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The first two terms of Kline’s asymptotic expansion are obtained for the scattering of a plane wave
incident along the axis of a perfectly reflecting semi-infinite body of revolution. When this method is applied
to the paraboloid the exact electromagnetic solution is obtained in closed form. The accuracy of the method
of physical optics is studied by using the asymptotic expansion.

ORRIS Kline has given an asymptotic solution
to hyperbolic partial differential equations valid
for short wavelengths.! This method can be readily
applied to the scattering by perfectly reflecting bodies
when there are no “shadow” regions present. In this
paper the first two terms of this expansion are obtained
for the scattering of a plane wave incident along the
axis of a perfectly reflecting semi-infinite body of
revolution. The first term of this expansion corresponds
to geometric-optics, while the second term gives the
deviation from geometric-optics when the wavelength
is sufficiently small compared to the minimum radius of
curvature of the body.

When the body is taken to be a paraboloid, the exact
electromagnetic solution is given (in closed form) by
the first term of the expansion.

At the end of the paper the asymptotic solution is
compared with the result given by the current-dis-
tribution method? and its acoustic counterpart.

A brief resume of Kline’s method, as it applies to the
problem being considered, will be given here. The solu-
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S is the distance along o ray to any point P from some
reference plane.

p is the distance from the axis of the body at which the
ray hits the body.

¢ is a rotational angle about the axis of the body.

F1G. 1. Coordinate system used in calculations.

! Morris Kline, Commun. Pure Appl. Math. 4, 225-262 (1951).
?Samuel Silver, Microwave Antenna Theory and Design
(McGraw-Hill Book Company, Inc., New York, 1949) p. 144,

tion is given in terms of the function S(x,y,5) which is
defined so that S(x,y,2)=const is a surface of constant
phase in the geometric-optics approximation and so
that (V.S)?=1. The form of the asymptotic solution (in
the electromagnetic and acoustic cases respectively) is

E= Z )\nEnei(kS—wt), L7= Z }\n D‘nei(ks—wt)_ (1)

n=>0 n=0

Here E is the electric field, U is the velocity potential,
\ is the wavelength, k=2x/X, and w=kc where ¢ is the
velocity of light. The wave equation then gives the
following equations for E, and U,

dE, i
-I—%EnV 8= ﬂV2En_1,
aS 4
(2)
alU,

1
+1iU,V-s=—V2U,_,,
aS 4

where s=V.S and d/3S5=s-V (lower-case, boldface is
used to denote a unit vector). For the electromagnetic
problem the requirement that the divergence of the
electric field vanish gives the additional equation

1
s:E.=—V-E.. (3

2r

In addition to the above equations, the following
boundary conditions must be satisfied on the surface
of the scatterer:

IIX En=0,

1 n-VUn_l
Up=———y, 4)
2r n-s

where n is the unit normal to the surface.

Along the rays incident on the scatterer, Ey and U,
are taken to represent the incident fields; while all the
other E, and U, are taken to be zero. The initial values
of E, and U, on the reflected rays are obtained from
(3) and (4). E, and U, can then be obtained by in-
tegrating the ordinary differential equations given by
(2). One component of E, can be obtained more readily
by (3).

The actual determination of E, and U, from the
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above relations can be very cumbersome. A useful
labor-saving device is the introduction of the coordinate
system as shown in Fig. 1.

It may be seen that there are two sets of coordinates
for each point because both an incident ray and a
reflected ray go through each point. These two coor-
dinate systems are used in the calculation of the incident
and reflected fields, respectively.

The equation of the body can be taken to be S= f(p)
in either coordinate system. If an x,y,2 coordinate
system is introduced with the z-axis along the body
axis and the x,y-plane as the reference plane then (for
the coordinate system after reflection)

2fw
x=p cosq&—f—zj—_(—l;)—in(S—f) coso,
_ 2f®
ypsingt o (s=Dsing, (9
(foy=
= (S~ ),
2 f+(f(1))2+1( )

where (f)™ is the mth power of the nth derivative.
The relationship between the two sets of unit vectors is

2f® 2f® (Fy2—
=—— cos¢p1+——— singj+ k
GOFHL (O (O
(fOy— (f0)2— 2f® (6)
o= — k

: cospi— — singj+— )
(f0)y+1 (f)2+1 (fOy+1

¢ = — singi-+cosej.

The differential operators required in the calculation
of E, and U, can be expressed in terms of the S, p, ¢,
coordinate system in the usual way by making use of
(5). It turns out that the coordinate system is orthog-
onal. The final results are most easily expressed in
terms of the metric coefficients

he=1,
2f®
hy=14————(S—f),
(foy+1 & ()
2f®
ho=pt———(S— ).
s p+(f‘1>)2+1( )

For simplicity, only the case in which there is no
multiple reflection will be obtained here. There would
be no essentially new features introduced by the re-
moval of this restriction, but the results would be much
more complicated.

