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SU(6) isoscalar factors for the product 405 X 56--56, 70 are calculated. SU(3) isoscalar factors for the 
products 27 X 10-+ I 0, 8 and iO X 8-+8 are also tabulated. 

I. INTRODUCTION 

The SU(6) symmetry group was first found useful for 
the classification of hadrons in the 1960' s. It has re­
cently been extended by Melosh1 to apply to matrix ele­
ments of currents between hadron states. Following the 
ideas of Gell-Mann, the currents are postulated to be­
long to irreducible representations of an SU(6) of cur­
rents, while the particle states are classified by a dif­
ferent, constituent SU(6). These two different SU(6) 
symmetries are connected by a unitary transformation, 
the Melosh transformation. Melosh explicitly construct­
ed this transformation for the free-quark model. The 
algebraic properties of currents transformed by the 
Melosh transformation have been extracted from this 
model and applied to physically relevant matrix ele­
ments. This method removed the inconsistencies 
which appeared in old SU(6) calculations of several axial 
coupling constants and the magnetic moments of the nu­
cleons. 1 Gilman, Kugler, Meshkov and others, 2 used 
PCAC in addition to the algebraic properties of the 
Melosh transformed axial vector current to satisfac­
torily predict pionic emission amplitudes for the decays 
of mesons and baryons. Gilman, Karliner, and others, 3 

also found that the application of the Melosh transforma­
tion technique to real photon emissions from baryons 
and mesons is consistent with experiment. 

In each of the above applications, the basic technique 
is to use the Wigner- Eckart theorem to calculate a 
particular physically relevant matrix element. Thus, 
the matrix element of an operator between two hadron 
states is the product of appropriate SU(6) and angular 
momentum Clebsch-Gordan coefficients, times a re­
duced matrix element. 2 For each of the above applica­
tions, the Melosh transformed currents belong to 35 
representations of SU(6). The baryons are classified 
in 56 and 70 representations, and the mesons form 35 
representations of SU(6). The appropriate SU(6) 
Clebsch-Gordan coefficients for these applications have 
been calculated by Carter, Coyne, and Meshkov, 4 and 
by Cook and Murtaza. 5 

If one now wants to apply this technique to current­
current matrix elements between baryon states which 
occur, for example, in nonleptonic weak decays, higher 
representations which originate from the product 35 x 35 
must be considered. Explicitly, the product 35 x 35 is 
decomposed into the irreducible representations: 

35 x 35 -1 + 35 + 35' + 189 + 280 + 280 + 405. (1. 1) 

The only representations in (1. 1) which will contribute 
to a matrix element between baryon states belonging to 
the 56 and the 56 or 70 representations are 35 and 405. 6 
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In this paper, the Clebsch-Gordan coefficients for the 
product 405 x 56 - 56, 70 are obtained so that such cur­
rent-current processes may be treated in full. In Sec. 
II, the method of calculating the SU(6) isoscalar factors 
for the product 405 x 56 - 56 and 70 with appropriate 
choice of phase is explained. In Sec. III, the SU(6) iso­
scalar factors for 405 x 56 - 56,70 are tabulated. SU (3) 
isoscalar factors for the products 27 x 10 -10, 8 and 
lOx 8 - 8, which were used in the present calculation, 
are also given in Sec. III. 

II. METHOD OF CONSTRUCTION 

A given SU(6) representation may be reduced accord­
ing to the subgroup SU(3)xSU(2). In terms of the spec­
troscopic notation A 2S +1, where A is the SU(3) repre­
sentation label and 2S + 1 is the SU (2) spin multiplicity, 
the 35, 56, 70, and 405 representations have the follow­
ing SU(3) x SU(2) contents: 

35 = 83,81, 13, (2. 1) 

56=10\82, (2.2) 

70=84,102,82,12 , (2.3) 

405 = 275 ,27 3,271,103 , 103,85 , 8i, 8~, 81, 15 , 11. (2.4) 

Wavefunctions for these SU (6) representations are writ­
ten using the 6 and 6 representations ql and ql, respec­
tively defined in Table AI, Appendix A. A given wave­
function within an SU (6) multiplet may be classified ac­
cording to its SU(3)xSU(2) quantum numbers, 

[A; YII3; S S3), (2.5) 

where Y,I,I3 are the hypercharge, 1- spin, and third 
component of the 1- spin, respectively, and S, S3 are the 
spin and third component of the spin. The relative 
phases between wavefunctions within a given SU(3) 
multiplet are chosen to agree with the phase conven­
tions of deSwart. 7 The relative phases of the wavefunc­
tions within a given spin multiplet agree with the 
Condon-Shortley phase convention for SU(2). 8 The wave­
function of highest weight in successive SU (3) x SU (2) 
multiplets within a given SU(6) representation is deter­
mined by requiring orthogonality between states with 
the same additive quantum numbers, Y, 13, and S3' and 
that the traceless condition for each representation 
be satisfied. For example, the 405 wavefunctions must 
have the following form: 

