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Recently, the propagation of an electron beam through an ion channel with periodically
varying ion density has been proposed as a method of transporting or modulating an electron
beam. A theoretical treatment indicates that, in the absence of an external magnetic field,
cylindrically symmetric radial oscillations of the beam electrons are excited by the channel,
with resonant excitation occurring when the wavelength of the ion density variation equals the
betatron wavelength. An analysis of the ion focusing regime (IFR) ion hose instability
indicates that the e-folding length of this instability increases when the variations of the
electron density are increased. In the absence of an external magnetic field and damping,
moderate electron density variations (caused, for example, by a periodic ion channel or the
nonrigidity of the beam and channel) result in a wavelength and e-folding length on the order

of the beam-averaged betatron wavelength.

1. INTRODUCTION

Propagation of an electron beam in an ion channel in the
ion focusing regime (IFR) allows the beam to propagate
without expanding from space-charge repulsion. In the IFR,
the beam electrons undergo radial oscillations at a charac-
teristic frequency, so that in the laboratory the beam diame-
ter varies periodically with a wavelength known as the beta-
tron wavelength.' One of the fundamental physical
limitations of IFR e-beam propagation has been the ion hose
(ion resonance) instability, in which transverse oscillations
of the ¢ beam and ion channel couple and grow.

Recently, the use of ion channels with a periodic vari-
ation in ion density has been proposed as a possible method
of transporting and inducing oscillations in a propagating e
beam.?? Such oscillations may have application to free-elec-
tron laser wigglers or plasma wave particle accelerators.*
Miller and Gilgenbach® have performed analytic and nu-
merical calculations describing the propagation of e beams
in channels where the ion density vanished periodically, ob-
serving stable transport with oscillations in the beam enve-
lope at the betatron wavelength as well as the wavelength of
the ion density variation.

In this paper, we derive an analytic solution for the radi-
al motion of an arbitrary fluid element of a cylindrically
symmetric electron beam propagating in a previously ion-
ized channel for which the ion density profile varies sinusoi-
dally with axial position. It is assumed that the ions are sta-
tionary and that the electron beam instantaneously gjects
radially the plasma electrons associated with these ions. We
perform the analysis in the frame of reference moving with
the e beam. The results, given in Sec. II, indicate that reso-
nant excitation of cylindrically symmetric e-beam oscilla-
tions occurs when the wavelength of the ion density vari-
ation equals the betatron wavelength of the e-beam
electrons. In Sec. ITI, we present calculations of the e-folding
length and wavelength for the ion hose instability in a peri-
odic ion channel. The calculations show that a periodic ion
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channel can result in an increase in the wavelength and e-
folding length of the instability.

1. OSCILLATIONS IN ELECTRON BEAM RADIUS
A. Basic equations and assumptions

Let us consider an e beam propagating in the z direction
in a periodic ion density channel. We assume a nonrotating
beam with cylindrical symmetry and we perform the calcu-
lations in a frame of reference moving with the electron
beam. At a fixed axial position in this frame, the periodic ion
density channel appears as a time-varying ion density:

n; (r,t) = no(r) + n,(r)cos wt. (n

{In the lab frame,
n,. (n2) = (1/7)[ng(r) + ny(r)cos(27z/1) ],

where A = 2myBc/w, B=v/c, and y = (1 — B2)~"/2 de-
scribe the e-beam velocity.) We consider ion density varia-
tions with wavelengths long compared to the e-beam radius,
so that the component of electric field in the z direction is
ignorable.® At the radial position r, the radial electric field
resulting from the ion charge is

Shelno(r) + n,(¥)cos wt 12 dr

2
€o(2mr) 2

Ei(r’t) =

Letting n, (r,1) equal the electron density, the radial electric
field at position r resulting from the electron charge is

E (rt) = So —en (¥,£)2ur dr ' 5
€o(2mr)

Using Eqgs. (2) and (3), we write the equation of motion
for a fluid element of electrons:
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_ Shen (7 t)2mr dr
B m,€,(27r)

