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The constructive role of random fluctuations is studied in the context of transport in stochastic
ratchets. We discuss the interplay of independent witlirma) and discretéexternal noises and

their generation of transport in anisotropic potentials. The constructive cooperation of such
fluctuations is most apparent in the asymptotic limit of fast discrete-valued noise, a limit which
presents some interesting mathematical features. We describe the asymptotic analysis of the current
in the limit of fast external noise, pointing out the strong qualitative dependence of the current on

the interplay of the independent noise sources and

its surprising sensitivity to the regularity of the

underlying anisotropic ratchet potential. €998 American Institute of Physics.

[S1054-150(98)01103-3

The interplay of the effects of independent sources of
noise in a simple nonlinear dynamical system is investi-
gated via asymptotic analysis of a model ‘“stochastic
ratchet.” For discrete noise-perturbed diffusion in an an-
isotropic periodic potential, the resulting nonequilibrium
current is found to depend strongly on the degree of
regularity (smoothnes} of the potential. In the presence
of order one diffusion, continuous ratchet forces along
with an additive discrete-valued noise force lead to, in the
asymptotically fast discrete noise limit, a certain scaling
of the current. We find, perhaps somewhat surprisingly,
that discontinuous ratchet forces produce a different
scaling. This analysis sheds new light on some math-
ematical aspects of models that have attracted attention
in condensed matter and biological physics in recent
years.

I. INTRODUCTION

It has long been recognized that noise and fluctuation

“external” forces may possess statistical steady states with a
flux, or flow. An obvious way to realize such a state is to
apply a uniform forceF to a system of particles, which in
many cases results in a net current of particles or probability
proportional to uF, where u is an appropriate mobility
which may itself depend o and the system’s internal
structure and fluctuatiorfsin the past few years there has
been a tremendous amount of interest in so-called “ratchet”
model$ where spatially uniform mean-zero symmetrically
distributed time-dependent forces, which may be random or
periodic in time, interact with an underlying spatial anisot-
ropy to generate motion. Such fluctuating force ratchet mod-
els display some subtle features such as unexpected current
reversals as a function of numerous paramétarsl a re-
markably sensitive dependence on the nature of the fluctuat-
ing forces and the regularity of the anisotropic potertitl.

is the purpose of this paper to describe and discuss the latter
phenomena, in particular the mathematical issues related to
the fast-noise asymptotic calculation of the current in the
simplest fluctuating force ratchet model. These investigations

can play a crucial role in transport processes, the canonicaCOVer & strong cooperative effect between wiiiteernal,
example being thermal activation. In the usual Kamerdherma) noise and independent fast discregternal noise

picturé* of noise-activated rate processes, transport betweef} Stimulating transport in stochastic ratchets.
metastable states proceeds either towards a thermal equilib- These and related fluctuating poterftiedtchet systems
rium distribution for “isolated” systems or to a nonequilib- have been used to model fundamental mechanisms for sub-
rium steady state for “externally” driven systems. By “iso- cellular biological transport processeand investigated ex-
lated” systems we mean those whose stochastic evolution ierimentally —as  mesoscopic  particle  manipulation
derived from an underlying time-reversal invariant dynam-technique$. Several more general review papers have ap-
ics. Their stochastic dynamics then obey detailed balance, gegared in recent yeaPsand we refer the interested reader to
the associated steady states are true time-reversal invarishiose for a more complete description of the models, appli-
equilibrium states so no net transport is possible beyond trarsations, experiments, and reversal phenomena. In this paper
sient displacements. Broad classes of subsystems coupledwe will concentrate on what may be the simplest and osten-
an equilibrium thermal bath provide examples of such syssibly most straightforward ratchet model, that of a particle in
tems, where the thermal fluctuations are modelled by stoene dimension subject to a dichotomous MarKawk.a. ex-
chastic noise processes. terna) force and/or independent whit@.k.a. internal, or

On the other hand, systems appropriately perturbed btherma) noise. We describe the asymptotic analysis of the
643
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current in the limit of fast external noise, pointing out a very Vix)

strong qualitative dependence of the current on the interplay

of the independent noise sources and the details of the un-

derlying anisotropic ratchet potential. Denoting the small

time scale of the external noise bywe may summarize our

results as follows: as—0, (a) the current is exponentially

small,O(e” /") with C>0, in the absence of thermal noise

while it is only algebraically smallQ(7%) with >0, in the 0

presence of white noise, an@) in the cases where it is

algebraically small, the scaling expone®tmay depend on

the regularity of the ratchet potenti@i=3 for continuous

forces, B=3 for discontinuous forcgs These results illus- Vix)

trate some interesting and rather delicate aspects of the math- —  ____|_.._.___...._..._...._.

ematical issues surrounding the analysis of nonequilibrium '

stochastic dynamic models in general, and ratchet models in

particular.

