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I. INTRODUCTION

The problem to be formulated and discussed in some detail
herein is quite narrowly specialized, nevertheless it is of sufficient
importance and complexity to have warranted considerable experimental
and theoretical attention in the past several years. In fact, this
attention is still in being because the practical importance remains
forceful and the experimental versus theoretical state of affairs
apparently remains somewhat controversial, It will be the purpose
of this review to attempt a clear statement of the problem and a care-
ful comparison of some of the various calculational procedures that
have been developed in the endeavor to solve the problem theoretically.

The over-all task is simply stated, i.e., the interpretation
of a counted activity in a probe of some size, shape, and composition
in terms of the neutron density that was present in the medium at the
point of insertion of the probe prior to its insertion., But only a
portion of this task will concern us here. We will assume that some-
how the measured activity has been satisfactorily related to a steady
state neutron absorption rate in the probe, and will therefore regard
this latter quantity as if it were actually the observed gquantity.
That is, we will regard A as the measured quantity where A is de-

fined by

(e 2]

= . dQZP vN (r,E,Q) .
A fd EdeQf a(E) N (r,E,Q) (1)

Probe =0
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In this expression, ZQ(E) is the energy dependent macroscopic
absorption cross-section appropriate to the probe, v is the speed
of neutrons of energy E, and N(E,E,Q)dBrdEdQ is the expected
number of neutrons in dBr about r having energies E in dE
going in directions Q 1in df. We presume that the distribution of
nuclei in the probe is uniform so that Zg depends only upon energy,
and that a steady state absorption rate is measured, Evidently all
that remains is to determine the density as a function of its arguments
and as a functional of the unperturbed density.,

Usually, of course, A is measured for the explicit purpose
of determining the "thermal" neutron‘density -- the density of neutrons
with energies less than some preassigned ET not too large compared to
the thermal energy of the ambient medium., How this is to be accomplished
will not concern us -- we will simply assume that a quantity AT is

measured where AT is defined by
B
Ap = f d5rf dE fcm ZE(E) vN (r,E,Q) (2)
v 0 a

Here we have introduced the symbol V to represent the volume of the

probe,

The calculation of the density proceeds via the familiar

balance relation

vQ +WN(z,E,Q) + 2,(z,E) vN (r,E,9) = S(z,E,Q)

s (3)
v [ [ () va(nELe) F (ELRl),

EY=O gl
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plus the boundary condition that the solution to Equation (3) shall
approach the unperturbed density at points sufficiently removed from
the probe. The balance relation (3) is presumably gquite adequate for
our purposes, i.e,, though it is not exact,it is probably as accurate
as the experiments with which its solutions are to be compared. Note
that the parameters Z%, ZS and F are explicit functions of position --
if only because of the material inhomogeneities introduced by the inser-
tion of the probe.

An alternative and, in the context of the problem that con-
cerns us here, very useful form of the balance relation (3) is its

integral equivalent,

VN(z,E,0) = vN (r-s2,E,Q0) e[ - fs Zt(z-yQ)ey]
[e]

(0] (0]
8 0 (4)
+ [ day | aE? AL (B',r-y) v'N (r-yR,E!,Q")
cyr 5/1 djp
- v
(x) F (E',Q';E,Q) e [ —fzt(E,_r_—zQ) dZJ
(0]

In this expression the space dependence of most of the parameters has
been indicated explicitly. As indicated above, such dependence would
be expected due to variation of the atomic densities as well as to
temperature non-uniformities in otherwise homogeneous media, The
analyses of probe-induced perturbations usually proceeds on the tacit

assumption that atomic temperature variations are not present; an



b

assumption -- tacit or otherwise -- that must be distinguished from
the further assumption that the mean speed of the "thermal" neutrons
is also space independent, fhe latter assumption will be discussed
in some detail later, the former Qill be explicitly accepted through-

out this summary,



II. THE INFINITE SLAB APPROXIMATION TO THE FOIL

Many of the earliest attempts to calculate the relation
between a measured activity in a foil and the pre-probe neutron density
proceeded on the assumption that, since the radius of the foill was large
compared to its thickness, edge effects arising from the finiteness of
the radius might be ignored altogether -- at least to first approxima-
tion, Thus, the calculational model supposed an infinite slab of the
material to be activated to be inserted into the medium in which the
neutron density is to be measured. To simplify matters still further,
it is supposed that there are no sources of neutrons with energies
less than Ep in the slab (i.e., no neutron slowing down in the slab)
and that scattering in the slab is negligible compared to absorption --
again, presumably in the sense of a first approximation, In view of
these assumptions, the absorption rate in the slab is nicely calculated

in terms of the density at the surface employing Equation (k).

ds

10

-t/2 0 t/2
Figure 1.
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The number of neutrons leaving the slab per sec, through
the area ds at x = t/2 going in directions Q in dQ having

energies E in dE is given by

(El' 9) vN (% )Q)E) dQdEds o (5)

But according to Equation (4) this quantity is also equal to

Z E)t
S (- ig. ,0,E) d0dEds e /v , (6)

where we have introduced the symbol u = & Q . This equality obtains,
of course, because within the slab we have set S and Zg equal to
zero, and have presumed the slab homogenous. The number per second
entering through ds at x = -t/2 is given by Equation (5) with the
density evaluated at (-t/2). Thus, the difference between the number

entering and those leaving, which represents the number absorbed along

the trajectory indicated in Figure 1, is given by

(7)

uvN (-

Y5 (E)/u J .