§6€2[no () + n\(r')cos wt | 2ar dr'

m_€y(2mr)

kT, dn,

m,n, dr

(4)

In this equation, we ignore the magnetic forces that result
from the ion current that is present in the electron frame of
reference. This is reasonable since the electron velocities are
low in this frame. For a relativistic e beam, this requires that
the beam current (in the lab frame) be small compared to
the Alfvén current.’ This is discussed further in the Appen-
dix. For the case of e-beam propagation parallel to a weak
magnetic field B,, the magnetic forces can be neglected in
Eq. (4) provided that the electron cyclotron frequency
(eBy/m,) is much smaller than  and w,,, (the electron plas-
ma frequency measured in the frame of reference moving
with the e beam). The temperature 7, corresponds to an
emittance in the laboratory frame.

We note that the electron charge — §5(”en,(7,t)
X 2w dr' is a constant of the motion. As a result, the motion
of an arbitrary fluid element in Eq. (4) is independent of the
motion of the other fluid elements when T, = 0, while the
pressure gradient term couples neighboring fluid elements
when T, 5£0.

For the case where n,(r)=0and 7, =0, Eq. (4) indi-
cates that a force-free equilibrium exists when n,(7?)

= ny(r). At the other extreme, the pressure gradient force
will dominate the electron electric force, eE, (), in a hot
beam, where the electron Debye length, A, exceeds the ion
channel radius. In this case, the equilibrium elegtron distri-
bution is a Maxwellian, n,(7,f) = n, exp[ed(r)/kT,],
where #(r) is the electrostatic potential resulting from the
ion channel. This situation corresponds to the case where the
magnetic and electric fields from the e beam are ignorable in
the laboratory frame since they cancel to order 1/72.

For a cool beam, the pressure gradient term is a small
correction in regions where the electron Debye length is
much smaller than the beam radius. Thus we can substitute
no(r) for n,(r,t) in the pressure gradient term in order to
estimate its value at equilibrium. With a Gaussian ion chan-
nel profile [n,(7) = n,(0)exp( — 72/72)], the inclusion of
the pressure gradient term changes the equilibrium condi-
tion to

n,(rt) = ny(r) — 4e.kT./er?
in those regions of the beam where Ay, €7..

Consider a perturbation about the force-free equilibri-
um. Let r, equal the equilibrium position of an arbitrary fluid
element, and define §(¢) =r(t) — r, to be the displacement
of this fluid element from equilibrium. For small displace-
ments such that § €r,, we can reduce Eq. (4) by utilizing the
fact that §5”n, (7,t)27r dr is constant. We assume that the
electron density gradient term for a given fluid element,
(1/n,) [dn,(r,t)/dr], is inversely proportional to 7(¢), as it
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would be if the e beam contracted and expanded without
changing shape. Welet T.(r()) < [7(2)] ~**”**~ ", which
describes adiabatic contractions and expansions of the beam
(cp/cy =1 describes the isothermal case). This results in
the linear equation

d* _ 6( en, kT, dn, 2[(cp/cy) — 1])
dr? €m, mn, dr r "
_ $5e[ny(r')cos wt 1207 dr’ .
2megm, ry )

This equation describes a driven harmonic oscillator with
solution

r(t) =ry+ a, cos(wyt + 0)

eston, (r)2ar dr
n Sony (r')2m ( 1 )coswt, (6)
2megm, 1,y o’ — 0}
where
kT, dn, 2 -1
o =( eny _ kT, dn, 2[(cp/cy) ]) (7
€m, mn, dr r %o

For a cool beam in a Gaussian ion channel with A, €7,
we can write Eq. (7) in terms of the local electron plasma
frequency (w,. = [n, (r5)€*/€;m,]"/?), obtaining

@ = &k + (4/P)(cp/ey) (KT./m,),

which describes the frequency of an electron plasma wave
with wave vector k=2/r.. The temperature-dependent
term is a small correction when A, €r.. The parameters q,,
and 6, which describe the amplitude and phase of the elec-
tron plasma oscillations (i.e., betatron oscillations), depend
upon the initial conditions (i.e., beam injection parameters)
of the problem.