The remainder of this paper is organized as follows. In

the next section we describe the mathematical model that is

the focus of our study and review some elementary features 0 :

of its behavior. In Sec. Ill we describe the asymptotic 0 a L

—0 limit of the nonequilibrium current for various cases. (b)

Although there is also a natural white-noise limit for the

discrete process wherein the amplitude of the noise is apprd<G. 1. Ratchet poteniaé(x). In (a) we illustrate a smooth potential, and

priately increased as— 0 [see, for example, the analyses in in (p) a pieceyvise linear potential with di_scqntinuous forge. The energy
. barrier height isE and the parametet+L/2 indicates the anisotropy.

Refs. 4a) and 5, we will concentrate on the fast external

noise limit where the amplitude remai®(1). In Sec. IV

we summarize our results and discuss some implications for

other systems. What we have in mind for the potentigl(x) is a peri-

odic anisotropic potential like the one shown in Fig. 1, which
may be smooth or piecewise smooth with a discontinuous

Il. SIMPLE MODELS AND MECHANISMS force. Under very general conditions the probability distribu-
. . . . tion relaxes, as— o, to the stationary probability distribu-
Consider an overdamped particle moving on a rirg, tion
e[0,L] with 0 andL identified, under the influence of a
force f(x) derived from a periodic potentialV(x) 1 oo VD
=—[3f(y) dy and white noise of intensitp: PedX) =3 € R A fo e VP dx', (6)
dx . el . L . .
5= f(X)+V2DEM), (EDET))=dt—t), This equilibrium Gibbs distribution leads to the natural iden-
tification of the white noise as thermal fluctuations, and to
X(0) =X @D the particle diffusion coefficierld askgT, Boltzmann's con-
_ 0 N _ stant times the temperature.
The time-dependent probability density(x,t), obeys the Despite any anisotropy iWV(x), this distribution sup-
Fokker—Planck—Smoluchowski equation ports no current,
J — _ —
P =04V’ +Dd,}p, 2) Jeq_ f(X)peq(X) Daxpeq(x) =0, (7)

ot . . . . .
so the average particle velocityet drift) vanishes in the

with periodic boundary conditions kand initial probability  steady state:
distribution p(x,0)= 6(x—Xp). The evolution for the prob-

ability distribution may be rewritten as a continuity equation, <a> .0 astow. )
ap _
a_t+‘7XJ_0' 3 The simplest example of a nonequilibrium steady state

. . . o arises if an additional uniform forde is also applied to the
where we identify the local instantaneous probability currentparticle so the equation of motion is

J(x,t)=f(X)p(X,t) —Dadyp(X,1). (4) dx

The instantaneous noise-ensemble averaged particle velocity g —f(¥)+F+V2D&(D). ©)

is the integral ofJ:
The probability density must still be periodic ¢A,L], but

<d_x> :fLJ(x t) dx. (5) the “tilted” potential energyV(x)—Fx is not. Hence the
dt o steady-state current)s;, which must be constantd{Je
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=0), may not vanish. The straightforward solution of the d [p, (x,t)
differential equation for the steady-state probability densityyt | p_(x,t)
Pss, as in Ref. 2, yields the current

1 1
P V' ~F+Di}— = >
JSSZjLef(V(x)fo)/D [LeV)=FyID gy dx (10 - 1 1
0 M >; ﬁx{V’+F+D(7X}—2—T
For large values ofF|, i.e.,|F|>sup|f(x)|, JssF/L. For p+(X1) (15
small |F|, Jse~ uF with mobility p_(x,t))

