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Constructive role of noise: Fast fluctuation asymptotics of transport
in stochastic ratchets
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The constructive role of random fluctuations is studied in the context of transport in stochastic
ratchets. We discuss the interplay of independent white~thermal! and discrete~external! noises and
their generation of transport in anisotropic potentials. The constructive cooperation of such
fluctuations is most apparent in the asymptotic limit of fast discrete-valued noise, a limit which
presents some interesting mathematical features. We describe the asymptotic analysis of the current
in the limit of fast external noise, pointing out the strong qualitative dependence of the current on
the interplay of the independent noise sources and its surprising sensitivity to the regularity of the
underlying anisotropic ratchet potential. ©1998 American Institute of Physics.
@S1054-1500~98!01103-3#
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The interplay of the effects of independent sources o
noise in a simple nonlinear dynamical system is investi-
gated via asymptotic analysis of a model ‘‘stochastic
ratchet.’’ For discrete noise-perturbed diffusion in an an-
isotropic periodic potential, the resulting nonequilibrium
current is found to depend strongly on the degree of
regularity „smoothness… of the potential. In the presence
of order one diffusion, continuous ratchet forces along
with an additive discrete-valued noise force lead to, in the
asymptotically fast discrete noise limit, a certain scaling
of the current. We find, perhaps somewhat surprisingly,
that discontinuous ratchet forces produce a different
scaling. This analysis sheds new light on some math
ematical aspects of models that have attracted attention
in condensed matter and biological physics in recent
years.

I. INTRODUCTION

It has long been recognized that noise and fluctuati
can play a crucial role in transport processes, the canon
example being thermal activation. In the usual Kam
picture1 of noise-activated rate processes, transport betw
metastable states proceeds either towards a thermal eq
rium distribution for ‘‘isolated’’ systems or to a nonequilib
rium steady state for ‘‘externally’’ driven systems. By ‘‘iso
lated’’ systems we mean those whose stochastic evolutio
derived from an underlying time-reversal invariant dyna
ics. Their stochastic dynamics then obey detailed balance
the associated steady states are true time-reversal inva
equilibrium states so no net transport is possible beyond t
sient displacements. Broad classes of subsystems coupl
an equilibrium thermal bath provide examples of such s
tems, where the thermal fluctuations are modelled by
chastic noise processes.

On the other hand, systems appropriately perturbed
6431054-1500/98/8(3)/643/7/$15.00
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‘‘external’’ forces may possess statistical steady states wi
flux, or flow. An obvious way to realize such a state is
apply a uniform forceF to a system of particles, which in
many cases results in a net current of particles or probab
proportional to mF, where m is an appropriate mobility
which may itself depend onF and the system’s interna
structure and fluctuations.2 In the past few years there ha
been a tremendous amount of interest in so-called ‘‘ratch
models3 where spatially uniform mean-zero symmetrica
distributed time-dependent forces, which may be random
periodic in time, interact with an underlying spatial aniso
ropy to generate motion. Such fluctuating force ratchet m
els display some subtle features such as unexpected cu
reversals as a function of numerous parameters4 and a re-
markably sensitive dependence on the nature of the fluct
ing forces and the regularity of the anisotropic potential.5 It
is the purpose of this paper to describe and discuss the l
phenomena, in particular the mathematical issues relate
the fast-noise asymptotic calculation of the current in
simplest fluctuating force ratchet model. These investigati
uncover a strong cooperative effect between white~internal,
thermal! noise and independent fast discrete~external! noise
in stimulating transport in stochastic ratchets.

These and related fluctuating potential6 ratchet systems
have been used to model fundamental mechanisms for
cellular biological transport processes,7 and investigated ex-
perimentally as mesoscopic particle manipulati
techniques.8 Several more general review papers have
peared in recent years,9 and we refer the interested reader
those for a more complete description of the models, ap
cations, experiments, and reversal phenomena. In this p
we will concentrate on what may be the simplest and ost
sibly most straightforward ratchet model, that of a particle
one dimension subject to a dichotomous Markov~a.k.a. ex-
ternal! force and/or independent white~a.k.a. internal, or
thermal! noise. We describe the asymptotic analysis of
© 1998 American Institute of Physics
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current in the limit of fast external noise, pointing out a ve
strong qualitative dependence of the current on the interp
of the independent noise sources and the details of the
derlying anisotropic ratchet potential. Denoting the sm
time scale of the external noise byt, we may summarize ou
results as follows: ast→0, ~a! the current is exponentially
small,O(e2C/t) with C.0, in the absence of thermal nois
while it is only algebraically small,O(tb) with b.0, in the
presence of white noise, and~b! in the cases where it is
algebraically small, the scaling exponentb may depend on
the regularity of the ratchet potentialb53 for continuous
forces,b5 5

2 for discontinuous forces!. These results illus-
trate some interesting and rather delicate aspects of the m
ematical issues surrounding the analysis of nonequilibr
stochastic dynamic models in general, and ratchet mode
particular.

The remainder of this paper is organized as follows.
the next section we describe the mathematical model th
the focus of our study and review some elementary featu
of its behavior. In Sec. III we describe the asymptotict
→0 limit of the nonequilibrium current for various case
Although there is also a natural white-noise limit for th
discrete process wherein the amplitude of the noise is ap
priately increased ast→0 @see, for example, the analyses
Refs. 4~a! and 5#, we will concentrate on the fast extern
noise limit where the amplitude remainsO(1). In Sec. IV
we summarize our results and discuss some implications
other systems.