The sharp resonance in Eq. (6) results from the use of
fluid equations with a scalar pressure gradient term, whose
magnitude was estimated by assuming that the ¢ beam con-
tracts and expands without changing shape. This results in a
neglect of kinetic (Landau) damping and phase-mix damp-
ing. In order to include the effects of damping while using
fluid equations, we add a phenomenological damping term,

— 2a(db/dt), to the right-hand side of Eq. (5), obtaining
the equation of a driven damped harmonic oscillator with
solution

r(t) =1+ ag exp( — at)cos[ (0) — a?)'’t+ 6]
| £ m(2mr dr

2mregm, 1,

1
XRe|| ———88 —iot) |. 8
e[(wz — 0 + 21'aa))exp( @ )] ®)

For the case of a cold beam (7, = 0) with a flat ion channel
profile [nyo(r)=ny, n(r)=n,, for r<ry,m 1, Eq. (8) be-
comes

r(t) = ry+ ag exp( — at)cos[ (0§ — )t + 6]

2
nl wO .
4+ —+r,Re]f——— —}ex (—twt)].
2n ° [(w2 -+ 2iaw) P
%9
From Egs. (8) and (9), we note that the damping constant
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is the imaginary part of the complex electron oscillation fre-
quency. Damping of electron oscillations can arise from ki-
netic effects such as Landau damping. Since the oscillation
frequency of fluid elements depends upon the local ion den-
sity, neighboring fluid elements will tend to oscillate at dif-
ferent frequencies. Because the fluid elements are coupled by
the pressure gradient when 7', #0, this can result in phase-
mix damping of the betatron oscillations, further increasing
the value of a. A possible estimate of the magnitude of kinet-
ic damping effects is given by the Landau damping constant
a; , which depends upon the wave vector of the plasma oscil-
lations®:

ay =, (1/8)" 22 (kAp, ) exp( — 1/2k A 3, ).
(10)

A reasonable value of k& that can be inserted into Eq. (10) is
k=2/r,, which earlier was shown to give agreement
between the frequency of oscillation of the fluid elements
and the dispersion relation describing electron plasma waves
in a spatially uniform plasma.

B. Discussion of radial oscillations

With n,(7) =0 (uniform ion channel density), the solu-
tion (8) reduces to

(11)

which describes damped betatron oscillations of the e-beam
electrons. The case where a, = 0 describes force-free propa-
gation. For a cool electron beam, force-free propagation re-
quires that n, ~n, (in the e-beam frame). The condition
n, = ny reduces to the conventional expression 7, ~y’n -
in the laboratory frame.

In the laboratory frame, the oscillations described by
Eq. (11) appear as stationary betatron oscillations. For a
cool beam, such that the electron Debye length (in the elec-
tron frame) is much smaller than the beam radius, the beta-
tron wavelength is

A, = 27Bc(€gm,y/n;, €)%, (12)

For a Gaussian beam and ion channe] of equal RMS radii r,,
the beam-averaged betatron wavelength is

(A ) = dmPc(egm, y/ny €)', (13)

where 1, is the ion density in the center of the ion channel,
measured in the lab frame. The beam-averaged betatron
wavelength is twice the value of the betatron wavelength
describing the center of the beam. For S~ 1, Eq. (13) equals
the conventional expression' [ 277, (I, /fI,)"/*] for the be-
tatron wavelength, where f is the charge neutralization
fraction, I, is the beam current, and I, is the Alfvén current.

When n,(r) is nonzero, there are additional oscillations
of the e-beam radius at the frequency @ of the ion density
oscillations, as seen in the frame moving with the e beam. A
resonant excitation occurs when the frequency @ equals the
natural frequency w, of the betatron oscillations, and large
oscillations of the beam electrons occur for small variations
inion density when @ =~ ,. In the laboratory frame, the reso-
nance condition occurs when the wavelength of the ion den-
sity variation equals the betatron wavelength.

In order that the solution (8) be consistent with the

() =1y + ap exp( — at)cos[ (wh —a?)'?t+ 6],
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assumption that 6 €7, (i.e., the oscillations in beam radius
are relatively small), two conditions must be satisfied.