NOf o

»Q,E) ddEds [1 -e

2

Thus, the absorption rate per cm resulting from neutrons impinging

upon the slab from both sides is,

AT/ds f f ag f dpp VN (- —’p, )[1 - e

p=0

-tzg(E)/u}

(8)

ET 21

def ag [duva(—,p, ){1-ez§°(E)/ﬂ .

g=0  ud-1



Here, we have employed ¢} to represent an azimuthal angle measured
about the x-axis and AT to represent the absorption rate in the por-
tion of the slab whose volume is tds . If now we assume that the

density was uniform before the insertion of the probe, we may assert

that N(- %)H;E) = N(%,-u,E) so that

ET 1 D
AT/ds = Uy \jpk/mdup vN(g,-u,E) [l - e_tza(E)/pJ . (9)
o o

Evidently, to proceed further it is necessary to calculate
the surface density in some self-consistent way, So far, only limited
progress has been made with respect to this problem, Nevertheless,
the formula (9) is of considerable importance to us here, as it forms
the basis for diverse further approximated calculations of the effects

presently under consideration,

A. The Diffusion Approximation

A calculation of the surface density employing "one-speed"
diffusion theory was presented by Bothel -- if not in detail, at least
in essence. The density in formula (9) is expanded in Legendre poly-

nomials according to

t
N(E:‘H)E)

(10)

Introducing the symbol A= AT/ds , displaying the energy dependent

absorption cross-section of the probe as
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PE) = aE®) 2, (11)

and letting 7 =t ZDO one finds that Equation (9) becomes

| Em 1
A = jgj(-1)£(22+1) dE Nz(g,E) v &/1 dup P y(n) {1
£ 0 o)
(12)

- €

- 7.a(E)/u J

The quantity Zio defined in Equation (11) is the energy dependent
cross-section evaluated at some convenient energy, E,. Thus, a(E)
is a dimensionless function carrying the energy dependence Of ZE(E).

In particular, for a one-over-vee cross-section,
a(®) = VE/E . (13)

Finally, we write (12) as

’ E
: T
=) (Dierr1) [ amGEmglge), (1)
£ o
vhere we have defined
1
-7a(E)/u
wre) = [amrtfi-e T (15)
o}

As it is our intention in this section to complete the calcu-
lation of A by an application of diffusion theory (the Pl- approxi-
mation) in the external medium, it is evident that only NO and Nl

will be accessible to our analysis., Thus, we approximate



Enq .
A f dE N (3, E) VXO(TO,E)
(0]

ET
t
- %/\ aE Nl(§, E) le(TO,E) s
o

and turn immediately to the task of estimating NO and Nl°
The starting point here is, of course, the transport Equation
(3). However, the familiar detéil of the deduction of the pair of coupled
equations which approximately describe the functions No(x,E) and Nl(x,E)
from the transport equation is hardly worth our attention at this point.
This is so on at least two counts: firstly, the Pl-equations thereby
deduced are wholly intractible analytically and practically so numeri-
cally; and secondly, such attention to detail is apt to suggest that the
formula (16) for the absorption rate in the infinite foil is worth more
than is warranted. The only significant point that would emerge from
such an analysis would be the practical necessity of assuming that the
neutron density is separable (even in and in the vicinity of the probe)
in the sense that N(x,E,p) = n(x,u)M(E), where M(E) is the energy

spectrum of the density normalized to unity. Given this assumption of

separability (no spectrum hadrening?), it follows that

No(x,E) =

1
]
>

~
=

—~
=3l

~

and

N,(x,E) =

i
=
[
—
»
~
=
ol
~

1

Furthermore, in this instance, Equation (16) simplifies to
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t T
AN no(-é) f dE v M(E) XO(TO,E)
(0]

Ep
o) [ e ) x ()
0

Since Xo and Xl are known to us, and M 1is to be guessed (a typical
guess being the Maxwell-Boltzmenn spectrum), all that remains is to cal-
culate the "one-speed" flux, ¢o and net current, ¢l at the surface

of the slab and relate them to the corresponding densities, 0y and ny.

They are presumably described by the equations,

2
a~g
D EEEQ - Za¢o + Zaﬁo = 0, and
d¢ t (18)
¢l =-D ix for > <x< o,
and the boundary conditions,
¢O(x) - @O as X —o o,
(19)

4(3) = - 72

In Equation (18) we have introduced 50 to represent the spatially
independent flux that existed in the medium prior to the insertion of
the probe. The cross-sections appearing in (18) are those for the
medium (the cross-sections for the probe will always carry the super-
script, D) and must be interpreted as the averages of the energy
dependent medium cross-sections taken with respect to the distribution,

v M(E).
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Solutions to the Equations (18) subject to the boundary

conditions (19) are readily obtained,

AL
g (x) = Po-=ce (20)
so that at the surface of the slab

b3 = B -% - (21)

Of course, ¢l(g) is given by the boundary condition, (19). As usual,
the symbol L appearing in Equations (20) and (21) is the diffusion
length, i.e., 12 - D/Za.

