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Fluids with persistent vortices that exhibit shear plus expansion (or contraction) in 
noninertial frames are common physical phenomena. The concept of intrinsic rota- 
tion is commonly referred to as spin; the equivalent concept for shear would be 
shear momenta, referred to as twist in this work. The motion of the Earth’s atmo- 
sphere is a prime example of such motion in which the driving engine is the 
rotation of the Earth plus solar radiation. The general analytical features of persis- 
tent vortices that exhibit shear plus expansion and contraction are introduced using 
the methods of affine geometry. The same theoretical considerations can also be 
applied to astrophysical examples. 0 1995 American Institute of Physics. 

I. INTRODUCTION 

In introducing fluids with intrinsic vorticities (spin)lm4 and the angular momentum associated 
with the shearing motion (or shear momenta, for short), we use an anology with the mechanics of 
elastic material subjected to strains and the consequent stresses that results. Since strains associ- 
ated with shear can be thought of as a twisting of an elastic medium, we will refer to the shearing 
momenta throughout this work simply as twist. The concept of the mechanics of elastic media can 
be found in many textbooks in mechanics.5*6 In this work, we introduce a Lagrangian which is 
based upon elementary concepts from the theory of elasticity, and then generalize the results to 
affine geometry with appropriate constructs, such as frames, capable of quantifying the relation- 
ships between the stresses and the various velocity gradients exhibited by the fluid. We point out 
necessarily that the use of affine geometry to describe elastic and plastic deformations in matter 
was pioneered by Kroner.7-9 An application of a deformable, magnetically saturated, polarizable 
media was given by Maugin and Eringer.” Deformations of space-time itself have been based 
upon the general affine group GA(4,R) .11-1’s Within the context of this work, Obukhov and 
Tresguerres have recently developed an energy-momentum tensor for a hyperfluid in metric-affine 
geometry.t7 We will adopt the attitude that one can solve this problem in a generalized space-time 
and then take the appropriate limits for applications. Following the lead of Krijner, we assume the 
general space-time in which we are working is a metric-affine (MA) space-time. The MA ap- 
proach here has commonality, in part, with the work of Obukhov and Tresguerres although this 
calculation follows the holonomic approach. Depending upon the limits imposed by the applica- 
tion, this can include both curvilinear systems as well as effective Lorentzian frames. The spe- 
cialized applications (or limits) determine the arena plus the appropriate meaning of the derived 
quantities. 

The starting point of our discussions is the velocity gradient matrix. For an isotropic fluid, the 
velocity gradients must not depend on the orientation of the coordinate system. The velocity 
gradient tensor will have the general form of a dyad in vector notation 

[Vv]ij=diUj-‘ViUj, 

where V is the gradient operator and Vi is the covariant derivative which represents the generali- 
zation to affine geometry. 
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In the next section, we will decompose Eq. (1) into its irreducible parts with respect to the 
symmetric group, introducing the symmetric, antisymmetric, and trace parts as well as the conse- 
quences suggested by this decomposition. Our approach is a self-consistent approach based upon 
the combination of a Lagrangian formulation plus thermodynamics.‘8-20 We then introduce the 
Lagrangian for a fluid in a general metric-affine (MA) geometry in Sec. III with appropriate 
thermodynamics for the fluid variables. In Sec. IV we outline the calculation using the method of 
independent metric and connection (or the concept of hypermomentum) and show how to convert 
it to the standard form of an energy-momentum tensor for a fluid. In Sec. V we repeat the 
calculations in Sets. III and IV for a volume conserving geometry.21 We give our conclusions and 
suggestions in the last section. 

II. DECOMPOSITION OF THE VELOCITY GRADIENT TENSOR 

The velocity gradient tensor can be decomposed into its symmetric and antisymmetric parts 

ViUj=V[iVj]+V(iUj). (2) 

The antisymmetric part can be interpreted, in the usual way, as an angular velocity corresponding 
to a rigid rotation of the fluid. We further interpret this as the spin (or vortex) angular velocity 
which further implies that the form of the spin energy density will have the value 

Ts= $wij,+i, (3) 

where S, is the spin density of the fluid and the spin angular velocity Wij is the logical extension 
of the antisymmetric part of the velocity gradient tensor 

We further adopt the model of a spin fluid described by Halbwachs2’ in which the spin angular 
velocity is written in terms of an anholonomic frame described by the set of tetrads ani (i.e., 
frame) where Greek indices (Y= 1, 2, 3,4 are the anholonomic coordinates and Latin indices i= 0, 
1, 2, 3 represent the holonomic coordinates such that 

a a 
iaaj'gij 7 aaka Pk= g0, 

where gij is the holonomic metric and Y,P@ is the anholonomic metric which in Riemannian or 
Riemann-Cartan geometry can be taken as an orthonormal frame. However in affine geometry, 
the orthogonality of the anholonomic frame may have to be relaxed, as we will show later.” For 
convenience, we let the fourth component of the tetrads be the fluid four-velocity uk=a4k. 