(a) ao<r,. This condition requires that the magnitude
of the betatron oscillations must be small, which can be en-
sured by matching the beam radius to the ion channel den-
sity.

§n,(7)2a7 dY
2mriegm, (0° — 0} + 2iaw)

(b

This condition limits the magnitude of the driving force,
which results from the ion density variations. For a cold
beam with a flat ion channel profile in which the ion density
periodically drops to zero, ny(7) = n,(r)=n (treated by
Miller and Gilgenbach®), this condition reduces to §|w3/
(0® — 0} + 2iaw)| €1 [see Eq. (9) ], which can only be sat-
isfied when w3 @y, i.e., the wavelength of ion density varia-
tions must be short compared to the betatron wavelength.
In summary, these calculations indicate that the elec-
trons in an e beam propagating through a stationary periodic
ion density channel, with no external magnetic field, will
undergo cylindrically symmetric oscillations at their beta-
tron wavelength as well as the wavelength of the ion density
variation. These oscillations result in a modulation of the
electron density. When the wavelength of the ion density
variation is near the betatron wavelength, resonant excita-
tion results in large magnitude radial oscillations of the beam
electrons, even if the relative variation in ion density is small.

. IFR HOSE INSTABILITY

The propagation of an e beam in an IFR ion density
channel can be disrupted by the ion hose (i.e., ion reso-
nance) instability,” in which transverse oscillations of the e
beam and ion channel couple and grow. Since this instability
involves resonant excitation of ion and electron plasma oscil-
lations, increased stability may be provided by the axial vari-
ation of the ion and electron densities resulting from a peri-
odic ion channel.

In order to examine this possibility, we consider the rig-
id beam treatment of the ion hose instability for wavelengths
long compared to the beam radius. In this approach, the E
field that results from transverse displacements is calculated
by assuming that the cross-sectional density profiles of the e
beam and ion channel remain constant. We calculate in the
laboratory frame of reference, where the electron beam pro-
pagates in an ion channel parallel to an applied magnetic
field Byz. (The case where B, = 0 is included.)

Letting (X;(z,t),Y,(z,2)) and (X, (2,¢),Y,(2,2)) denote
the transverse coordinates of the ion channel and e beam,
respectively, the electric field at the center of the displaced
ion beam is

(E,.E,)) =(—n.e/2¢) X, - XY, - Y,),
where n, is the electron density in the center of the ebeam. A
similar formula relates the electric field at the center of the e
beam to the ion density n, in the center of the ion channel.
Thus the fluid equations for the center of the ion channel and
electron beam are
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2y 2 dy, dX,
dXﬂ=_(meyL-Xu+wme—wf_—’
dt? 2eym, dr dt

2 2 dxX, dy;
d‘y, _ _( n.e )(Yi Yy —w, e gy Y
dr? 2em; dt dt

2 2
dd‘? - _(2nie )(X‘ — %)

t €.ym, (14)

dy, dx,
— W, —— — M, 0,
dt dt

2 2
dYez_( ne )(Ye—l".-)
dt? 2e,ym,

dX dy,
+ @, —_—— 2ae — .
dt dt

In these equations, o, and w,, are the cyclotron frequencies
(eBy/m; and eBy/ym,, respectively, with e>0), while
a; and a, are phenomenological damping constants in order
to account for kinetic effects such as Landau damping and
phase-mix damping. Setting Z, = X; + Y, Z, = X, +iY,,
and defining the frequencies w,=(n,e*/2eym;)'?, o,
=(n;6%/2e,ym,)"/?, we can write Eq. (14) as

d*z,

= —wl(Z, - Z,) — a; + in;) ﬁ»
dt?

d*Z, . 15

7—2——_— —wﬁ(Ze '—Z,) —_ (Zae ""l(l)ce) —dt——.