The fluxes and currents appearing in (18), (19), (20), and
(21) have been defined as the integrals of the energy dependent fluxes

and currents over the energy range from O to ET’ i.e.,

: ET
g) = [ aE g (w), (222)
(6]

Sy
3. (x) f dE §, (x,E). (22b)
0

Because of the assumed separability of the density under all circum-

stances, it follows that

o To
(23)
§r(x) = vpu (x),
where ET ET
Vo = dE v M(E) fd.EM(E) . (2k)

0 0
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Thus, the relevant densities in this problem are

t —
no(§) = n, - Eg%; , (25a)
n(2) = - Efev (25b)
12 -

Substituting these results in Equation (17), we obtain as our estimate

of the absorption rate per unit area,

5 - EOVTCO 5 , (26)
L+ le-2h

where we have defined

Enp
i
L(rg) = [ @ u(E) X, (1,8) (27)

o} \'2

o T

Considering the approximations involved in its derivation,
the result embodied in formula (26) is probably worth no more than
brief, qualitative consideration. In the first place, the result is
separated nicely, though somewhat deceptively, into a "self-protection"
factor, Co’ which measures the mean depression of the flux in the
probe with respect to the surface flux, and a "flux depression"
factor, [1 + %5 0~ % gl]'l , which measures the depression of
the surface flux relative to the original, unperturbed flux. This
factorization is deceptive because it is a direct consequence of
the approximations that led to it. Strictly speaking, no such
separation of "self-protection" and "flux depression" is possible,

In the second place, the result is interesting because of the impli-

cation of the very different energy averaging of the cross-sections
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required in the probe and in the medium when the problem is viewed
from the present vantage point. Some of the qualitative significance
of this difference has been discussed in detail by Hanna2 and TittleB,

and thus will not be dwelt upon here. However, we shall return to

this issue qualitatively again in the next section,

B. A Transport Calculation of the Surface Density

A somewhat different method for estimating the absorptions
per second in the infinite slab was proposed by Skyrmeu. Like Bothe,
he chose as the starting point for his analysis Equation (9), so
that the task that remained to him was the calculation of the surface
density. But unlike Bothe (and others5 who employed diffusion theory
or some variant thereof to estimate this density), Skyrme solved a
transport problem which presumably provides a more refined estimate
of the activity. This section will be devoted to a sketch of some
aspects of Skyrme's approach to this problem.

In actuality, Skyrme's analysis did not follow strictly
along the lines to be discussed below, Instead it seems that he pro-
ceeded somewhat intuitively. Thus, the discussion entered into here
will be a paraphrase of the writer's interpretation of Skyrme's ideas
into the context of a systematic, successive approximation calculation,
The reason for doing this, of course, is to attempt to illuminate some
of the approximations that are implicit in Skyrme's analysis. It will

be seen that, in the sense of these approximations, the present para-

phase yields results somewhat intermediate between those obtained by
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Skyrme and those presented by Ritchie and Eldridge6 in a semi-
empirical recasting of Skyrme's formulas,
It is first suggested that one display the surface density

as

t

n M(E) - n(z ,-1)M(E) . (28)

t
N('é' ) "IJ-,;E) o

e
Here, as before, separability of the density into a factor dependent
only on energy and another dependent upon space and neutron direction
of motion is assumed, The quantity Eo represents the unperturbed
spatial neutron density, which must be taken to be uniform to ensure
the validity of Equation (9). It follows, then, that n(-;E ,~1)  is
a density which represents the difference between the unperturbed
density before probe insertion and the actual surface density

existing when the probe is present. Substituting (28) into (9),

one oObtains

A

HO OfETdE j dpp v M(E) [1 - e-TO, 2(E)/ }

lm fETdE fl hdu v 11(:2[i , -1 )M(E) [1 _ e'Toa(E)/uJ
o o

(29)

- ) D e 1) @) gl
£

where we have again made use of the expansion (10), and the definitions

(15),(2%), and (27). Evidently, Skyrme's "first" approximation
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(representing only the "self-protection" effect) is the same as
obtained in Equation (26). The corrections due to "flux depression"
in the external medium, which appear in the denominator of (26),
are contained in the sum appearing Equation (29) as is obvious since
the density depression is n by definition, The estimate of A is

then approximated by the retention of no(%) only in (29), i.e,,
t
5) v by (30)

so that the remainder of the task 1s the calculation of no(g) .

The derivation of an equation for 1n  proceeds from the

o
integro-differential form of the balance relation satisfied by the
neutron density, Equation (3), The latter equation is integrated

over the energy range from O to ET yielding (bearing in mind that

there are no true thermal sources),
Emp Ep
Q. v f dE v N(r,Q,E) + f dE Z-;:(E;E) v N(EJ_Q}E) = Q(T)Q’ET)

o o

Ep  Ep
o [ [ e [l (mEewnea,e) r (6,em)
E=0 E=0 g

where the slowing-down-density evaluated at E_ entered explicitly

T
through the identification, a(r,Q,Ep)

E
T [ee]
= f dEf aE'f dQ'ZS(E,E‘)V‘N(E,E',Q')F (E',0';E,0). (32)
o] ET _’

If, now, we again invoke the separability assumption, i.e.,

N(r,Q,E) = n({)_@_) M (E),
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we obtain the equation

where vV, was defined in Equation (2L4), the space dependent cross-

sections are defined by
By
M) = [ wmvuE) I (e (54)
o}
and the thermal scattering frequency is defined by

Em Eq
f dE'f dE 2 (r,E') M (E') F (E',Q';E,Q)
S S

Ep
Q. Q) f aE' 2 (r,E') v'M (E') (35)
0]

L(r) v (2 - 2').