In affine geometry, the metric is not necessarily covariantly constant, and therefore the con- 
cept of nonmetricity Qijk is introduced by the definition22*23 

(6) 

From the spin analogy,‘9’2’ we have 

‘(I Oij’a[ia,j]‘a ‘[daj] 7 (7) 

where the dot over the tetrad means the covariant derivative along fluid flow lines Liai= UkVkaai, 
square brackets mean antisymmetrization of holonomic indices, and the last equality follows from 
the symmetry of the metric through ~[ij3 = 0. 

From the symmetric part of the (stress) velocity gradient matrix we define an equivalent twist 
velocity tensor 
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where the parentheses indicate symmetrization of the holonomic indices. The two terms in the 
bracket are not identical as was in the spin angular velocity case since the holonomic metric is 
symmetric and ~ij # 0. One can show 

1 . Vij= Tgij * (9) 

According to the Halbwachs perscription, the spin density can be written in terms of the 
tetrads*i as 

Sij”psij’pk(X)(U’iU*j-U*iU’j), (10) 

where p is the fluid density, k(x) is the spin module function, and Sij is the spin per particle. In RC 
space-time, k(x) is covariantly constant and equals the spin (per particle) in the fluid frame.24 Note 
that the Halbwachs definition of the spin density satisfies the Frenkel condition Sjj,‘=0.25 This 
further requires in this construction that the four-velocity be orthogonal to the spatial components 
of the tetrads. 

By analogy we introduce the shear momentu density or for short, the twist density 

Yij”P7ij”PT(X)(U’iU*j+U’iU*j), (11) 

where rii is the twist per particle and 7(x) is the twist module function. The hyperfluid approach 
of Obukhov and Tresguerres differs from the above assumption of separate spin and twist module 
functions by assuming a single specific hypermomentum density.17 By construction, YijU’=O. In 
the variational problem which we introduce, neither of the parametric functions k(x) nor r(x) are 
varied in the variation. The energy density for the twist/stress now becomes 

TV= $,yii. (12) 

The introduction of the twist velocity tensor shows the importance of nonmetricity via Eq. (9). 
We can further decompose uii into a trace 

I . ij V’=Vi’=~gijg 7 (13) 

and a trace-free part called the proper velocity gradients by subtracting the diagonal compressive 
(expansive) stresses given by Eq. (13) 

* I . I Vij= Fgigij- ;igijV’e 

[Note that in fluids the trace and trace-free parts may enter the description of a fluid with different 
couplings parameters (or strengths).] Similarly the twist can be decomposed into a trace part 

71=Tii=2TU iU l 2i=2w’2 (15) 

and a proper twist 

where the bar over the tensor represents the trace-free or proper twist, and the projection operator 
h,=gij+ uiUi insures that the proper twist satisfies the Frenkel condition. Note that the trace of 
the twist velocity tensor is nonzero if the Weyl vector Qk= $Qkxx# 0. Thus a nonzero Weyl vector 
induces a nondiagonal anholonomic metric since, necessarily, v’*#O. This assumes that we use 
the same coupling for the trace and trace-free parts in the definition of ~j and 7’ although not for 
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the coupling for sij and rii because of the different module functions. We mention that the 
orthogonality of the anholonomic metric would prevent the appearance of diagonal fluid stresses 
which could be due (perhaps) to the viscosity or viscous forces in the fluid in addition to the usual 
hydrostatic pressure p usually assumed in perfect fluids. Thus in general the transition to a 
deformable or elastic medium requires a non orthogonal set of tetrads. However for those geom- 
etries in which the Weyl vector vanishes, the geometry is volume conserving;26-28 thus the an- 
holonomic metric can be essentially orthogonalized within the context of a volume conserving 
vuriutionul principle. By contrast, it has been noted that a nonzero Weyl vector can lead to a 
space-time-dependent cosmological function that can lead to de Sitter type expansion during early 
cosmological times and thus can provide the gravitational echo to inflationary models.29’30 

Before leaving the concept of volume conserving geometries, let us introduce the volume 
preserving connection26-28 

trijk,rijk- $Qi$, (17) 

where, in general, the dagger “t” before a symbol signifies that the use of the volume conserving 
connection for covariant derivatives +Vl, which has the property that the second trace of the 
curvature tensor vanishes, i.e., 

tV..~+Rij,k=2dIitrjlkk=0 ‘I 

where ‘Ri ‘k ’ 
Schouten21 

is the volume conserving curvature tensor. Note that we use the definitions of 
except that we use Latin indices for holonomic metric and Greek indices for the 

anholonomic metric. 
We are now ready to introduce the Lagrangian for a perfect fluid in affine geometry in the next 

section. 