W ex {qiqj}{qV}- t.0 [Ii~ {qmqj}{qmql} + Ii~ {qiqm}{qmql} 
m 

+ Ii; {q mqj}{qkqm} + Ii} {q iq m}{qkqm}] 

+ is (1i~1i} + lilliJ) 6 {qmqn}{qmqn}, 
m,n 
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(2.6) 
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TABLE 3.1. SU(6) isoscalar factors for 405 x56- 56, 70 

56 

iF, -2ft/1515 7if /1W5 - 2../7/45 7 
15 - 2../7/15 4ill/45 

ill/3,;5 ill/15 ../7/15 ffi/30 ../7 /3m - 2ft /3ill ../7 /3m m-/m 

70 

84 ,;5/3,(2 -,;5/6,(2 ,;5/3,(2 -1/6if 
1 
3 

2/3ill 2/3V6 

o ,;5/912 v'5/1s,f2 - 5/16/f 

4 
9 

82 -,;5/3if -1/3if -1 
6 

- 1/6/f -,;5 /6V3 -,;5 /3V3 ,;5 /6J3 - 15 /9ft 

12 - 2,;5/3v'3 

8~ Xl04 

56 

104 0 - 2../7 /15v'3 - 2../7/15v'3 - 2m/Ism 2../7 /45v'5 ../7/915 if/45 

82 - 2../7 /3ffo 0 o 2../7 /15v'3 - 2../7 /1516 0 - 4ft /45/f -ffi/915 -1/912 

2Q 
84 0 -15/616 1/616 -,;5/12V3 -1/4v'3 ,;5 /12v'3 

102 0 -1/3v'3 -2/3ffo -7/sffo 

82 -15/316 15 /6v'3 -1/6J3 1/2v'3 -1/1216 ,;5/1216 

12 -,(2/3v'3 v'5/6V3 

where {qjqj}=qjqj +qjqj, with the traceless condition 

6 W=o. (2.7) 
j 

As seen in (2.4), 405 contains 83 twice. The state 
18A ;011;11) is chosen to be the simplest state consistent 
with the required orthogonality and traceless conditions. 
18B ;011;11) is then determined by requiring, in addi­
tion, that it be orthogonal to 18 A ;011;11). The relative 
phases among different SU(3) x SU(2) multiplets within 
a given SU(6) representation is arbitrary. The phases 
of the wavefunctions within the 35, 56, and 70 repre­
sentations are chosen to conform to Meshkov's revised 
phase conventions9 for the table of SU (6) isoscalar 
factors for 35 x 56 - 56, 70. This table is given for 
reference in Appendix C. The highest weight wave­
functions, themselves, for each SU(3) x SU(2) multiplet 
in 35, 56, and 70 are listed in Appendix B. The present 
choice of relative phase for the SU(3) x SU(2) multiplets 
within 405 is also made explicit in Appendix B by list­
ing the highest weight wavefunctions for each 
SU(3) x SU(2) multiplet within 405. The rest of the wave­
functions can easily be constructed by applying the gen­
erators I±, V±, and S •• 7 

SU(6) Clebsch-Gordan coefficients can be written in 
terms of the product of an SU(6) isoscalar factor with 
SU(3) and SU(2) Clebsch-Gordan coefficients. For the 
product: 

jR;A; Y1I3; SS3) x jR';A '; Y' I'I~; S'S3) 

~ jR"'A"' Y" I"!"· S"S") " 3 , 3, 

where R, R ' , and R" are SU (6) representation labels, 
and the others are SU (3) x SU (2) multiplet labels within 
each respective SU(6) representation, the Clebsch­
Gordan coefficient is written: 
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1 
36 -,;5 /1s,f2 

1/18m ,;5/912 

- 7/36,(2 - 5v'5/36/f -../7 /1s,f2 

-,;5/6 

(A~ S A~:S' I A ~,"SIf) (Y~I3 Y~:I3, ::I"I~') 
x (SS3S'S3' S"Sn. (2.8) 

The first factor in (2.8) is the SU (6) isoscalar factor 
to be determined, The second factor is the full SU(3) 
Clebsch-Gordan coefficient for AXA'-A", many of 
which have been tabulated by McNamee and Chilton. 10 