We now introduce the difference-density defined in (28) into Equation

(33) obtaining,

-0 Yn(zQ) vp + %; L (z) vq ny - 2.(r) vpn(z,0)

I
Q
—~
3
=
o)
+
II—‘
™
a]
<
=]
sl
N
[O)Y
~
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Let us further approximate the equation for n by assuming isotropic
scattering everywhere, i,e., ;%(Q'- Q) = 1/bx,

It has been assumed that the medium prior to probe insertion
was homogeneous, and that the probe itself is homogeneous, It has
also been assumed that there 1s no space-energy coupling, even when
the probe is present. Thus, the space dependence of the cross-sections
arises solely because the nuclear type and nuclear density are different

in the medium and the probe., Hence, we may display
X(r) = Z+ 3L (x) (37)

where 2. 1is the constant cross-section of the medium and SZ(E) is

the step function

5 L (r) = 0, r not in probe
’ (58)
= 2 - Z, r in probe ,
Entering (37) into (36) we get after some rearrangement,
ZSVT ' '
-0+ Y nlz,@) vp - L,von(z,Q) + W (r,0")
QY
1 - 1 —
+ Z; Z%no VT - q(r,QJET) - Z; ZSVT ng
(39)
= - —i; & Ly(x) vpng + 8 2, (r) von (2,0)
1 - SZS(I'>VT . g
+ Z; S ZS'VT n, - o JF aa'n (r,09

If we approximate the slowing down density in (39) by the original



-18-

uniform, isotropic slowing down source and note its equality with
Z%VTEO’ we obtain an equation for the difference density n of
the form
Ly
+ z%n Vp o= 88+ T a'nt (40)
q

& . ¥

where &S 1is zero outside the probe. Inside the probe,

8 = L (0 -%)vaE - (I -L)vpn
(1)

. (Zg - ZS) jf aa' nt .
Ql

Tt is now a straight-forward matter to convert the integro-differential
equation (40) to an integral equation analogous to Equation (L4); which,

when integrated over directions of motion of the neutrons, yields the

equation for no(z),

Z'IE - r'|
n (r) = ZP n dBr' e *
o a o L .12
v wlr - x|
| Lylr - r'
-0 e (@) S : (42)
°7  lx|r - x|
V -_—
Lelz -zl
+ ZS k/ﬁ Or n (z") = .
© 4ﬂ]£ - r'\g

The symbol, V, on the integrals in (42) implies that the region
of integration is the volume of the probe, the unspecified integral

ranges over all space, In deriving (42) explicit use of the boundary
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condition, no(g) -0 as r —» o was made, lastly, the second term
on the right-hand side of (42) is ignored, and the equation solved

t
by Skyrme for the no(E) required in (30) is

Y s ol
ﬂo(£> = o f/ﬂ dr e ‘E _ 3"2
-2, ]r - r'l
3 e b= =
e 5, [ e R (43)

Actually, the solution to (43) was obtained in the limit that the
volume distribution of "sources" represented by the term proportional
to Ho was replaced by a surface distribution. From Skyrme's analysis,

one finds,
- D‘) b (uu}

where the quantities Dl and Di have been discussed by Skyrme and

by Ritchie and Eldridge. Inserting this result into (30) one finds

= n_v, [t -Ct7 (D -0 . (45)

This result differs from that presented by Skyrme, and at
least two reasons for the difference are not hard to find., In the
first place, the energy averaging within the probe has here been
carried out quite differently than was proposed by Skyrme. He employed
an effective "one-speed" calculational model ab initio in which pre-

sumably all cross-sections had been "flux" averaged, i.e,, averaged
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with respect to the function, Vv M(E) in the present notation, Under

such circumstances, one finds, instead of Equation (29),

= _ =
A n VT X (1)

]

(@] (@]
i }: (_1)£(2z + 1) n, (3) vox,(n) (29")
4

where Xﬂ(T) is defined analogously to Equation (15), i.e.,
i /
xy(r) = [ampeon - e (15)

0O

and T has been defined by

T o= 1< Zg >
(46)
- k/ET aE v M(E) Zg(E) ,
VTO

Note that T as defined by Equation (46) is equal to t2,(vp) for a
(1/v) cross-section, ‘Thus, in such a case, T and TS introduced
earlier would be the same if Zgo is the absorption cross-section of
the probe evaluated at Vv = Vipe

In the second place, instead of Equation (30) as an approxi-

mate representation of the absorption rate per cmg, Skyrme writes
'A"! :H v X (’1’) - (E) VT . (50,)
0 T o 02 T ’

whereas, in accordance with (29'), we would expect

Evx (1) - (%) vx (1) . (50")
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Noting that for very small T,
X(1) en T, (47)

it is seen that (30') and (30") are essentially the same for very thin
probes, Then, given the result presented in Equation (Lk4) for 1 (g)
o

we would find by the "one-speed" analysis

B2 nyv x (1) - x (r)7 (dy - D). (457)

If now one replaces XO(T) by T in the second term of (45'), Skyrme's

result is obtained, 1i,e.,

B2 fyg [xfr) - (0, - D)) . (45")

It is interesting at this point to compare a semi-empirical
recasting of Skyrme's formula (45") proposed by Ritchie and Eldridge6
with (45") and (45'). The latter investigators suggested the formula,

?loVTXO( T)
1+ X (r)(Ddy - D)

K" bl ( ll-s" ' )

If the denominator in (45"") is expanded in a power series and only the

first two terms retained, one finds
A" 2 nv [X (1) -X (T)(Dl - D]'_)] o (4s"m)