III. SPIN-TWIST FLUID LAGRANGIAN 
A. Fluid continuity constraint 

In principle there are five different ways that one can introduce the continuity constraint on 
fluid flow in metric-affine geometry: 

11 
~j[PUj]"Vj[pUj]+2pUjQj~O, 

+frj[pUjl,~j[pUj]=O, (22) 

{l 
E?-lij[C?pUj]EVj[pUj]=O, (23) 

where Sj = Sjx ’ is the torsion vector, and the torsion is defined as Sijk = rIijlk. In Riemann- 
Cartan space-time, only the constraint in the second equation yields field equations avoiding an 
interpretation of mass (or particle number) nonconservation as is the case with the first equation.” 
In metric-affine geometry, only the last two forms of the constraint lead to mass conservation.26 
However, the geometry is volume nonconserving for the fifth constraint. It is only through the field 
equations from the variation of the connection that eventually the Weyl vector is set to zero 
thereby forcing the geometry to be volume conserving! Note that either an active torsion vector or 
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a Weyl vector will lead to an interpretation of particle number nonconservation. This is why the 
constraint given by Eq. (20) leads to such an interpretation in MA geometry.31 

In this work, we will only consider the two cases given by Eqs. (19) and (22) since they are 
representive of the two extremes described above. In the first case, the geometry is volume 
nonconserving and the torsion vector is active. For the second, the geometry is volume conserving, 
and there is particle number conservation. 

B. Lagrangian for spinning fluids with twist 

Our Lagrangian will be of the form 

JI9= J%EH + SST 9 (24) 

where the Ray-Einstein-Hilbert Lagrangian ,53&n is given by a geometric part 

3~=$%2K, (25) 

where 5% is the scalar curvature density, e = 
constant plus a perfect fluid Lagrangianus 

dm, K= 8 rrG, and G is the gravitational 

~~=e{-p[1+~(p,s,sij,‘rij)]+X*(U~Ui+1)+A*Vi[pUi]+A3UiX,~+X4UiS,i}, (26) 