We note that , is 27!/? times the betatron frequency de-
scribing the center of the beam. Equations similar to (15)
can also be calculated for off-axis fluid elements, again using
the rigid beam formalism. Because of the radial variation in
the ¢ beam and ion channel densities, the frequencies
; and o, are different for different fluid elements, and addi-
tional terms occur since the E fields are not always parallel to
the displacement for off-axis fluid elements. Clearly, the ten-
dency of different fluid elements to oscillate at different fre-
quencies and in different directions will cause a change in the
density profiles of the ion channel and e beam, in violation of
the rigid beam assumption. This effect will be discussed lat-
er.

First, we consider the case where the beam and channel
are rigid and there is no axial variation in electron and ion
density so that »? and w? and constants. For solutions of the
form Z,(z,t) = Z "%~ %9, Z,(2,t) = Zye"*— ", where
@ is real, we utilize the convective derivative d/dt

= @ /0t + v 3 /Jz for the e beam, and obtain

— 0’2, = —0¥(Z,—Z,) — 2a; + iv,)( —iwZ,),
(16)
—-0Z, = —0X(Z,-2Z)— (2a, —iv,)(—i0Z,),

where {) = — vk. Eliminating the quantities Z, and Z,
yields

wce)ﬂ _ & (0 — wo,; + 2iva;) a7

0? Z(iae +
+ 2

o — wo,; + Jiva;, — o?

Using the quadratic formula to solve for (1, we obtain the
dispersion relation
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=a)—ﬂ=i[w+a)ce
v v 2

k + ia, + [(wce + ia,)?

o* — 0w, + ioa;

172
ol )|}
o — v, + 2oa; — o?
(18)

In the case where @ Re(k) >0and Im(k) <0, Eq. (18)
describes transverse (hose) oscillations of the beam that
propagate downstream and grow.

We note that, for the case of no magnetic field
(o, = w, = 0) and weak damping (a; €w,, a, €w, ), Eq.
(18) is identical to the dispersion relation describing longi-
tudinal oscillations of electrons flowing through ions. This
was obtained for the boundary value problem (where @ is
real) using the Vlasov picture with Cauchy velocity distribu-
tions (Fo,(v,) =C,/m[CL+ (v, —v)?], Fy(v,)=C/
7[C? + v2]), where w, is the electron plasma frequency, o;
is the ion plasma frequency, a; = (o/|w|)C;k, and
a, = (o/|w|)C. k. This supports the use of phenomenologi-
cal damping constants (;,x, >0) as a reasonable way to
account for the kinetic effects of Landau damping on the ion
hose waves propagating downstream, for which
w Re(k) >0.

Resonant excitation of the hose instability occurs when
the magnitude of the denominator on the rhs of Eq. (18) is
minimized, which requires

0 =0, = (w,/2) + (0? + 0% /4)V2 (19)

In the absence of an axial magnetic field, the resonant fre-
quencies are + ;.

Provided that the ion damping constant is sufficiently
small that |@;,/w?| €1, and the axial magnetic field is suffi-
ciently weak that

e, /e lia, + 0. /2| <07,

the value of k¥ for ® = @, is dominated by the resonant term,
yielding

», | of

k= +

(20)

(1 ——i(a),/!a),}))
5 .

This expression describes four modes since there are two
resonant frequencies of opposite sign. Two of the four modes
describe waves that propagate downstream and grow; these
modes obey

v o,

[Re(k)| = —Im(k) = (@,/20) 0¥ 0,a;|".  (21)
Since the k vector for betatron oscillations of the center of
thebeam is 2'/%w, /v [see Eq. (12) ], these modes have wave-
length and e-folding length smaller than a betatron wave-
length for |0, /0?| <€1.

Inthe limit a; —»0, Eq. (21) indicates that the value of k
for » = w, diverges so that an absolute instability occurs in
the absence of ion damping. This deficiency of the rigid beam
approximation in the limit of weak ion damping results from
the assumption that w? and ? are constant in Eq. (15).Ina
propagating beam, longitudinal (compressional) wave
modes are unstable; in addition, betatron oscillations and
turbulence will be present. The resultant variations in the
electron and ion densities cause a variation in the values of
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w? and o? since @? « n, and »? « n,. In addition, deforma-
tions of the e beam and ion channel that are associated with
ion hose oscillations cause a change of the electron and ion
densities from those assumed in the rigid beam approxima-
tion. As a result, the nonrigidity of the electron beam and ion
channel will also lead to variations in the terms @? and o?,
which appear in Eq. (15).