The average particle transport is determined by the cur-

w~ L ) (11  rentassociated with the continuity equation for the marginal
[Le™VOI/D LD gy dx density of the positionp(x,t)=p. (x,t)+p_(x,t). Adding
0 X together the evolution equations fpr. we find
In either case the transport mechanisms are clear: the particle _F'+ 9,d=0, (16)

effectively moves down an inclined washboard potential, ot
limited by the friction for large- and by the thermal activa-
tion rate over remaining barrieg for smallF. Note that for

all but the largestF|, the magnitude ofis generallynot J=f(X)p—Ddyp+F(py—p_). a7

the same forF and —F. If V(x) were isotropic, i.e., if . . i
V) =V(L—x), then J(F)=—J.{~F), but for aniso- The goal of the analysis, then, is to compute the steady-state

tropic potentials this is not the case. It is this asymmetry thaFrObablht'eSpi(x) by solving the time homogeneous equa-

underlies the ratchet transport mechanism considered here. 01>
The idea behind transport in a stochastic ratchet is onfo)

with the current

step removed from the simple diffusion in a tilted periodic |0
potential. For a ratchet we consider an applied external force

which is spatially homogeneous but time dependent and a4V’ —F+Da }_i i
. . . . X X

mean zero. Such a force could be a periodic or sinusoidal ac 27 27

force, as in Ref. &), but we will concentrate on two-level

Markov processes so that the steady states for the overall 57 MWV +F+Da,}— 27

system evolution can be studied in the framework of station-

ary Markov processes. In particular we consider the equation p+(X)

of motion (p(X)) (18)
dx with periodic boundary conditions fore [O,L]. The average
a=f(x)+|(t)+ \/ﬁg(t), (12 particle drift velocity, i.e., the nonequilibrium transport, is

then determined by the steady-state current according to Eq.
(17), i.e.,{dx/dt)=JL. We are interested in the dependence
f J on the system parametells 7, F, and functionally on
(x).
. . X The physical mechanism for particle transport under the
time t evolve according to the master equation . . ; .
influence of the mean zero fluctuating force is evident from
1/-1 1 the considerations mentioned around Bj. For anisotropic
- ( ) (13 periodic potentials the net drift in the directions need not
27\ 1 -1 be, and in general is not, the same. Time reversal symmetry
is broken by the spatial anisotropy together with the loss of
The stationary correlation function of the external noise is detailed balance induced by the symmetric external force.
For the relatively simple ratchet potentials in Fig. 1, the di-
(I(t)l(t’))zee‘“‘t"”, (14 rection of the current may also be understood: the energy
barrier for diffusion to the right when the force pushes to the
so we can identify the noise correlation timas the relevant right is lower than the energy barrier for diffusion to the left
noise time scale. when the force pushes to the left, so in these cases we expect
The enlarged stochastic process consisting of the posiand we will find positive net drift to the right(For more
tion of the particle together with the state of the externalcomplicated shapes this intuition breaks down and we must
force is a Markov process characterized by the probabilitiesesort to analysis of the model to determine not just the mag-
p+(x,t), the densities for the position variable given the nitude, but even the direction of the curr¢gnAnd because
state of the force. These joint probabilities evolve accordinghe external force in this model does not react to the particle,
to the coupled Fokker—Planck—Smolukowski equations  switching regardless of the particle’s position, it may expend

wherel (t) takes on two valuest F, switching between the
two levels at random, independent exponentially distribute
times. The probabilitiep .. (t) thatl(t) is in the £ state at

P+
pP-

P+
0"

d
dt
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net energy on the particle and hence perform useful work. #(x)
Indeed, we could include a homogeneous “load force” on

the systenm(a uniform bia$ and, in cases where the induced

drift opposes the load force, measure the net useful work
exerted in the transport process.

Equation(16) is not exactly solvable in general, but we
can deal with particular limiting cases. Of course in the limit
F=0 there is no external fluctuating force, —p_— peq, 0
and the current vanishes. The power series expansidrioof
smallF may be obtained via a regular perturbation analysis
of the differential equations.

In the limit 7—oo, for example, the external force fluc- FIG. 2. A sketch of the “effective” potentiakp(x), from Eq. (20), for
tuates so S|0w|y that the equations iD-»[ andp7 decoup|e, ratchet potentials of the form of those in Fig. 1.
becoming independent versions of E8). The net current is
then the difference between the steady-state currents For
and —F. A systematic perturbation analysis fdin powers
of 7" for this case—also a regular