where E is the fluid energy density which is assumed to be a function of the fluid density, spin,” 
entropy s ,I8 and the twist;32 and A, is the Lagrange multiplier that insures orthogonality of the 
four-velocity, A2 is the Lagrange multiplier that insures the continuity constraint given by Eq. (18), 
and X3 and A, insure that along fluid flow lines, the fluid is not irrotational through conservation 
the Lin function X1* and conservation of the entropy, respectively. The spin-twist Lagrangian is 
given by 

+ ~~~~~~~~~~~ v**) + A4iU’U’i+ A4zU’a2i}, (27) 

where the first two terms represent the energy density of the spin and twist, respectively, written 
in terms of the tetrads, and the various Lagrange multipliers A,, define the tetrads. Without loss of 
generality, the third component of the tetrads does not enter into the Lagrangian, by construction, 
when we use the Halbwachs’ ansatz.*’ We can further assume that the tetrads are normalizeable 
but not necessarily orthogonal; in particular, $*#O. However, by construction, we have assumed 
that the four-velocity is orthogonal to the spatial tetrads.18 

In order to complete the self-consistent framework, we need to add the thermodynamics which 
takes the form 

1 1 
de= T ds+ ; dp+ z wij ds’j+ z uij dij, 

since we have assumed that the energy of the fluid is a function of the spin and the twist. 
The variables of the variation are then Sij, I’kj’, p, ui, a li, Use, X, s plus the various Lagrange 

multipliers. An alternate independent set of geometric variables can be used by varying the metric 
gij , the nonmetricity Qijk , and the torsion Sijk instead of the metric gij and connection rkj’. The 
relationship between these alternate methods is seen from the variation of the gravitational La- 
grangian Eq. (24) for the former set, 

(29) 
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which defines the Palatini tensor through the variation of the scalar curvature density &‘Y26-28 

(30) 

which then becomes 

Pijk= Tijk- gQijk+ $;Qjl,“- qQxj,], 

where the modified torsion is given by 

(31) 

Tijk= Sijk+ 2 ~jS;jsilx’. (32) 

Note the appearances of both traces of nonmetricity in Palatini tensor given in Eq. (31). The 
variation of the matter Lagrangian with respect to the connection defines the fluid hypermomen- 
turn 

1 ~-%x!tter A,&-- , 
e 8rkjl (33) 

so that the hypermomentum field equation becomes 

Pjk= KA;~. (34) 

Also for the rkjl variation, the symmetric components of the Einstein tensor are defined as 

G(V), - A -!bE 
e Sgjj’ 

so that with the r-metric symmetric energy-momentum tensor defined by 

2 =%lattt?r r&i, - - 
e Sgjj ’ 

(35) 

(36) 

one obtains the metric field equation 

G(U)= Kr,ij (37) 

An identity of the Riemann tensor in MA gives the antisymmetric part of the Einstein tensor22 

* 
G[ijl=e-lgl[igjlmVk{e(Tlmk- &$lQ,l,x)}. (38) 

After adding Eq. (37) to Eq. (38), the right-hand side of the equation (divided by K) becomes the 
canonical energy momentum tensor 

* 
c”= r~ii+ ( Kc?)-lg’[i&‘jlmVk{e( Tlmk- ~t$lQmlxx)}. (39) 

Note that the raising and lowering of indices is cumbersome because of the nonmetricity. 
The MA variation of ZG with respect to the other independent set is given by33 
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asG=& {[ -eG(ii)- \;k(e(pW)+ pj(ki)_pk(ij)))]~gij-~egk,(p[~~li-p[ijl~+pli~li)~~ijk 

+e[pk(ji)+pj(ik)-pi(kj)]~~ijk}, (40) 

and the improved symmetric energy-momentum defined by’9V34 

2 ~-%natter Tij, - 
e Sgjj ’ (41) 

so that the variation with respect to the metric of the field and the matter Lagrangians has the 
metric field equation with the usual meaning 

(42) 

In what follows, it is actually easier to do the variation treating the metric and connection as 
independent and then convert later to the metric field equation for independent metric, torsion, and 
nonmetricity by using the above relationships. The advantage of this approach is that the very 
tedious torsion and nonmetricity field equations are easily found from the variation of an inde- 
pendent connection. 

Finally the variation using the continuity constraint given by Eq. (22) is obtained by substi- 
tuting the appropriate constraint for the A2 term. 

In next section, we calculate the variational equations for the continuity constraint 
VJpu’] =o. 

IV. FLUID FIELD EQUATIONS WITH NONCONSERVATION OF BOTH PARTICLE 
NUMBER AND VOLUME 

A. Variational equations for case Vi[pu’] =0 

Using the constraint given by Eq. (19) will yield field equations in which the torsion vector 
and the Weyl vector are active. Thus the anholonomic metric will in general be nonorthogonal. In 
addition, we will find that the Weyl vector, torsion vector, plus the other trace of the nonmetricity 
Qx, cannot be resolved individually by the field equations. This is a direct result of the fact that 
the variational principle for an independent metric and connection given by the Lagrangian Eq. 
(24) with the scalar curvature Lagrangian Eq. (25) cannot resolve four of the total possible 64 
degrees of freedom of the connection in the variation described by the variables {gij ,Fijk}.28 
Nevertheless certain combinations of these vectors can be resolved which allows simplification of 