In order to study the effects of variations in »? and w?
resulting from axial density variations and the nonrigidity of
the beam and channel, we consider Eq. (15), letting w? and
o? be functions of z and ¢. Since the use of a periodic ion
channel will result in axial variations in the electron and ion
densities, the following results include the case of periodic
ion channels. With the definitions

d*Z dzZ
W=-zogE 0=EZS05

d*z, dz,
o’'=-Z7'—-, o=iZ;7'—,

dt dt

Eqgs. (16) and (17) then follow, in which Q2, Q, o? o,
w?, and w? now represent functions of z and .

We assume that variations in o? and o? are distributed
so that the averages of functions of w? and w? over the region
[z,z + 8z] X [t,¢t + 6t] are independent of z and ¢ for some
value of 6z and &¢. This will be obeyed, e.g., by random varia-
tions and periodic variations. We denote such averages by
{--). Averaging Eq. (17) yields

)(Q) _ <w§(a)2 — o, + ioa;) )
o — wo, + 2oa, —o?[’
(22)
where 02, Q, »°, v, ©7, and »? are functions of z and ¢.
In order to proceed further, we assume the existence of
solutions to Eq. (22) that describe coherent sinusoidal oscil-
lations, i.e.,

Z,(2,t) =Z e, Z,(z,t) =Zpe' e,

where o is a real constant. Exact equality will not be obeyed
because of the variations in @? and w?. Because of the large
mass of the ions, we assume that the level of variations in the
ion channel motion will be relatively small, so that
0*(z,t) =0” and w(z,t) = will be approximately obeyed.
For solutions of this form, {(Q%(z,t))=(» —vk)? and
{Q(z,t)) = — vk will be satisfied. With these substitutions,
Eq. (22) can be solved for k£ to obtain a dispersion relation

1{ I i[(w“ +ia )’
=-—{® ia, .
v 2 2

. <m§(w2 — 0w, + oa;) >]1’2}

0* — wo,; + 2va;, — o}

Dee
2

(@) + 2(iae +

(23)

where w? and w? are functions of z and ¢ This dispersion
relation reduces to Eq. (18) when w? and w? are constant.
When variations in w?(z,t) are present, the resonance
condition w? — ww,; = w?(z,t) can no longer be met for all z
and ¢ by any frequency. Consequently, the magnitude of the
average in Eq. (23) will be reduced when compared to its
value at resonance when the variations in w?(z,¢) were disre-
garded [Eq. (18)], resulting in a reduction of the magnitude
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of k. This leads to an increase in the e-folding length of the
ion hose instability, i.e., a “detuning” of the resonance.

We recall that ? ~n,e?/2e,ym,, so that variations in w?
result from variations in the electron density on axis as well
as the nonrigidity of the beam and channel. The resonance
detuning that results from the nonrigidity of the beam and
channel has been previously observed in spread-mass mod-
els.?

In order to evaluate Eq. (23), we approximate

2

< 0l (0* — v, + 2oa;) )
o’ — v, + 2iva, — o?

=~{0?) (0® — w0, + 2iva;)

><< L 2) . 24)
o? — wo,; + 2oa; — o

In evaluating the average of Eq. (24), we note that we can
write

i P er)
" \o? — wo, + liva, — o?
S (@})d(w})

f&
= b
- @ — 00, + 2va, — o?

(25)

where f (w?) is the distribution of »?(z,¢) in the region
[z,z + 8z) X [t,t + 6], normalized so that ff(w?)
Xd(w?) = 1. We allow the possibility that f (w?) >0 for
w? <0, which describes a repulsive force on the center of the
ion channel. This could easily occur if the ion channel and
electron beam profiles are deformed.