' singular dependence of the current on the system variables.
. for case- perturbation thare are two cases of this limit which must be analyzed
expansion—is described in Ref(z5) _ _ separately: foD=0 we have the exact solution which may
In the case that there is no thermal white noise, De., o ot died directly, while foD+#0 we must use singular
=0, the problem reduces to two coupled first-order ordinary, erturbation methods on Eq&l8). The extreme sensitivity
differential equations which may be solved exactly, as Wagy j o p will be the hallmark of the cooperative effect of
originally - done in Ref.. ). For the situation F the internal(white) and external noises. Additionally we will
>sup [f(x)[, the current is see that each of these cases has two subcases: for smooth
1—e?L) ratchet potentials, i.e., with continuoug”(x)=—f'(x),
J= —q (19 there is one form of behavior, while for simple piecewise
linearV(x), i.e., discontinuous forces, there is another. In all
where cases we will only consider the relatively strong external
1 (x f(y) force_situatioq wheré >sup, |f(x)].
fo F2=1(y)2 dy (20 First consider the case =0 and smooth ratchet poten-
tials. The exact solution is given in Egd9)—(21) and the

d(x)=——
nd fast noise limiting behavior of) is obtained by direct
L e L 1 asymptotic analygis of the integrals in the formula via
Q:f —— (f dy (——V”(y))e‘“”) dx Laplace’s method® For the particular structure of the ratchet
o F*=f(x) T potential as in Fig. (b), with the corresponding structure for
" the “effective” potential ¢(x) as in Fig. 2, the factoe?(")
te (L)f , , is exponentially small an@®(®) is exponentially large. All
o F*=f(x) the integrals are dominated by contributions neand/orL,
and a straightforward accounting of all the terms yields the

X (fxdy (E—V”(y))e‘f’(y)) dx. (21  asymptotic formula
0 T

a

X

This solution, although exact, is far from transparent: even J~i [V"(a)||V"(L)|e” ¢, (22)
the sign ofJ is not obvious. For ratchet potentials as in Fig. m
1 it does, in fact, yield a positive current. This is hinted at bywhere for reference we recall that
the shape of the “effective” potentiab(x) as shown in Fig.
2; the ratchet potential(x) is periodic butg(x) is not and 1 e (%)
its bias indicates the current-generating effect of the nonequi- Pla)= T fo F2—f(x)? dx. @3
librium fluctuations for these simple cases. )

Other limits, particularly ther—0 fast noise limit, are Hence we observe an exponentially small curredt,
more delicate. In the next section we focus on the analysis of O(€” ") with a positive constanC that depends off
this limit with particular interest paid to differences between@nd functionally onV(x). It is interesting that this expres-

the D=0 and theD #0 situations and continuous and dis- Sion, in particular the exponential term, only depends on the
continuous force cases. ratchet potential betweet=0 andx= «. That s, the current

in this formula is independent of the details of the structure
of V(x) andf(x) for x betweena andL. This suggests that
ast—0 the transport process proceeds only to the right with
In this section we consider asymptotic expansions for theessentially no “backslips” to the left. The ratchet current
ratchet current] in the fast noise limit;— 0 with all other  rapidly becomes very small as— 0, but when the particle
parameters fixed. This is a singular limit of the differential does move from the neighborhood of the stable equilibrium
equations forp.., and we will find some correspondingly point at O(same ad), it evidently finds it ever more pos-

Ill. FAST NOISE ASYMPTOTICS
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sible to go the larger distaneeto the right under the influ- grability conditions for higher-order equations. This proce-
ence of the larger net force than the shorter distdneay dure is directly analogous to other singular perturbation
pushed by the weaker net force. analyses for Fokker—Planck equatidhsnd the detailed cal-
Now consider the case =0 andV(x) piecewise linear culation for another version of this kind of problem has been
as in Fig. 1a). The previous asymptotic analysis is not ap-described in Ref. 5. The result of this lengthy calculation
plicable as indicated by th&”| terms in the prefactor in Eq. yields the first nonzero contribution tbat third order inz:

(22), undefined for the discontinuous force problem. In order ,

to see theD=0, 7—0 behavior when the ratchet force is = [F* (L 3 F2 (L a
piecewise constant we may directly evaluate the integrals in J~ Yz|o° J, f(x)® dx+ D s f(x)V"(x)* dx|,
the exact solution to obtain a formula fdras a function of (29)

the system parameters. This is a straightforward but excep-
tionally tedious exercise, the result of which is the exactwhere
result