the torsion and nonmetricity field equations. As a result, this gives rise to an interesting result for 
the trace part of the twist. Thus it will appear, in principle, that the disadvantage of using a volume 
nonconserving connection can be overcome. 

8. Connection field equation 

The variation of Eq. (24) with respect to the connection gives the field equation for the 
connection: Connection 6 rkj': 

Azpui$+ i Uksi,+ i &i,= - i p,.ik= -&.ik. (43) 

From Eq. (31) for Pjk we can resolve the four degrees of freedom discussed above by taking the 
trace on jZ since the Palatini tensor satisfies the identity PI’” = 0. This gives the restriction on the 
matter fields 
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P,lk= Kh2pUk+ ( K/2)ZlkYxx=0 04 

or 

x2 = - T7q2, (45) 

where we have used YXX= 2~777 l2 from the trace of Fq. (11). From the two other traces of the 
Palatini tensor, one gets 

Plj1=2Sj-3Qj+ iQxxj=-4KhZPUj (46) 

and 

Pjr’= -2Sj+ Qj+ fQ”,= - KA2puj, (47) 

which shows that we cannot uniquely resolve the three traces of the torsion and nonmetricity from 
these equations. However, one interesting result that can be found is 

(48) 

where the nonmetricity which is trace-free of the Weyl vector is given by 

Qkjl’ Qkjl- Qkgjl. 

However, since Quk has two traces, we can extract them in the form35 

Qljk=61jk+ Y(Ql4- fQjs;k-iQkgjl)+ ~(Qxxj~+QxXkgjl--Qxxl~), 

= 

(49) 

(50) 

where Qrjk is the double trace-free nonmetricity. The connection to rZ’ljk is then given by 

Qljk= G[jk+ %(r2”,~+ QxXkgj[- ~exxl~). (51) 

From the antisymmetric components of the Palatini tensor PLljlk and the connection field equation 
(43), one obtains the torsion field equation 

K = 1 
Sljk- z QL/jlk=T SUUk, (52) 

where Sljk is the trace-free torsion. From the symmetric components of the Palatini tensor PClijk 
and Eq. (43), one obtains the nonmetricity field equation 

= 
Q(rj~k=-~KpX2(2U(l~~+Ukgjlf6UkUjUI)+ KYj!Uk, (53) 

where the term inside the parentheses on the right-hand side insures that the right-hand side 
vanishes for all the traces on Qcu,k. Indeed these terms are the results of the nonzero trace for the 
twist in Fq. (44) and as a result, the nondiagonal anholonomic metric seen in Eq. (45). 

C. Metric plus fluid field equations 

The remainder of the variational equations become 

Metric equation Sgii: 
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G(G) 1 
-~-- 

2K 2 
p(1+~)g~~+X~u~u~+X~~a’~a’~+X~~a*’a*~+2A,,a~’~a~~~+2A~~u~‘a~~~ 

+2A42U(ia2i)- L 2 T,gij- i TTgii+ $ ~k[.p~uka~~j]a2~)-p~a~lja2i)u~Ql 

- i ~k[pkuka(2j]ali)+pka’lja2i)u~Q,+ f .\Tk[pTUka~~ja*i~]~pTa~~~a~i)u~Q,~~~ (54) 

Fluid density Sp: 

(55) 

* * 
where the “star” in place of the “dot” signifies A2 = ukVkA2. 

Four velocity SUk: 

-p~kA2+2pA2Qk+2h,Lr,+h3akX+A~akS 
=2+11k+2k,,a2k- + pka”vka2i+ f pka2’vka1i- i pT[vt&ij]a”a2j’o. 

(56) 

Entropy 6s: 

(57) 

Lin constraint 6x: 

(58) 

The tetrad variations 

and &zzk: 

*  

-I- ~Vl[pka’ju’]gik-pkal’~‘Q g 1 jk-~p~ul[Vlgjk]ali=O. (60) 

The various constraint equations then completes the set of variational equations for the case with 
fluid continuity V i[ PU’] = 0. In obtaining the above variational equations, we have ignored surface 
terms that arise from the variation of the action. We have explicitly used the MA identity for the 
covariant derivative of the determinant of the metric 
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(61) 

Then the formation of surface terms can be facilitated by using the results 

(62) 

where the vector density is given by @=e Vi. 
In the next two subsections, we resolve the above variational equations into a spin-twist 

transport equation plus a metric field equation by eliminating the Lagrange multipliers and specific 
reference to the spatial tetrads. 

D. Spin-twist transport equation 

Because Eq. (61) holds in MA geometry, certain groups of terms often occur that can be 
combined for convenience such as in the tetrad variation given by Eq. (60) 

1 * 1 * 
z V1[pkaLiU’]gjk-pkal’U”Qlgjk=~ V/[epka”U”]gjk. (63) 

Introducing this combination of terms into the variations mimics the form of the variations 
using the volume preserving connection ‘lYkjl (except for the appearance of e and the “star” 
derivative depending on the choice of fluid continuity constraint). 

Multiplying the Sp variation by p, we obtain 

(ple)(eA2>*=[p(l+E)+p]+Ts+TT, (64) 

where we have used Eqs. (3) and (12). From uk times Suk 

(65) 

From uk times Salk 
. . k 2i* 2A41=pkuja2’fpklika2k-pp7U a gik. (66) 

From uk times Sa2k 

2X42= - pkrija Ii- kikal p k- p7uka’igik. (67) 

Then using the definitions of spin density Eq. (10) and twist density Eq. (ll), we can find the 
symmetric combination of Eqs. (66) and (67) 

2A41u(iali)+2~ u(iaW= 
42 

u(iSi)l$+u(iS.lV~l- uC~yi)~~l+uCiyj) il 
I 9 (68) 

and the antisymmetric combination 

2A41u[ia*j1+2A42u[ia2jl= u[iSjl,,l+ u[isjllil- u[iyjll,l+ .[iyjl il 
I . (69) 

We have assumed that the anholonomic metric can be normalized; we further assume that 
17 * 2 = a =const which only requires that 0 s a2< 1. With this restriction, one arrives at the four 