The calculations outlined above have been carried
through for the incident fields E;=ie'®*S-«® and
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U;=ei*8—«% The results are
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A particularly simple result is obtained on applying
these formulas to the paraboloid f=p*2R (R is the

radius of curvature at the nose of the paraboloid). In
this case
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Since E;=0, it follows from (2), (3), and (4) that
E.=0 (»>0). Thus, in this case, the asymptotic
expansion contains only a single term. Since the field
given by this one term satisfies the wave equation, the
divergence condition, the boundary condition, and the
radiation condition,* the exact solution to the scattering
problem has been obtained in closed form.f

For the acoustic problem the exact solution has been
obtained in closed form by Horton and Karal?® The

scattered field is
e~ % — si(kQ)+iCi(kQ)]
2/kR— e8] — 5i(kR)+iCi(kR)]

where Q=R*(R+2S)/(p®+R? and si and Ci are the
sine and cosine integrals

* sini ® cost
si{x)= —f —dt; Ci(x)= —f —dt.
: s 1

It is easily verified that the two terms of Eq. (8) are
just the first two terms of the asymptotic expansion
of (10).

If B=2cos R/(p*+R?* (the angle between the
axis and the direction to the field point) then the dif-
ferential scattering cross section is

RZ

U g=gitkS—on

(10)

oy =—"""""°+ (11)
4 cos*(B/2)
in the vector (electromagnetic) case and
R? 1
— (12)

¥ 4 cos(8/2) g (kR)’

where

g(x) = (24 cosw si(x)—x sinx Ci(x))?
+ (x sinx sz (x)+=x cosx Ci(x))?

in the scalar (acoustic) case. The factor g(x) varies
monotonically from % for x=0 to 1 for x= .

It is interesting to compare the asymptotic expansion
given in (8) with the physical-optics (current-distribu-

* Since the paraboloid is of infinite dimensions the usual radia-
tion condition must be modified. Peters and Stoker [Commun.
Pure Appl. Math. 7, 565 (1954)] have suggested that the field be
required to have a decomposition E= A+B where A is specified
in some definite way (they suggest letting A be the geometric-
optics solution) and B is to satisfy the radiation condition. For
the scattering of a plane wave incident along the axis of a perfectly
conducting paraboloid we get B=0. M. Lelchter (private com-
munication) has shown that the uniqueness proof of Peters and
Stoker can be extended so as to include this problem.

t By requiring that E, or U, is zero on the scattering surface,
it is found that geometric-optics can only give the exact solution
in case (for a plane wave incident along the axis of a body of
revolution) f® /p[ f0—p f®/(f®)2417=01in the electromagnetic
case or fM4-pf®/p=0 in the acoustic case. The general solutions
of these two equations are f=A-+Bp? and f=A-+B Inp where A
and B are arbitrary constants. B=0 gives an infinite plane in
both cases. The general surface in the electromagnetic case is a
paraboloid. The general surface in the acoustic case allows mul-
tiple reflections and the validity of geometric optics has not been
tested for it. ‘

( 3 5%) W. Horton and F. C. Karal, J. Acoust. Soc. Am. 22, 855
1950).
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tion) approximation. The physical-optics method is
based on the following exact expression for the scattered
fields*
1 eikr
Es=— f Cik(axH)— (n-E)V]—ds,
4w 4
(13)

kr

1 et
Us=—-fUn-V—dS,
47 7

where the integration is carried out over the scattering
surface and r is the distance between the integration
and field points. The physical optics method consists of
replacing the fields inside the integrals by their geo-
metric-optics approximation. In the electromagnetic
case this corresponds to using the geometric-optics ap-
proximations for the current and charge distributions
on the scattering surface. If the incident fields are those
assumed above, then the physical-optics approximations
for the back-scattered fields at large distances from the
body are

1: ei(kS—wt) ©
Es~i—— f 2k 4 ) (3)dz,
A S 0
7 ei(kS—wt) 0 (14)
Usm————— f k24 W) (5)dz,
A S 0

where A(z) is the cross-sectional area of the body. If
A (2) is given by A (2) =mp?=wa1z2-+mas7*+ - - - then (14)
takes the form

G50 g, g,
Eg~—i f-IA—+- - -

S 4 8w s
1
ei(ks—-wi) a1 asg ( )
Ug= —+i)\——|----).
S 4 8r
The corresponding expressions obtained from (8) are
gikS—ut) a1 Q2
Eg=~—1 ——|—i)\——+---),
S 4 8r
. (16)
e'l.(lcS——mt) a1 02__2
Usz———~—(—~+i)\ +-- )
S 4 &

From (15) and (16) it can be seen that, asymptoti-
cally, physical optics represents an improvement on
geometric-optics in the electromagnetic case unless
a;=0. In the acoustic case physical optics gives an
improvement on geometric-optics unless |as—2] <2,
but the improvement is not as great as it is in the elec-
tromagnetic case.

The above analysis lends support to the conjecture
put forth by Siegel® that physical optics would give the
exact electromagnetic back-scattering cross section for
the type of problem under consideration in this paper.

4J. A. Stratton, Eleciromagnetic Theory (McGraw-Hill Book
Company, Inc., New York, 1941), pp. 460—466.

58 K. M. Siegel, Far Zone Assumptions Pui to Use, Symposium

on Microwave Optics (Eaton Electronics Laboratory, McGill
University, Montreal, Canada, June, 1953).