The third factor is the usual SU(2) Clebsch-Gordan 
coefficient. 8 For the product 405 x 56 -56, 70 the addi­
tional su(3) Clebsch-Gordan coefficients for the pro­
ducts 27 x l0-l0, 8 and 10X8 -8 are needed. These 
coefficients can also be expressed, in terms of iso­
scalar factors times an SU(2) I-spin Clebsch-Gordan 
coefficient, as 

(
A A' A" ) 

YlI3 Y'I'Is, Y"I"I3 

(
A All A") YI y'I' Y"[" (II3I'If, ["If). (2.9) 

The SU(3) isoscalar factors for 27 x 10 -10, 8 
and 10 x 8 - 8 were calculated according to the method 
of deSwart.7 They are listed in Tables 3.2 and 3.3 in 
Sec. 3. 

The SU(6) isoscalar factors are found by writing rep­
resentative wavefunctions in each of the SU(3) x SU(2) 
multiplets of 56 and 70 in terms of the product wave­
functions of 405 and 56 and the Clebsch-Gordan coef­
ficients given in (2.8). The unknown SU(6) isoscalar 
factors are determined by operating on these expres­
sions with the SU(6) H4 and H5 operators defined in Ap­
pendix A. In particular, the expressions 

(2. 10) 
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TABLE 3.2 SU (3) isoscalar factors for 27 xl0- 10, 8 

Yilt (0;2) (0,2) (I,!) -l,~) (-1,~) (2,1) (2,1) (0,1) (0,1) (0,1) 

Yl Y2l 2 (I, ~ (0,1) (0,1) I, ~) (0,1) (-I, ~) (-2,0) 3 
I, '2 (0,1) (-1,~) 

10 

(I, ~) 5/3V7 5i2/3v2l m/3/7 -.f5/3/7 

(0,1) 5.f2/m' 4-15/917 11;['1./917 m/si7 .f2/ffi 

(-I, ~) 2.JI"U /3121 4/3/7 

(-2,0) 

8 (0,1) m/9 4 -m/9 .f2/3 -m/5!3 
9 

(l,t) -,[5/3 - 2.f2/3v3 
-1 

1/3,[5 
3 

(-1,~) .f2/3v3 2/3/5 

(0,0) -.f2N3 - 2/ill 

Yilt (-2,1) (-2,1) (I, ~ (0,0) (0,0) (0,0) (0,0) 

YI Y 212 (1, ~ (0,1) I, ~) (0,1) -1 1.) (- 2, 0) , 2 

10 

(1, ~) - 4/3I2I 1/3/7 

(0,1) 2/917 -8/9/7 -5/917 

(-I, ~) 2-/5/3/7 2/m .f2/3v2l -1/317 

(-2,0) ,ffONzl 2.f2/121 1/17 

8 

(0,1) - 7/9-15 4/9-/5 4/9.f5 

(1, ~) .f2/3ill 

( 1)-2 -1'2 3" 11m -4.f2/31f5 - 2/3/5 

(0,0) -11m 

H51s; 1H; H)= Is; 1Hd~), 
H IS ·l1.1.·l.1)-( 4'2/3) 110'11.1.·1.1.) 4 , 22,22 - - V~ , 22,22 

(2. 11) 
TABLE AI. Basic representations 6 and 6 with eigenvalue 
assignments for H4 and H5• 

+ 5IS'1 " " ' ) 3" , "2"2,"2"2, (2.12) 

for 56 and 

H 4 IS;lH;H)= IS;lH;H), 

H4 \ 10; IE; H)= \ 10; Ii %; H), 
H 5 IS;lH;H)= 18;HtH), 

(2. 13) 

(2.14) 

(2.15) 

H411; 000; H)= (- 2/i.3)(18; 010; H) + 18; 010; H»), 
(20 16) 

H4 \ 10; 011; ~~) =H4 18; 011; %~) = - H418; 011; H), 
(2. 17) 

for 70 are sufficient to determine all the isoscalar 
factors. These factors are tabulated in Table 3. 1 in 
Sec. III. Each row of isoscalar factors is normalized 
separately. The leftmost isoscalar factor for the 56, 
lQ4 multiplet and the 70, 84 multiplet are chosen to be 
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Name 

ql =p, 

q2=1I, 

q3 = At 

q4 =p, 

Q5=n, 

q6=A, 

Ql =p, 
If = n, 
q1=.\, 

if =p, 

q5= nt 

q6 = i, 

1 YII3; 553) H4 

I !!i; H> 
11 ~ -~; H> -1 

1- ~ 00; H> 0 -2 

I) .1l. 
322, ~ - ~) -1 -1 

I.U .1. 32- 27 ~ -!> -1 

1- ~ 00; !- ~> 0 2 

1 -~~- ~;~- ~ -1 -1 

- I-i!~; ! -!) -1 

- 1% 00; 1- !) 0 2 

- 1 -~~-~; B) 
, 111. 