L L
L 1 E 1 E Yzf eV™'® dx and z:f e VD dy. (30)
P TP BT TFEA(L- ) | ° °

(24 This result indicates an exponentially large increase in the
where current, fromO(e~¢'7) to O(7°), for D#0 as compared to
the D=0 expression in Eq(22). So, the presence of white
5 noise greatly enhances the transport for fast external noise,
E even though the two fluctuation sources érethis mode]

E statistically independent. The extreme sensitivity to the white
exp( - m] —1) noise is indicated by th¥ factor in the denominator of the
prefactor above: it diverges exponentially for snalko the
L2F2 1 E expression in Eq(29) vanishes likeO(e ¥'P) asD—0. Of
| z] course the limitd —0 and7—0 do not commute in these
formulas, but the physical effect is clear. a very small
@ (L—a@)?® 7L2%F? amount of white noise can result in orders of magnitude
(_ greater current whem is small. What is perhaps more sur-
prising, though, is the appearance\8f(x)? in Eq. (29). The
% ex } = _1 E (25) second integral in Eq(29) is undefined for discontinuous
T F2—E%a® 1F?—E%(L—a)?|’ forces—even within the most liberal interpretations!—and it
signals the appearance of different effects.

Consider now the— 0 problem for the piecewise linear
potential with discontinuous force. The mathematical differ-
ence between the continuous and discontinuous force cases

E? 1 E is the effect of the boundary conditions. As the asymptotic
I~ 72 exp( ~ m] (26)  expansion in Eq(27) is solved order by order, we impose
periodic boundary conditions asvaries between 0 and.
As for smooth potentials, this is ald(e”“'") but with @  \hen the force is continuous, then the densiti€¥(x) are
qualitatively different prefactor whichlecreasesas F in-  continuous and this is a straightforward procedure. When the
creases anthcreasesasE increases. The dominant term in force is only piecewise continuous, say, @) and («,L)
the exponent is precisely ¢(a), so this exponential aspect 35 in Fig. 1b), then the global periodic boundary conditions
is apparently insensitive to the regularity of the ratchet poyst be applied in pieces. The new feature that arises results
tential and the relevant considerations above apply to thgom the fact that there are other asymptotic solutions to the
discontinuous force case as well. perturbation equations which anet periodic on the full in-

Turning our attention to th® #0 situation, consider the  teryal but which must now be included on the subintervals.
case of a smooth potential. The singular perturbation analysighe “new” solutions appear when we start with a more
of Eq. (18) proceeds with the ansatz that the probability den-general ansatz for the asymptotic expansion of linearly inde-
sities may be expanded, for smajlin an asymptotic series pendent solutions of the ordinary differential equations in

andE is the height of the energy barrier as indicated in Fig.
1. The leading behavior in the—0 limit is significantly
simpler:

p+(X)~pQ(x)+ rpP(x)+ 2pP(x) +- -+, 27y  EA-(18), namely,
and similarly that) has an asymptotic expansion P(X)
~(x)~exp{ — [RO(x) + VTRY(x)
J~3O04 2 JW 4 232 g (28) Pl Pl V= R -
Inserting the expansion into the equations and examining +7-R(f>(x)+---], (3D

them order-by-order, we can systematically compute the
functions p(i“)(x). As usual in such singular perturbation where the new functiomy(x) is to be determined. This ap-
problems, some of the equations at each order arise as intproach is inspired by the usual Wentzel-Kramers—Brillouin
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(WKB) approach to such problems, noting that EkB) may 10
be rewritten with the small parameter multiplying the
highest-order derivative.

Inserting Eq.(31) into Eq. (18), we find the leading
O(7~ 1) vector equation

0\ 1 [—1+2Dy'(x)? 1 RO
(0):2_7 1 —142Dy'(x)2 (R(_O))' d
(32

The solvability condition determining/(x) is the vanishing
of the determinant of the matrix above:

0=Dy'(x)*(Dy’ (x)*~1). (33

Hence there are three possibilities fofx):

FIG. 3. Current versus fluctuation raterlén a log-log scale. The®?