Thus, it is seen that the result presented herein based upon a successive
approximation calculation in the context of "one-speed" transport theory
is somewhat intermediate between Skyrme's original formula and the re-

cast version of Skyrme's formula proposed by Ritchie and Eldridge.
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C. A Transport Calculation of the Absorption Rate per cm2 in the
Infinite Foil

One of the prime defects of the previous approach to the
calculation of the activation of the infinite slab is the explicit
necessity (at least in principle) for the determination of all of
the angular moments of the neutron density at the surface of the slab
(recall Equation (1L4)), This is a direct consequence of representing
the absorptions per cm2 per second in terms of the angular density at
the surface -- a procedure that recommends itself in the present context
(a non-scattering, sourceless slab immersed in an initially isotropic
flux) most naturally because of its seeming simplicity., But actually,
from Equation (2), it is seen that quite a different approach character-
ized by a simplicity of its own is also readily available. That is,
the activation sought depends only on the zeroth angular moment of the
density throughout the interior of the slab., Thus, apparently this
particular problem may be attacked in alternate ways: either a deter-
mination of the complete angular density at one point (the surface of
the slab) or the calculation of the zeroth moment of the angular density
at all points in the slab, In the previous sections (and in calculations
not discussed hereing) the difficulty of the one-point-full-angular-
density approach is made manifest, Hence, an investigation of the
alternative procedure would seem to be in order -- and this is what
Ritchie and Eldridge carried through.

As this analysis has been discussed in detail in the recent

literature and is relatively uncluttered by intuitively based assumptions,
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only a few comments will be devoted to it here, In fact, these
comments will be restricted to the establishment of the connection
between Ritchie and Eldridge's starting equations and Equation (3),
which is herein taken to be fundamental in the sense that it pre-
sumably describes the problem of probe activation in full generality.
Thus, the starting point for the present analysis is
Equation (3), which is promptly converted to Equation (33) in accordance
with the arguments of the previous section, Hence, here again, space-
energy separability of the density described by Equation (3) is assumed;
but in this instance (in contrast to the treatments of the previous
sections) all cross-sections, including those of the probe, have been
averaged over the distribution, v M(E). This follows because Egquation
(33) is here presumed to hold throughout the interior of the probe as
well as in the "external" medium, Finally, the integro-differential
Equation (33) is converted to a "one-speed” analogue of Equation (L)

which reads,

I
<

an(E;Q) an(E- s 0,0) e[- \/ﬂ z%(g-yg) dy]

+
%m
o
L
Q
P
It
e
N
Fe
-
=
=]
o
|
dM
(s
|
N
|
o
N

° s ° (48)
i f dyf 402 (r-y2) vpn(z-y2,2")
(0] Q' b
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This equation is then specialized to the case at hand by setting

8 = o and requiring the vanishing of the first term on the right-

and side; defining @(r) =Qf VTH(E’Q) d0 and integrating both sides

of the equation over {; sgtting q(z—yQ,Q,ET)‘equal to Za@O/Mﬂ
outside the probe and equal to zero within the probe; and setting
L(r-ya) 2n(a' - @) = L,/4n outside the probe and equal to zero within
the probe. The equation then reads,

R ”
el- J L(r' + yR)ay]

§x) = [ OBy + Bl T L ()

r' not in probe

The quantity zaab is the absorption rate per cm5 in the external
medium when the probe is absent and therefore 55 is the uniform
unperturbed flux, and E is the unit vector B/R, R=r -1

Taking advantage of the simplifications inherent in the slab geometry
it is now a straight-forward matter to set up the pair of equations
for ¢ within and without the probe which Ritchie and Eldridge in-

vestigated by variational methods.



ITI, THE FINITE FOIL

A) The previous discussion has dealt exclusively with the
infinite slab approximation to the actual foil. Such complete
disregard of edge effects can hardly be justified in all cases,
Furthermore, not all useful probes are foils, and the infinite slab
analysis would be expected to be even less realistic in such instances,
Consequently, some interest attaches to investigations of flux density
perturbations induced by finite probes,

Most investigators who have examined these problems at all
have given some attention to shape and finite size effects. However,
in nearly every instance, the quantitative significance of these
effects has been estimated by semi-intuitive calculations grafted onto
the infinite probe analysis. Furthermore, the grafting procedures
themselves appear to be semi-intuitive in the majority of instances,
so that the prospect for developing a consistent, successive approxi-
mation analysis in the context of which the various estimates of
shape and size effects can be qualitatively compared does not seem
bright, Thus, for this reason, if for no other, we devote our
attention in this section to a unified treatment of the problem
which is potentially suitable for dealing quite accurately with
these matters, However, by virtue of its generality, the treatment
is quite intractible analytically, so that both qualitative and

quantitative results must be sought numerically. Consequently,
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the task of comparing the results obtained from such a treatment
with the above mentioned semi-intuitive analysis is tedious at best,
and to date has been only fragmentarily carried through,

There are reasons other than simply the investigation of
shape and size effects that promote interest in a unified treatment
of the flux perturbation problem, however. At least five restrictions
built into the analyses discussed in the preceding sections should be
removed before comparison with experimental results can be made with
confidence, These restrictions are:

1) The restriction to "non-scattering" probes. It is not
a priori obvious that experiments employing, say, gold and copper
probes can be safely analyzed on the assumption that scattering in
the probe is ignorable,

2) The restriction to isotropic scattering in the laboratory
coordinate system in the external medium, Though this restriction is
approximately or intuitively removable from many of the preceding
analyses by simply replacing the total cross-section of the medium
by an appropriate transport cross-section, it is nevertheless desirable
to have available a consistent and systematic analysis of the effect of
anisotropic scattering.