In order to determine the behavior of Eq. (25) for a
distribution peaked at (w?) with half-width 8w?, we consider
a Gaussian distribution

f(o) =[Q2m)'?8a2] !
xexp{ — (1/2) [ (&? — (0?}) /802 ]?}.
In this case,
I= — (2"280})~!

XZ [(&? — oo, — (0}) + 2iwa,)/2"?60?],
where, for @ >0, Z is the plasma dispersion function, while
for w <0, Z is the complex conjugate of the plasma disper-
sion function. From the properties of the plasma dispersion

function,'® we observe that |7 | and |Im(/)| are maximized
for frequencies that satisfy
|0® — v, — (o)) <|20a,] + 2"?607,

i.e., @? — ww, = (w?). For these resonant frequencies, the
large values of |7| and |Im(J)| result in the minimum e-
folding length for ion hose oscillations, when substituted in
the dispersion relation (23). Thus the detuning of the ion
hose resonance that results from variations in w?(z,f) does
not greatly change the resonant frequencies, but only the
wavelength and e-folding length of the corresponding
modes.

For the resonant frequencies where w? — wo,; =~ {(@?),
|Re()| <|Im([)|, so that
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s (E)l/z 1
lo| \ 2 ba?
21/2

21/2 2 wa
X[“"( 507 )(l—erf «sw%im' (26

Substituting Eq. (26) into the dispersion relation (23), we
obtain the value of k for the resonant modes, which have the

smallest e-folding lengths,
Wce )2
[( 2 ‘

k=-1-(
v

@ 2){ l( )vz (@) + 2iva,

A=)

21/2mai 2
X [exp( b0 ) (1 —erf
27

In the limit of small ion damping (a; -»0), Eq. (27)
becomes

k= i{
v 2
[(wce
+ 2

We recall that, for variations in w?(z,t) caused by varia-
tions in the electron density, Sw?/{w?) ~&n,/n,. This term
is of order 1 in a beam with moderate variations in electron
density, which can arise from turbulence, longitudinal oscil-
lations, the use of a periodic ion channel, and the nonrigidity
of the beam and channel.

A comparison of Eq. (28) with Eq. (18) (evaluated at
resonance) indicates that the resonance detuning resulting
from variations in w?(z,t) is comparable to that resulting
from an ion damping term «;, provided that «,/w,
~(2m) " V%8w?/{w?). Thus, for weak ion damping
[a:/w; < (2m) =260}/ (w?) ], the variations in w?(z,t) are
an important source of resonance detuning.

For a strong axial magnetic field, such that »?, > (@?)
X ({w?)/8w?)?, and negligible damping (a, -0, a, —0),
Eq. (28) reduces to

c Loy foe o (z)"led D))
k_"u'{‘" 2 [2_'W() o, o ||

(29

€

(28)

This equation describes growing oscillations with

(2€@2N'? (2))'? (0]) 72
v |@c.| dw? 2

—Im(k) = (30)

Since (2{w?))"*/v is the wave vector of a betatron oscilla-
tion, the e-folding length with a strong axial magnetic field,
negligible damping, and moderate density variations, is
many betatron wavelengths.

For the case of a weak axial magnetic field or no magnet-
ic field (w2 €{w?){w?)/w?) and negligible damping, the
value of the wave vector at resonance is again found using

Eq. (28):

639 Phys. Fluids, Vol. 31, No. 3, March 1988

k=i[ Dee
v 2

) () (2]

The modes that propagate downstream obey

2 1/2 2 172
Re(k)| = — Im(k) = 2820 (1)( (@) )
v 32

bw?
(32)

Thus for moderate variations in beam density or deforma-
tions of the beam and channel so that dw?/{w?) =1, and
negligible damping, the wavelength and e-folding length are
approximately equal to two betatron wavelengths. In the
case of a Gaussian beam and channel, this is equal to the
beam-averaged betatron wavelength.

Experimental observations have shown that transverse
oscillations of an electron beam occur after propagation dis-
tances on the order of a betatron wavelength in an IFR chan-
nel with no axial magnetic field,” consistent with the predic-
tions of this model. Numerical calculations with the spread
mass model have yielded an e-folding length on the order of a
betatron wavelength in the absence of an axial magnetic
field.® This is also consistent with Eq. (32) since moderate
nonrigidity of the beam and channel will lead to values of
Sw?/{(w?) on the order of unity.