- ~22' E> -1 

I~ 00; H> 0 -2 
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TABLE 3.3 SU (3) isoscalar factors for 10 x8- 8 

Yjlj (-1,~) -1,~) (0.1) (0,1) 

YI Y212 (0,1) (I, } (0,1) ~,} 
8 (0,1) 212/ill --I2/ill 

(I, ~) 1/,[5 

f1,~) 2/,[5 

(0,0) 13/,[5 

positive. Expressions (2.12), (2.16), and (2.17), then 
determine the relative phases of the remaining rows. 
These expressions also provide an internal check on the 
normalization of each row. 

III. RESULTS 

Table 301 lists the SU(6) isoscalar factors for the 
product 405 x 56 - 56, 70. This table has been con­
structed to agree with the revised phase conventions 
for the isoscalar factors of the product 35 x 56 - 56, 
70. 4,9 When necessary, this revised table for 
35 x 56 - 56, 70, given in Appendix C, should be used 
with Table 3.1, rather than the table given in Ref. 4. 
Tables 3.2 and 3.3 list the SU(3) isoscalar factors for 
the products 27 x 10 -10, 8 and lOX 8 - 8, needed in the 
construction of the full SU(6) Clebsch-Gordan 
coefficients. 
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APPENDIX A: GENERATORS AND BASIC 
REPRESENTATIONS OF SU(6) GROUP 

The 35 generators of SU(6) can be writtenl1 as xL 
i, j = 1, 2, ... ,6, with the condition 

and the commutation relations 

(A1) 

TABLE Bl. Representative wavefunctions for 35, 56 and 70 
representations. For 70, <Pij,k == qi qjqk + qjqiqk - qkqjqi - qjqkqi' 

35 

18; 011; 11)= q1q5 
I 8; 011; DO) = - (1 /-I2)[ql t! + q4q5] 
11; 000; 11) = (-l/l3)[ql¢ + q2q5 + q3/] 

56 

110; 1 H; H) = qlqlql 

18; 011; H)= (1/312)[2 (q6qlql +qlq6ql +qlqjq6) 

70 
- (q4q3ql + q4qlq3 + q3q4ql + qlq4q3 + q3qlq4 + qlq3q4)] 

18; 011; ~i> = (1/f6) <P11 3 

110; 1 H; H) = (INiD <Pll 4 

IS; 011; H)=- (1/3-12)[<P/16+<P341+<P43 tl 
11; 000; H)=- (l/613)[2<P2'6,l +<P~.1 + <P2·l,6+ 2 <P15,3+<P53.1 + <P13.5 

+2<P34.2 + <P43.2 + <P32.4J 
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(0,1) (0,1) (I, }) (2,0) 

(0,0) (0,1) (0,0) 

1/,[5 

-1/,[5 1/,[5 -12/,[5 

1/;5 

.f2/,[5 

[Xi Xl]- "jxl "IX) i' k - Uk i - u i k- (A2) 

The familiar SU(3) hypercharge, I-spin, V-spin, and 
U-spin operators are written in terms of these genera­
tors in the following way: 

127; 022; 22)=qlqlq5q5 

IS; 011; 22) = (l/ffl) [2{qlq2} lq5 +2qlqj{q4q:i} + {qjq3}{q5/}J 

11; 000; 22) = (1/124)[2qjqj ¢q4 + 2q2q2q5q5 + 2q3q31q6 

+{qj qzH¢q5} +{q2q3}{q5q6} + {qjq3}{q4 q6}J 

127; 022; 11)= (1/2H{qjq4}q'q5+qlqj{t!q5}] 

110; 1 ~~; 11) = (l /2)[qj qj{t! q6} - ql qj{q3q5}] 

- 33 
110; - 1'2 '2; 11) = (1 /2)[{q3q4}q5q 5 - {qlq6}q5q 5] 