3) The restriction inherent in the assumption that the
probe is sourceless and in no way disturbs the source in the surround-
ing medium,

L) The restriction to initially isotropic neutron densities.

5) The restriction following from the assumption that the
energy dependence of the low energy neutron density is everywhere separ-

able from its space and angular dependence,
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All of these restrictions may be relaxed in the unified
(full-blown-transport and hence hereafter referred to as FBT) treat-
ment; and so it is for this reason, as well as the desire to deal
with shape and size effects, that we concentrate in this section on
the formulation of such a calculation up to the point suitable for
numerical analysis.

Of course, brute strength numerical integration of the
transport Equation (3) would constitute FBT (as would a complete
Monte Carlo analysis of the prdblem8). However, if careful advantage
is taken of the fact that the probe is generally "small", it is possible
to so phrase the integration of (3) that the rate of calculation is
somewhat increased and the diverse effects referred to above enter
additively (and hence may be investigated separately) to first order
in the sense of a certain successive approximation procedure,

A clue to the present approach to FBT is discernible in
Skyrme's "difference-density" calculation of the surface density to
obtain a first estimate of the effect of flux depression discussed
in Section II-B above., The approach was somewhat explicityly formu-
lated and partially pressed by Fitch and Drummond9. It was consider-
ably further pursued by Dalton and Osbornlo, and yet still further
by Daltonll subsequently,

The starting point is comprised in Equations (2) and (3)
which are herein taken to be essentially exact and complete, For

convenience, however, these equations are now rewritten in terms of

a slightly modified symbolism, i.e.,
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E
T
Ay = [ d5rf dE f d.QZz(EMD(z,E,Q) (50)
vV o]

9. Vo(r,EQ) + L(r,E) o (r,E,Q) = 8(r,E,0)

(o0}

+ f d-E’f dao! ZS(E')Q’5E)Q|£) o (E;E’;Q!> .
o} Q!

In these equations we have introduced the "flux", ® =vN, and the

"differential macroscopic scattering cross-section,"

L(E',0';E,0[r) = Z (r,B') F (E',0';E,0[r). (52)

It should be borne in mind that here we are still assuming that the
velocity distribution of the nuclei is everywhere the same in a given
medium, so that the spatial variation of these cross-sections is

given solely by inhomogeneities within the system. Thus, in particular
within the probe Zg is independent of position. If now we introduce

flux averaged cross-sections according to
By
aE L(r,E) © (r,E,0)/8(x,0), (53a)

™
N
I
N—”

"

. (53b)
T
f aB'2g(B',Q 58,0 |x) 0 (1,87,2")/8(z,0")

(@) (0]

]
’\m
+
=
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where, as before,

En
B(r,0) = f aE o(z,E,0) (54)
o]

and integrate Equation (51) over the energy range from O to Ep we find

o= [P [ @B e @, (55)

and

+ [ aar X(a'. alr) ¢4 (r,0')

The slowing down density appearing in Equation (56) is as defined in
Equation (32). These equations are, of course, still exact if one
interprets the flux-averaged parameters as having both space and
angular dependence, Their dependence upon the direction of motion
of the neutrons has been notationally suppressed,

At this point we shall assume that the unperturbed, energy-
dependent flux, E(E,E,Q) is separable, i.e., ®(r,E,Q) = vM(E)@(r,0).

Then @ satisfies the equation,

Q- Y@(E)Q_) + Zt@ (_{;Q) = Q<r:§2)ET)

(57)
+ an! ZS(Q" g) @ (r,0'),

o
Qt
where Z% and Zg are space-independent medium parameters defined

analogously to (34) and (35). 1In the event that the initial flux is
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independent of position and neutron direction of motion, Zé@ =q
Let the actual flux ¢ which satisfies (56) be related to the
ﬁnperturbed flux by ¢ = 5 - V. Evidently ¥ 1s the difference-
flux. Writing i({) =2+ [E(E) - 2] and keeping in mind (57) we

find the equation for V,

- (58)
- ‘jp ao' {Z(e" alr) -Z (2'- o} B (x,0") +L/md9' {Z(a' alr)
QT
- I(a )} v (el + [ aar L(a 2) v (0.

Note that, if there were no spectral shift induced by the probe in
the external medium, i would equal 2. outside the probe; and if
the probe does not alter the slowing down density in the external
medium, q = q outside the probe. In such an event, the bracketed
term on the right-hand side of Equation (58) would vanish outside
the probe., In a given experiment, however, thié may not be true.

