional subscripts ¢ and ¢ denote the
electronic and ionic quantities, respectively. The first-
order perturbation in the plasma electron pressure is
denoted by pi. whose definition, in terms of electronic
temperature, is

P!cE 'YkB Te”!.pe, (31)

where v is the compression constant of the electron
gas. Under adiabatic conditions, ¥ will tend to a value
equal to three at high frequencies (one-dimensional
compression), and § at somewhat lower frequencies
(three-dimensional compression). At very low fre-
quencies the compression will be isothermal and «
tends to unity.
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Combination of the above equations, in a steady-
state situation, yields the following differential equa-
tion for the ac electric flux density D:

i @ iy
¥ 1eY e PR S 2 34y —
[("" ““dr) vk dg""](]w ““d;)D‘

a\? &
+ [ (0pe+wpi?) (jw* %o d_s“) —wpi'vul (}F]

x(@(f,li'))=0'

Here, the expression vy= (vksT./m,)!'* is the mean
thermal velocity of plasma electrons. The method of
averaging can again be used to solve the above dif-
ferential equation. The final form of the dispersion
relation, having made the Doppler-shift transforma-
tion, is

2__ b2q.,2

w k Vieh _ ( 1

(32)

k’v ghz w,,;’

222 ) an)

wp?

oyt 14 (wp/wg?) (va’/ue?)
woz l_vthz/ u02
where wpl=wpd+4wpil.

It is noted from the above equation that for a
realistic electron-to-proton mass ratio the effect of
plasma ion motion is negligible in the context of the
approximations employed throughout. The coefhicient
of go(wp) in (33) can alternatively be expressed as

1 kup? wpi? 1 ( s )2
W wl? v w/kl’

where the terms of order (wp:/wpe)* and higher were
neglected and the expression v,= (ksT./m,)'? is the
velocity of ion-acoustic oscillations in the plasma. For
oscillations of wavelengths long enough such that
w/k~mu, which Is in accordance with the previous

= L et =0, (33)
np0 W

(34)
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assumptions of 2Kk and w<wp, the right-hand side
of (34) tends to unity. This is equivalent to neglecting
the motion of plasma ions. For oscillations at wave-
lengths short enough such that w/k~w,, the right-hand
side of (34) tends to zero. However the basic as-
sumption underlying the method of averaging, namely,
that A<k, does not allow consideration of short-
wavelength oscillations. Other mathematical techniques
for solving (32) must therefore be developed if the
coupling to the ion-acoustic oscillations is of interest.

Neglecting the motion of plasma ions gives the
following dispersion relation:

vlhz -1
)
! 1 2
X5 — | ea(wp) P=0. (35)
npeg W

It is noted that in the limit when ¢,—0, i.e., when
the beam is homogeneous, (35) appropriately reduces
to the Bohm-Gross dispersion relation' for the one-
dimensional interaction of an electron beam with a
temperate plasma.

2__ 22, 2 2

wi— k2, wp

% —golwp)— __2(1
@y w

V. RESULTS (TEMPERATE-PLASMA CASE)

A. Square-Wave Inhomogeneity

For this case the dispersion relation (35) yields a
fourth-degree polynomial in the normalized propaga-
tion constant x=kuy/w, as follows:

1 — 2000+ [1— Q- (2 — Q) ] — 20(1— ) &
+ (1— ) (—02) +AQ2=0, (36)

where Q=w/w,, D=ws/w,, r=vksT./2e¢V, (V, is the
dc voltage of the beam), and A is the duty cycle.
Figures 3 and 4 show the dispersion diagram for two
values of the duty cycle A=0.3 and 0.7, respectively.
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F16. 7. Normalized
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The reduction in the growth rate as well as a nar-
rowing of the region of instability is observed. The
effects of an increase in the electronic temperature
are shown in Figs, 5 and 6.

B. Sinusoidal Inhomogeneity

An eighth-degree dispersion relation is obtained of
which only four roots correspond to the physically
real modes of the system (slow and fast space-charge
waves of the beam and symmetrical temperate
plasma modes). The effect of a sinusoidal inhomo-
geneity is shown in Figs. 7 and 8 where the normalized
growth rate, ku./ki (kiy is the imaginary part of %
for a depth of modulation given by «a), is plotted vs
normalized frequency w/w, with the depth of modula-
tion o taken as a parameter.

VI. CONCLUSIONS

The results of the temperate plasma case have in-
dicated suppression of convective instabilities as a
result of a periodic beam inhomogeneity in a manner
similar to that previously obtained for the cold plasma.

'A. K. Berezin, G. P. Berezina, L. I. Bolotin, M. F.
Gorbatenko, A. M. Egorov et al., in Proceedings of the
International Conference on High Energy Accelerators
(book 2) (U. S. Atomic Energy Commission, Division of
Technical Information, Washington, D. C., 1963), p. 1412.

2], F. Kharchenko, Ya. B. Fainberg, R. M. Nikolayev, E. A.
Kornilov, E. I. Lutsenko, and N. S. Pedenko, Nucl. Fusion
Suppl. Pt. 3, 1101 (1962),

*Ya. B. Fainberg, J. Nucl. Energy C 4, 203 (1962).

*Y. Nishida, M. Tanibayashi, and K. Ishii, Phys. Rev. Lett.
24, 1001 (1970).

*R. Sciarra, M. Dobrowolny, and F. Magistrelli, Phys. Rev.
Lett. 25, 1553 (1970).

M. W. Alcock and B. E. Keen, Phys. Rev. Lett. 26, 1426
1971).

691

F1c. 8. Normalized
growth rate Eio/ki
vs normalized fre-
quency w/w, with
depth of modulation
« taken as a param-
eter (sinusoidal in-
homogeneity) (r=
04).

NORMALIZED GROWTH RATE

o
o 03 0.6 0.9 L2 1.5
NORMALIZED FREQUENCY

The effect of temperature is simply to remove the
singularity of the propagation constant at the plasma
frequency. A narrowing of both the w and % spectra
is observed for the case of a rectangular inhomo-
geneity, whereas the results of sinusoidal inhomoge-
neity have indicated a narrowing of the % spectrum
only. Narrowing of both spectra is more effectively
achieved by means of rectangular modulation. A higher
degree of suppression is reported for the lower-fre-
quency modes for the cold as well as the temperate
plasma case.

An imposed static magnetic field, which is assumed
to be infinite in the present case, is known to play
a major role in the act of suppression. The effects
of the static magnetic field have been investigated in
some detail and will be discussed in another paper
where two-dimensional effects are considered.
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