Since the e-folding length of the ion hose instability in-
creases with Sw?/{w?), which increases with én,/n,, in-
creasing the axial variation of electron density will increase
the e-folding length of the ion hose instability. This suggests
that the use of periodic ion channels will aid in the propaga-
tion of electron beams. In the absence of a magnetic field and
damping, our results suggest that the wavelength and e-fold-
ing length can be increased to approximately the beam-aver-
aged betatron wavelength.

31

IV. SUMMARY AND CONCLUSIONS

The results of this investigation of the propagation of an
electron beam in a periodic ion density channel can be sum-
marized as follows.

(1) In the absence of an external magnetic field, the
electrons undergo cylindrically symmetric radial oscilla-
tions at their betatron wavelength as well as the wavelength
of the ion density variation. The betatron oscillations appear
as electron plasma oscillations in the frame of reference mov-
ing with the e beam. When the wavelength of the ion density
variation is equal to the betatron wavelength, resonant exci-
tation results in large radial oscillations of the electrons even
if the relative variation in ion density is small. In the frame of
reference moving with the e beam, this appears as resonant
excitation of electron oscillations when the driving frequen-
cy equals the plasma frequency.

(2) A dispersion relation for IFR ion hose oscillations
was obtained in which electron and ion density variations
(including the nonrigidity of the electron beam and ion
channel) result in the detuning of the ion hose resonance.
Larger axial variations in electron density (resulting, e.g.,
from the use of a periodic ion density channel) increase the
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e-folding length of the hose oscillation. In the absence of a
magnetic field and significant damping of electron or ion
oscillations, moderate density variations (caused by, e.g., a
periodic ion channel, turbulence, or the nonrigidity of the
beam and channel) result in a wavelength and e-folding
length on the order of the beam-averaged betatron wave-
length.
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APPENDIX: MAGNETIC FORCES

The consistency of the solution obtained in Sec. II for
the radial electron oscillations in a periodic ion channel re-
quires that the magnetic forces be negligible in the frame of
reference moving with the beam. We check this for a fluid
element on the edge of a cool e beam of uniform cross section
[ny(r) =n,]. We obtain an estimate of transverse velocity
(v, = db/dt) from Eq. (8) and an estimate of E is obtained
by substituting the solution (8) into Eq. (4). The typical
electron velocity resulting from betatron oscillations of mag-
nitude g, is

Uy ~ Q@ pe* (A 1 )
The magnetic field strength at the position 74 = 7., dueto
the ion current density is

B~pugnieBery/2. (A2)
The magnitude of the electric field generated by betatron
oscillations of magnitude g, is
(A3)
In order that the magnetic forces be ignorable, we must

have v, B <E. Using the estimates of Egs. (A1)-(A3), this
requirement becomes

Ao, Holtgef cro/2 &noeay/ €.

E ~nyeay/e,.

(A4)
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In terms of the e-beam current in the laboratory frame (7,
= yn,eBcmry), (A4) can be written as

I, € (4megm /) (v/B). (AS)

This consistency condition requires (for S~ 1) that the elec-
tron beam current be less than the Alfvén current limit®
[ (4mr€gm, c*/e)By].

Similarly, for forced oscillations with frequency », we
obtain the consistency condition

3 2
L, <(———4“°"“*° )(l) (i) .
e B/ \w,,

This is a more stringent requirement than the Alfvén current
limit when w/w,, €1 and f~1.

For the case where the e beam is propagating parallel to
a static magnetic field B,, the analysis of Sec. II is consistent
provided that v, B, < E, where the transverse velocity v, re-
sults from the betatron and forced oscillations. This require-
ment is satisfied provided that the electron cyclotron fre-
quency in the frame moving with the e beam (eBy/m,) is
much smaller than & and w,,, which is satisfied only by a
weak magnetic field.

(A6)
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