Thus, for the time being, we merely label the bracketed term by the

function 8/72.9. and display Equation (59) as

-

2 V() + Zk(ne) = S(r,0)

(59)
+LfZAQ'QWf3@>M’~
Ql
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Presumably, the difference-flux vanishes at points r far from the
probe,
It is convenient to convert the integro-differential Egua-

tion (50) to an integral equation by defining the Green's function

and then noting that

Wn,e) = f o(r,0srt,0") of (x',0') drrant | (61)
I",Q'

The general problem formulated in Equation (58) or (61) must proceed
from here mainly by numerical analysis. Many such calculations have
been carried through, mainly for the purpose of illustrating size and
shape effects, the importance of scattering in the probe, anisotropic
scattering in the external medium, and the significance of gradients
in the originally unperturbed distributions. In fact, only two of

the potentially importent effects implicit in Equations (58) and (61)
have remained largely uninvestigated so far, These are spectral shift
effects -- now incorporated into the space and angular dependence of
the cross-sections -- and source perturbation effects implicit in the

slowing down density, Q(E)QJET)' In the next section, we give a

little attention to the former of these problems,
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A. An Estimate of the Spectral Shift Effect

Of course, the present problem would be quite straight
forward (from the numerical point of view) if the quantities E
were known as functions of position and neutron direction of motion,
But, as is evident from Equation (53), such knowledge is only going
to be available when the flux ®(£)E:Q) is known as a function of
all of its arguments, and this requires appropriate solution of
Equation (51), which so far seems a little out of reach. However,
it is perhaps reasonable to expect that the flux hardening effect
should be rather small, so that a more or less qualitative estimate
might be useful and instructive, ©Specifically, we shall attempt a
guess for the cross-sections and then by first order perturbation
methods, calculate a correction to the absorption rates, predicted
by the solutions obtained from (61) when spectral shifting is
explicitly ignored.

We begin our discussion with Equation (56), and start
by assuming that all total cross-sections in the probe and the
surrounding medium vary as (1/v) in th#* thermal energy range. This
assumption is actually less far-fetched than it might seem at first
sight. In the first place, the (1/v)-assumption is usually a good
first approximetion for most absorption reactions., In the second
place, the error introduced by assuming a (1/v) scattering law in
the probe is probably a small error accruing to what is expected
to be a small correction, and hence is not anticipated to be of

much importance., In the third place, if we take water as our



-33-

"external” medium, the assumption of a (1/v) scattering law is actually
quite good.
With this assumption, we find from (53%a) that

L(n0) = Lz)v/<v> (62)
where Z(E) is the cross-section appropriate to the composition of the
medium at r evaluated at speed VO, and < v > 1is the space and
angle dependent mean speed of neutrons with energies less than Ep.

For convenience, we shall take v_ +to be the mean speed of Maxwellian

o
distributed neutrons (not 2200 meters per second) so that in the limit
of vanishing spectral shiftimg, yﬁ/ < v >- 1., The situation is not

so clear for the differential cross-sections, so we will merely assume

that

L' alr) = T (e alr) v/<v> . (63)

This assumption is consistent with Equation (62)‘only if <v > 1is
presumed independent of the direction of motion of the neutrons,

thus from here on we shall guess that < v > 1s essentially dependent
only upon position., (Such would be the case if the neutron speed dis-
tribution was a local Maxwellian with a space dependent temperature,
for example)., Then, recalling that @(r,0) =< v >n (xr,0), we find

that Equation (56) becomes,
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We note again that the flux wv_.n and the cross-sections Z(E)

o
appearing in (64) are precisely the fluxes and cross-sections
appearing in the space-energy separable problems discussed here
and elsewhere, Thus, to the extent that (62) and (63) have some
meaning for a real system, it 1s seen that flux hardening effects
enter only via the function, < v >/v., This function presumably

increases as we approach and enter the probe and decreases to unity

at points far from the probe. We replace it by
<vsfv, = 1+s, (65)
and regard g as a small quantity henceforth, Now, introducing

Von(ﬁyﬂ) = X(f_)g_) + f({)@_) ’ (66)

treating f as small in the same sense as g (it is the correction
to the flux due to spectral hardening, and hence vanishes as g
vanishes), entering (65) and (66) into (64) and retaining only terms

linear (at most) in small quantities we find the pair of equations,

Q - Vx(r,0) + L(r) x (r,2) = a(z,9,Ep)
(67a)
+ f a' Zg(a' - alr) x (z,2'),
9-1
and
0 V() + L(r) £ (r,0) = -0 Vx(r,2) e (r)
(67v)
+ a'r (e ar)f (,0') .
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Along with this equation, we have for the absorption rate

fd5 f fdQZ v, N(r,E,Q)

de fom v_ n(z,0) (68)
= ZDfd3 fdﬂx;@_ﬂzz ar fdﬂf(zyf_l),
v 2

where the term involving X represents the contribution from the

Ap

separable fraction of the flux and the term involving f 1s a correction
due to the spectral shift induced by the probe. In particular, it was
the former contribution that was calculated by, say, Ritchie and
Eldridge6 for the infinite slab and Dalton and Osbornlo in the finite
foils and wires.,

In Equation (67b) for the function £, the cross-sections
are still space dependent due to compositional inhomogeneities result-
ing from the presence of the probe. However, for a first order
estimate of the "hardening" effect, we may neglect this space depend-
ence, i.e., neglect the presence of the probe entirely so far as
cross-sections are concerned, Furthermore, since g, X, and gX
are certainly continuous, and probably slowly varying, functions of
their arguments, it follows that a P,-approximation to (67p) is apt
to be acceptable for present purposes. Also, we shall assume that
the initial, unperturbed flux was uniform and isotropic. Then,

1
X = s 50 - ¥ where V¥ 1is a difference flux, and consequently the
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term gy 1is again small to second order. Finally, we also assume
that the spectral shift function, g, depends primarily only on

position. Thus, we consider the equaticn,

1

'V £(r,0) + ,8(x,0) = - 80 Valr)

+ \/ﬁ a' 2(a' - ) £ (r,0')
QI
In accordance with the above remarks, the Pl—approximation to this
equation is

Dngo - Zafo = - ¢5Dv2g , (70)