ISA ; 011; 11)= (l/148)[2qlql{qjq5}-2qjqj{t!¢}+2{q2q4}q5 q5 

- 2{qlq5}q5q 5 +{q3q4}{q5q6} 

_{qjq6}{q5q6} -{qjq3Ht! q6} +{qj q3}{q3 q5}J 

I SE; 011; 11) = (1/.J480)[2qj qj{ ql q5} - Sql ql{t! q4} - S{q2q4}q'q5 

+2{qlq,}q5q5 - 3{qlq2}{t! q5} - 3{qj q4}{¢q5} 

- 4{q3q4}{q5 q6}+{qjq6}{q5qB} - 4{qjq3}{t!qB} 

+{qjq3}{q3q 5}J 

127; 022; 00) = (1/1f2)[2qjqjlt! + 2q4q4q5q5 + {qlq4}{t! q5}J 

IS; 011; 00)= (l/196O)[2qjql{qj q2}+2{qlq2}lq2+2q4q4{q4q5} 

+ 2{q4qS}q5q5 +{qj q3}{q2 q3} + {ql q4}{ql q5} 

+{ql q4Ht!f} +{qlq5Ht! q5} +{q2q4Ht! q5} 

+{q4q6}{q5qB} - 7{ql q6Ht! q6} - 7{q3q4}{~q5} 

+ S{qj q6}{q3q5} + S{q3q4}{q2 q6}] 

+4qsq,q'q5 + 4q6q6q6q6 + 2{qlq2}{q1l} +2{qlq3}{qj~} 

+ 2{qjq4}{ql q4} - 5{qlq5}{qj qS} - 5{qjq6}{qj q6} 

+ 2{q2q3} {lq3} - 5{q2q4Ht!f} + 2{q2q,}{t! q5} 

- 5{q2q6Ht! q6} - 5{q3 qJ {iJ'V} - 5{q3q5}{q3q 5} 

+2{q3q6}{~q6} + 2{q4q5}{q4q5} + 2{q4q6}{¢q6} 

+2{q5q6}{q5q6} + 7{qjq,Ht! q4} + 7{qjqs}{qV} 

+ 7{q2q4}{ql q 5} + 7{q2q6}{q3q 5} + 7{q3q4}{ql q6} 

+ 7{q3q5}{t!q6}J 
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Y= - (x~ +~), (A3) 

1+=Xi +~, (A4a) 

1_=X1 +-'i, (A4b) 

13= i(X} +X1-~ -~), (A4c) 

V+=Xi+xt (A5a) 

v_=X1 +xt, (A5b) 

V3 = i(X1 +X1- X~ - ~), (A5c) 

U+=~+~, (A6a) 

U_=X~+~, (A6b) 

u3=Hx~ +~ -X~ -~). (A6c) 

The generators of spin are given by 

S+=X1 +~ +rs, (A7a) 

s_=X1 +X~ +X~, (A7b) 

S3=X1+X~+X~. (A7c) 

The basic 6 and 6 representations, expressed as q1' ql, 
1 = 1, 2, ... ,6, respectively, are given in Table Al along 
with their eigenvalue assignments. The commutation 
relations of the generators with these basic represen­
tations are: 

(A8a) 

[x~ ql]=_1)! qj + .!.I'>j ql 
" '6 i . (A8b) 

A complete set of commuting operators, linear in the 
generators xL is given by Y, 13, S3' H4, and H5 where 
H4 and H5 are chosen such that, 12 

H4=± 413S3' 

H5 =± 6 YS3, 

(A9a) 

(A9b) 

for the basic 6 and 6 representations. The positive 
sign is used for the 6 representation and the negative 
sign for the 6 representation. In terms of the genera­
tors xL H4 and H5 are written: 

H4 =Xl-Ai-xt +~, 

H5=X1 +X~ - 2X~ -X1-~ +~. 

(AIDa) 

(AlOb) 

APPENDIX B: REPRESENTATIVE WAVEFUNCTIONS 
OF HIGHEST WEIGHT 

Table Bl lists the highest weight wavefunctions, writ­
ten in terms of the basic representations ql and ql, 
1 = 1, 2, .• 0,6, for each of the SU(3) x SU(2) multiplets 
in the 35, 56, and 70 SU(6) representations, respec­
tively. The relative phases of these wavefunctions are 
chosen to agree with the table of Carter, Coyne, and 
Meshkov4 with revised phase conventions. 9 (See Appen­
dix C.) Table B2 lists the highest weight wavefunctions 
for the 4D5 representation. 

APPENDIX C SU(6) ISOSCALAR FACTORS FOR THE PRODUCT 35 x56- 56, 70 WITH REVISED PHASE CONVENTIONS4 ,9 

83 x 104 st X 104 13 xl 04 (S3 XS2). 

56 

104 2/3 - 2/m -1/3 

82 2/3 -12/3 

70 

S4 5/41"3 -J5/4 -J5/4V3 

102 V2/13 -l/J6 
82 -I5/2V3 -I5/4J6 
12 ..{3/2 
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