equations from aIk times 8aalk, a2k times Sa2k, a2k times Salk, and alk times Sa2k, respectively, 

2A11+2A12~12-2Ts-2T,-~p~12[e-‘(ek)*]=0, (70) 

(71) 
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2A,1~12+2A12+2pra ka 2 ‘2k-ip[e-‘(ek)*]=0, (72) 

2h22~12+2A12+2pra’ka ‘lk+ $p[e-‘(ek)*]=O. (73) 

Equations (70)-(73) imply (amongst other things) that All#A2, and that (ek)*#O. We will see 
later in the discussion of the volume conserving connection that 712=0 which in turn implies that 
A11=A22, but (ek)* # 0 (unless 7=0 as well). However in the analysis that we are doing here, we 
will not need the explicit values of these functions to continue. 

The tetrad variations yield two additional relationships which we will use. The first is from the 
sum of the antisymmetric combinations of a’j times the Salk variation and a2j times the Sa2k 
variation. The similar symmetric combination will be used in the metric field equation. 

For the antisymmetric combination, one gets after using Eq. (69), 

(74) 

One can show the following two results directly from the derivative along fluid flow lines of the 
definition of the spin given in Eq. (10) for the case Vi [ pu ‘I= 0 : 

(75) 

and 

Using Eq. (75), we can rewrite Eq. (76) in the form 

i pkta lg .I I[ka2jl-Li21gI[kaIjl)= -!- 2e p (77) 

Then using Eqs. (75) and (77), we can rewrite Eq. (74) as 

$ ~esl~i]*g~l~+p~wf~sil~-~pv~~~l~~ u[I’,+I$ + U[jSkllG[+ UIjykllil- &ykl$. (78) 

Recalling that vii= - &j’j and that h’j=g’j+ u’uj, we write Eq. (78) in the final form 

f [eskj]*- & [esl[i]*gkl~,(l;Ij+ 4 Wllj),ykll+(~llj+ f ,I[i)Skll-~Iiyklr+~rlirkll. (79) 

Equation (79) is the MA extension of Fermi-Walker transport to a fluid with both spin S/ and 
twist Yj. Equation (79) also reduces to the usual Fermi-Walker transport in RC geometry” in 
which the twist Yij vanishes and the simple relationship 20i’kS’1i = Ski holds. 

In the next subsection, we develop a symmetric combination of tetrad variational equations for 
use in the metric field equation similar to the combination that led in the above discussion to the 
extended Fermi-Walker transport equation. 

E. Metric field equation 

The tetrad variations also yield the symmetric combination a’j times the Salk variation plus 
a2j times the Sa2k variation [similar to the manipulations that led to Eq. (74)]: 

J. Math. Phys., Vol. 36, No. 2, February 1995 



L. L. Smalley and J. P. Krisch: Fluids with spin and twist 789 

~lla~ja~~+~22a~~a~~+2~12a(~~a~~)+~~4la(~~u~)+2~42a(~~Uj)~-~p~k(~sj)k+pVk(i~)~ 

- ~ppk[ci(‘ia2j)-,(2ia’j)]- +ppSiigj)‘+ $u(jS’)l~[+u(jS’)’ ’ ul-uo'yW~l+uUy~) c1-j 1 * 

(80) 

Upon substituting Eq. (80) along with Eqs. (64) and (65) into the metric equation (54), and 
rearranging, we find the symmetric components of the Einstein tensor, 

G(‘~‘=K ([p(l+e)+p] 
i 

u~uj+pg~j)+u(j~~)l~~+u(j~i)~~l-u(jy~)~~l+u~jy~)l~~~pOk(~Sj)k 

1 *(i + 2pvk(iTi)k+ z ps, g j)l+ 
i 

& {k[eyGuk] + f [eA2]*gCi 
ii 

G Kr,ije (81) 

Equation (81) could be combined with Eq. (38) to give the canonical energy-momentum tensor; 
however we prefer to give the improved symmetric energy-momentum tensor given by Eq. (42) 
for independent metric, torsion, and nonmetricity since it is closer to previous work for spin fluids 
in Riemann-Cartan geometry. Substituting the Palatini tensor given by Eq. (43) into Eq. (42), we 
find our final results, 

= Kr,ii+ 2 G, e 

Ii 

-pA2ukgG+u(~Sj)k 
1 

e - 2 y’JUk )I 
cK(Tg+T$+T;), 

where the perfect fluid energy-momentum tensor is given by 

T+[p( 1 + E) +p]u’uj+pg’j, 

the spin energy-momentum tensor is given by 

and the twist energy-momentum tensor is given by 

(82) 

(83) 

(84) 

The separation into spin and twist parts of the energy momentum is suggestive since both torsion 
and nonmetricity are present through the connection in Ty and since both spin and twist occur in 
Ty; however the division is somewhat instructive since the Riemann-Cartan limit for the Ty has 
the same form,” whereas TV vanishes in the same limit. 

In the next section, we calculate the variation for both particle number and volume conserva- 
tion. 
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V. FLUID FIELD EQUATIONS FOR BOTH PARTICLE NUMBER AND VOLUME 
CONSERVATION 
A. Lagrangian for spin-twist fluid: Particle number and volume conservation 

For the case of particle number and volume conservation, the Lagrangian will take the form 

+2-z= +saE*+ +J&, 036) 

where the Ray-Einstein-Hilbert Lagrangian ‘S& is given by a geometric part 

(87) 

where the dagger before a symbol represents the use of the volume conserving connection ‘Fkjr 
plus a perfect fluid Lagrangian given by 

+ZF=e{-p[l+e(p,s,sij, ij 7 )]+X~(~‘~j+l)+X*+Vi(~~‘)+X~~‘X,i+X~U’S,i}~ (8% 

and the spin-twist Lagrangian is given by 

+LZ&= e{ - $A[ u~~~*i-~~iu*~]-~~p7u*~u*iu~+vkgij+~1,(u*iu~~- vl~)+~12(u~iu*i- $2) 

+h22(a ia * 2i- 1722)+X4,UiU’i+X,*UiU2i}. (8% 

Note that the “dot” derivative, i.e., the covariant derivative along fluid flow lines now takes the 
form ,lj=,ktVku’j. All other definition such as for the thermodynamics in Eq. (28) remain the 
same except for the obvious generalization using the volume conserving connection. 

B. Connection variational equations for case tGk[puk] = 0 