) = [awr(ne) L D= 15T -G T (1)

To obtain a qualitative estimate of the effect of hardening
on the absorption rate, we return to the problem of the infinite slab -
discussed in Section II with disregard for this effect. 1In such a case,

Equation (71) reduces to

a°r dgg
D a;gg - Zéfo = - 6OD E;g s (72)

and the solution to this inhomogeneous equation which vanishes at

infinity is
" -fX—X"/L

P = Lo [ aglx) e SBel) . (73)
2L

O
-
-00
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To proceed further, it is necessary to guess a reasonable analytical
representation for the hardening function, g, defined in Equation
(65). If we could assume that the hardened spectrum was everywhere

Maxwellian with space-dependent temperature, then

<v >
v
o}

5
g = 1=/ -, (74)
Vi

where T = T(E) 1s the actual temperature with probe present and TO
is the temperature characterizing the spectrum before probe insertion.

Introducing
AT = T -T, (75)
and assuming that AT/TO << 1, we find that (74) may be written as
g AT/QTO . (76)

This suggests that g 1s most likely small and hence, that most any
guess which is qualitatively reasonable will be useful here., Thus,

we choose

g(x) = a(l- |x|/ X)r = X5 < x < xg (17)

0 otherwise.

This is a triangle with apex at the origin (also located at the center
of the slab) of height, A, and base, 2X5. One would presume that

Xq > t/2 i.e., that the hardening extends at least to the boundaries

of the slab, and most probably considerably beyond them. Furthermore,
the height, A, must vanish as the thickness of the slab vanishes, since

then there must be no hardening.
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With the choice, (77), for g, the hardening correction, £,
is readily calculated according to (73). Inserting the result into
Equation (68) one finds for the hardening correction to the absorption

rate per unit ares

A —2&¢.T[£L-E—+ v
h o 2x, 8L = M8Ixj
(78)
- e-xO/L ( L, Lt 4 t° ) ]
2x 8xo 48rx

for sufficiently small t/L. Here, L 1s the diffusion length of the

external medium defined in the usual way. For x_ =t/2 (78) reduces to

- 1 -
Ah -3 avpm T ; (79)

and for xO/L >> 1, it becomes
By ¥ - @ veor (80)

¢
This correction is to be compared with something like Equation (45"')
which provides an estimate of the first term in Equation (68). Evidently
the comparison depends rather sensitively upon the parameter, J_ which
is intuitively given by AT(O)/2TO. Writing &= ot in order to
guarantee that the hardening effect vanishes as the probe thickness

vanishes, it is seen that the correction enters to order T2. But a

reasonable estimate of the magnitude of the coefficient of T2 in this
correction term seems difficult to come by. Since the absorption rate
is not a linear function of thickness, the present argument merely sug-

gests that hardening effects may not be ignorable in the theoretical

interpretation of experimental results,



Iv. OSUMMARY

Admittedly, this review is incomplete in at least three
respects, Firstly, it is not a comprehensive survey of all of the
calculational variations of the themes discussed above that have
appeared in the literature. For example, the whole-hearted but semi-
intuitive application of diffusion theory proposed by Corinaldesil®
has received no explicit consideration here; and neither has the
application of Yvon's double-P, methods to this problem explored
by Bengstonlj. But it was stated in the beginning that such incom-
pleteness was to be anticipated, since we proposed to sketch only
those computations which differed fundamentally. However, as we
saw, there appear to be only two approaches which so differ -- one
which relates the absorption rate to the full angular density at the
surface of the probe, and the other which exploits the relationship
between the absorption rate and the zeroth angular moment of the
density at all points within the probe. As noted, for practical
purposes, the former approach is almost necessarily restricted to
the infinite slab spproximation to a foil in which scattering is
ignorable inserted in a medium in which the neutron density is
initially istropic and uniform in space. Then, the burden of all
such calculations rests on the calculation of the angular density
at the surface of the probe and on estimations of finite size cor-

rections., The method is therefore practically intrinsically approx-

imate, and the task of estimating the qualitative and quantitative
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significance of the approximation seems overwhelmingly complicated
and subtle., Conversely, the latter approaches rest on more or less
straightforward attempts to solve the neutron transport equation in
inhomogeneous media, and are therefore essentially unrestricted and
exact, At the same time, they are almost wholly intractible analyti-
cally, and thus do not lend themselves well to qualitative exposition,

Secondly, the theoretical aspects of the problem of relating
the cbserved activity to a steady state "thermal" absorption rate have
been completely ignored. A host of questions arise here -- such as
self-absorption of the induced activity and the interpretation of
cadmium-ratios, particularly when the ratios are not large, to name
a couple -- but these were not deemed within the province of the
present discussion. In a practical sense, they are probably separable
aspects (separable from that aspect dealt with herein) of the problem
and may be meaningfully discussed independently.

And thirdly, the various attempts to so devise the experi-
ments as to partially or completely circumvent the problems considered

7

here have not been given attention, Examples are Meister's' activations

in voids - thus eliminating the effects of flux depression in the external
medium, and Randall and Walker‘slu suggested attempts to activate materials
which effectively match the microscopic and macroscopic properties of the
medium in which the density is to be measured, thus eliminating the probe
perturbation effect completely. Though these experimental procedures

have great importance in principle in connection with the thorny issues

of making reliable comparison between theory and experiment, they are not

likely to have wide applicability to the many practical situations in which

thermal density measurements are necessary.
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