X
¢(X):Con5t or ‘MX)Z * \/5 (39 asymptotic scaling as—0 is visible in the data from direct numerical
solution of Eq.(18) for the piecewise linear potential as in Figb} with
parameterdD=1, E=1, F=5, «=3/4, andL=1 (discrete points The

The constanty solutions are those that arise in the dash—dot line~ 72 is drawn to guide the eye. The solid line is the=0

smooth_potential analysighe constant may .WithOUt loss of cyrrent versus fluctuation rate for the piecewise linear potential from the
generality be taken to be zgrd@he new solutions have com- exact result in Eqs(24) and (25) with the other parameters the same, i.e.,

ponents dominated by boundary_'ayer_”ke functions E=1, F=5, a=3/4, andL=1. The Ieading zero-diffusion-fast-noise
asymptotic term in Eq(26) is also plotteddashed ling

X
exp[ + ] : (39 _ _ . .
order there is no current. Direct numerical solution of the

VDT
These functions are not periodic on the full interval and Sodlfferentlal equations, as shown in Fig. 3, indicates that as

do not play a role when the periodic boundary conditions’
may be imposed in one step, but there is no reason not to J~ 72, (39

include them in the general solution on the subintervals. Thaly, st await the outcome of the computer-aided algebra
is, the density takes the form of one linear combination, analysis to identify the prefactor. This “anomalous” scaling

x is to be contrasted with® scaling(see Ref. 5 for smooth
p.(x)~ > ™ RE(x)+exp{ —={ NP(x) ratchet potentials.
a k=0 - vD7| ~
_ IV. SUMMARY AND DISCUSSION
rexp| — MP(x) (36) ad i i
P D+ = ' We have performed a detailed investigation of the fast-

noise limit of the nonequilibrium fluctuation-induced current
for xe (0,&), and another, in the simplest model of a stochastic ratchet. In particular we
studied the dichotomously forced overdamped average drift
of a patrticle diffusing in an anisotropic periodic potential,
focusing on the asymptotic behavior of the probability cur-
rent as the time scaleof the applied force approached zero.

pa(x)~ 2, 77
k=0

r'’®(x)+exp [ \/%] n®(x)
T

X The analysis uncovered some interesting and relatively
+exp \/D_r my(X) |, (37 subtle aspects of the mathematics and the physics.

In the absence of white noise perturbations, we found
for xe (a,L). As usual, the function®®, N® M®  that theO(e ") residual current becomes independent of
r(tk), n(tk), and m(tk)(x) are determined by integrability con- the “uphill” portion of the ratchet potential. This suggests
ditions for higher-order terms in the expansion. The boundthat the transitions, rare though they may be, become more
ary conditions are then imposed, order by order, as continuene sided in ther—0 limit. The analysis was sensitive to
ity and jump conditions across= « andx=L (appropriately  details of the regularity of the potential. By comparison of
identified as Q). the full explicit exact solution of the piecewise linear ratchet
The mathematical complexity increases tremendously ipotential problem with an asymptotic analysis of the exact
comparison to the smooth potential case, and closed analyt8olution for smooth potentials, we observed that the
solutions are all but impossible to obtain. However, progres®©(e~ ") factor is robust while the prefactor adopts very
can be made with the help of computer algebra routineslifferent forms in the two cases. This result is not altogether
guided by direct numerical solutions of the differential equa-surprising in view of the similar dependence of the prefactor
tions, and to date we have algebraically computed terms coren the smoothness of the potential in the Kramers rate prob-
tributing to the current up to and includir@(7?. To that lem. There, the different low-temperatui@mall D) prefac-
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tors arise in a well-understood way from different applica-ary layers in the absence of one source of fluctuations or the
tions of Langrange’s method to the integral expression foother. The qualitative effect of these terms on the nonequi-
the mean exit time. In the case studied here, the small noidérium current is profound. The scaling exponent for the
correlation timer played the mathematical role of a tempera-current in the smallr limit changes from 3 for smooth po-
ture or diffusion coefficient in this regard. Beyond suchtentials to3 when the boundary layers appear. Such dramatic
strictly theoretical considerations, these exact mathematicahathematical effects of the potential regularity are surprising
results for theD=0 case may also be useful as benchmarkwhen one notes that there@{(1) diffusion in the equations.
calculations for checking numerical solutions andFor simple diffusion problems most quantities of physical
simulations—and possibly someday for calibrating experiinterest are quantitatively robust to such considerations. It
mental devices. remains to be seen if such quantitative aspects of the coop-
White noise had a profound effect on the magnitude oferative effects of independent noises plays a role in other
the current in the smalt limit: the current was elevated from problems in physics or engineering.
O(e”°") to O(7°) in the presence of additional white noise
fluctuations; see Fig. 3. Apparently the two noises acting®CKNOWLEDGMENTS
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