Using the constraint given by Eq. (22) will yield field equations in which the torsion vector is 
inactive. In addition we note that this constraint is independent of both torsion and nonmetricity. 
This means that this constraint will not contribute to the variation with respect to the connection 
‘rkj’. Another way to see this is to rewrite the constraint in the form 

+~j[pUj],~j[pui]=e-‘~j[epUj]=O, (90) 

which shows that the str,’ variation of this term in the Lagrangian gives 

(91) 

C. Connection field equation 

Because of Eq. (91), the connection variation now becomes 

Connection 8rk/: 

In this case the first trace of the Palatini tensor gives 

(92) 

++fl Ukyxx=o 
2 (93) 
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or 

h*= - rp=o, (94) 

which implies that the anholonomic metric can be taken orthonormal. One should note that here 
the Palatini tensor is invariant under the particular terse transformation given by Eq. (17) which is 
called the volume preserving connection.22 Because of this, one finds +Pik = Pik. Thus in what 
follows, we could drop the dagger on the Palatini tensors. We have instead opted to retain it so 
that the volume conserving connection is evident. Also it is now clear from the invariance of the 
Palatini tensor under the volume preserving transformation why the first trace vanishes; the Pala- 
tini tensor can only account for 60 deg of freedom due to the connection variation.36 From the two 
other traces of the Palatini tensor, one gets 

and 

+Plj’=2+Sj+ ;“IQxxj=o (95) 

(96) 

This shows that the remaining traces can be resolved giving 

+Sj=+Qxxj=O. 

Thus with all the traces vanishing, we find the torsion field equation 

(97) 

1 = 
‘Sljk- 2 ‘Q[ljlk= 2 ” SljUk, (98) 

and the nonmetricity field equation 
= 

'Q(lj) k = KYj,Uk. (99) 

One should note the similarity between Eqs. (98) and Eqs. (52). Here we explicitly leave indica- 
tion of the absence of traces to remind us that this is the case of volume conservation plus 
continuity constraint given by Eq. (22). 

D. Metric plus fluid field equations 

The remainder of the variational equations become 

Metric equation Sgii : 

Fluid density Sp: 

++e)-$]-i,-;Ts-;Tr=O. 

Four velocity SUk: 
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+ $ pk~*‘+Vku’i- f p7[tVkgij]u’iu2i=0. W2) 

Entropy &: 

11 
PT-V~[X~U’]=O, 

where the braces superscript signifies the Riemannian geometry covariant derivative. 

Lin constraint 6x: 

(103) 

(104) 

and the tetrad variations 

(105) 

and 6hzk: 

PkokG 1i~~~~~~U”~~~~~u2~~~~~~u1~f~~~~~~~~~k~1~~~~V~[~kU’iU’]~~~~~~~~~~u1~~O~ 
(106) 

The various constraint equations then completes the set of variational equations for the case with 

fluid continuity ‘~i[pU’] = 0. Note that we explicitly left the continuity constraint in terms of the 
star derivative since it is the continuity constraint that makes the presence of the star derivative in 
the variational equations superfluous. 

E. Spin-twist transport equation 

It is interesting to note that the tetrad variational equations contain the possibility that the 
anholonomic metric is nondiagonal through the Lagrange multiplier X12. In this case we have 
explicitly assumed that the anholonomic metric was normalized. Because of the connection field 
equation, we see, a posteriori, that it can be taken orthonormal [see Eqs. (93)]. We find that the 
diagonal tetrad Lagrange multipliers take the form 

X11=X22=TS+TT, 

whereas the nondiagonal component takes the form 

x12=; p’+i1kdk+ti2ka2k], 

(107) 

008) 

and the spin and twist module functions are related by 

(109) 

Equation (64) now takes the form 

P&=[P(~+~+PI+Ts+TT, (110) 
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whereas Eq. (65) for A, remains the same as before. Also the symmetric and antisymmetric 
combinations of the Lagrange multipliers given by Equations (68) and (69), respectively, remain 
the same as before. However the antisymmetric combinations given by Eq. (74) changes slightly 
to 

so that the extended Fermi-Walker transport equation becomes 

Note again in RC, this reduces to the usual Fermi-Walker transport equation since in RC geom- 
etry 

WI Iksjll, ippskj, 013) 

which is broken in MA geometry because i # 0 and therefore becomes 

(114) 

Equation (112) can also be written equivalently in the form of Eq. (78) or (79) by replacing the * 
derivative by the dot derivative. 

In the next section we develop the metric field equations. 

F. Metric field equations 

The symmetric combination of the tetrad equations given by Eq. (80) is the same for both 
fluid constraints. Therefore substituting Eqs. (65), (80), and (110) into Eq. (100) gives the metric 
field equation for independent metric and connection 

G(G)= K (lp( 1 + E) +p]uiuj+.pgij) + u(isi),i'+ u(jsWil- u(jyi)l,l+ u(iyi),il- pok(isj)k 

+2pvk(i,$k-,k(isj)k+ & +ik[yil,k] =J&, 
I 

(115) 

and then by Eq. (42), the improved symmetric energy momentum tensor becomes 

where the perfect fluid energy-momentum tensor Tg is again given by Eq. (83), but the spin 
energy-momentum tensor is given by 

T~~u(jSi)lu’+u(jSi)‘ulf ;‘f~k[,(isjlk]- Wk(iSj)k, (117) 

and the twist energy-momentum tensor is given by 

~~~-~(iyi)~u~+~(iyi)~li[+2~~ (iyj)k+Uk(isj)k= _~liyi)l+~r(jyf)+Uk(isj)k. (118) 

Note that due to Eq. (97), the star derivative in Eq. (117) is superfluous, but is left as a reminder 
of the fluid constraint. 
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VI. DISCUSSIONS AND CONCLUSIONS 

In this work, we have described a straightforward generalization of a spin fluid in RC geom- 
etry to a fluid with both spin and twist in MA geometry. This generalization is based upon an 
extrapolation of the antisymmetric velocity gradient tensor which can only describe rigid body 
rotations. We have shown that in the generalization to both symmetric and antisymmetric compo- 
nents of the velocity gradient tensor (or stress tensor), one can describe both rotation and shear 
within a fluid. In order to describe a fluid with spin and twist in a space-time which is nearly flat 
(i.e., Rijk’ =O), we have used the special relativistic Halbwachs’ type description in an anholo- 
nomic frame which is then connected to the holonomic frame by the tetrads uaj which in fact are 
the components of the transformation matrix between the two frames. 

The direct application of the above formalism is to fluids in a metric affine space-time. In the 
case of spin, Brown37 has shown in a post-Newtonian approximation of a spin fluid in RC 
spacetime, that the components of the spin (intrinsic angular momentum) of the fluid contribute in 
the same level of approximation as ordinary angular momentum. Since the spin is directly related 
to the torsion through the torsion field equation, one can look on this as the geometrization of spin 
for applications in the astrophysical/gravitational setting. By contrast, one can devise a spin fluid 
purely within the general relativistic framework.20 However this framework is limited in the 
description of a spin fluid since no spin-squared terms contribute to the average of the symmetric 
energy momentum.38-40 The absence of spin-squared terms suggest that the correct way to include 
spin into the gravitational arena, is within a RC space-time. Thus since fluids can exhibit shear-like 
motions, i.e., twist, it seems reasonable to hypothesize the importance of MA space-time for these 
fluids. Indeed from the symmetry of the velocity gradient tensor, the symmetric component enter 
in the variational problem if and only if one considers the concept of nonmetricity. 

Now look at the relationship between the frames in a different way. The word, physical, is 
understood through the above arguments to mean that the physical fluid resides in a MA geometry 
which we note is a curvilinear space-time. However this was only our tacit assumption (or iden- 
tification) which makes that statement meaningful. That is, the tetrads uaj are, as we have men- 
tioned, just the components of the coordinate transformations between two different frames for 
which we chose to call one holonomic and the other anholonomic. The choice was ours. 

Consider a different type of fluid such as the atmosphere on the surface of the earth. This fluid 
resides in a nearly flat spacetime. This means to lowest order in the graviatational field, we can 
treat the gravitational force in it’s Newtonian form-constant near the surface of the earth. Thus if 
we assume that we can treat the frame of the Earth’s atmosphere as a globally stationary 
Minkowskian frame, what we originally called the anholonomic frame is in fact the holonomic 
frame for this fluid. In this case, the constructs of spin and twist represent the geometrical expres- 
sion of physical processes in the fluid such as vorticities subject to shear and expansion/ 
contraction. One then models these objects, and then spin-twist equations (84)-(85) or (117)- 
(118) give the correct response of the fluid as a result of the conservation laws that are inherent in 
the variational approach, i.e., the application of the Bianchi identities for the graviational field 
tensor G(ij).22 This will be the starting point for future work on specific examples of fluids. 
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