II. SIMPLE MODELS AND MECHANISMS

Consider an overdamped particle moving on a ringx
P@0,L# with 0 and L identified, under the influence of
force f (x) derived from a periodic potentialV(x)
52*0

x f (y) dy and white noise of intensityD:

dx

dt
5 f ~x!1A2Dj~ t !, ^j~ t !j~ t8!&5d~ t2t8!,

x~0!5x0 .
~1!

The time-dependent probability density,r(x,t), obeys the
Fokker–Planck–Smoluchowski equation

]r

]t
5]x$V81D]x%r, ~2!

with periodic boundary conditions inx and initial probability
distribution r(x,0)5d(x2x0). The evolution for the prob-
ability distribution may be rewritten as a continuity equatio

]r

]t
1]xJ50, ~3!

where we identify the local instantaneous probability curr

J~x,t !5 f ~x!r~x,t !2D]xr~x,t !. ~4!

The instantaneous noise-ensemble averaged particle vel
is the integral ofJ:

K dx

dt L 5E
0

L

J~x,t ! dx. ~5!
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What we have in mind for the potentialV(x) is a peri-
odic anisotropic potential like the one shown in Fig. 1, whi
may be smooth or piecewise smooth with a discontinu
force. Under very general conditions the probability distrib
tion relaxes, ast→`, to the stationary probability distribu
tion

req~x!5
1

Z
e2V~x!/D, Z5E

0

L

e2V~x8!/D dx8. ~6!

This equilibrium Gibbs distribution leads to the natural ide
tification of the white noise as thermal fluctuations, and
the particle diffusion coefficientD askBT, Boltzmann’s con-
stant times the temperature.

Despite any anisotropy inV(x), this distribution sup-
ports no current,

Jeq5 f ~x!req~x!2D]xreq~x!50, ~7!

so the average particle velocity~net drift! vanishes in the
steady state:

K dx

dt L→0 as t→`. ~8!

The simplest example of a nonequilibrium steady st
arises if an additional uniform forceF is also applied to the
particle so the equation of motion is

dx

dt
5 f ~x!1F1A2Dj~ t !. ~9!

The probability density must still be periodic on@0,L#, but
the ‘‘tilted’’ potential energyV(x)2Fx is not. Hence the
steady-state current,Jss, which must be constant (]xJss

FIG. 1. Ratchet potenialsV(x). In ~a! we illustrate a smooth potential, an
in ~b! a piecewise linear potential with discontinuous force. The ene
barrier height isE and the parameteraÞL/2 indicates the anisotropy.
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50), may not vanish. The straightforward solution of t
differential equation for the steady-state probability dens
rss, as in Ref. 2, yields the current

Jss5
D~12e2FL/D!

E
0

Le2~V~x!2Fx!/DS E
x

Le„V~y!2Fy…/D dyDdx
. ~10!

For large values ofuFu, i.e., uFu@supxu f (x)u, Jss;F/L. For
small uFu, Jss;mF with mobility

m;
L

E
0

Le2V~x!/DS E
x

LeV~y!/D dyDdx
. ~11!

In either case the transport mechanisms are clear: the pa
effectively moves down an inclined washboard potent
limited by the friction for largeF and by the thermal activa
tion rate over remaining barrier~s! for smallF. Note that for
all but the largestuFu, the magnitude ofJss is generallynot
the same forF and 2F. If V(x) were isotropic, i.e., if
V(x)5V(L2x), then Jss(F)52Jss(2F), but for aniso-
tropic potentials this is not the case. It is this asymmetry t
underlies the ratchet transport mechanism considered he

The idea behind transport in a stochastic ratchet is
step removed from the simple diffusion in a tilted period
potential. For a ratchet we consider an applied external fo
which is spatially homogeneous but time dependent
mean zero. Such a force could be a periodic or sinusoida
force, as in Ref. 4~b!, but we will concentrate on two-leve
Markov processes so that the steady states for the ov
system evolution can be studied in the framework of stati
ary Markov processes. In particular we consider the equa
of motion

dx

dt
5 f ~x!1I ~ t !1A2Dj~ t !, ~12!

whereI (t) takes on two values,6F, switching between the
two levels at random, independent exponentially distribu
times. The probabilitiesp6(t) that I (t) is in the 6 state at
time t evolve according to the master equation

d

dt S p1

p2
D5

1

2t S 21 1

1 21D S p1

p2
D . ~13!

The stationary correlation function of the external noise i

^I ~ t !I ~ t8!&5F2e2ut2t8u/t, ~14!

so we can identify the noise correlation timet as the relevant
noise time scale.

The enlarged stochastic process consisting of the p
tion of the particle together with the state of the exter
force is a Markov process characterized by the probabili
r6(x,t), the densities for the position variable given the6
state of the force. These joint probabilities evolve accord
to the coupled Fokker–Planck–Smolukowski equations
y
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]t S r1~x,t !
r2~x,t ! D

5S ]x$V82F1D]x%2
1

2t

1

2t

1

2t
]x$V81F1D]x%2

1

2t

D
3S r1~x,t !

r2~x,t ! D . ~15!

The average particle transport is determined by the c
rent associated with the continuity equation for the margi
density of the position,r(x,t)5r1(x,t)1r2(x,t). Adding
together the evolution equations forr6 we find

]r

]t
1]xJ50, ~16!

with the current

J5 f ~x!r2D]xr1F~r12r2!. ~17!

The goal of the analysis, then, is to compute the steady-s
probabilitiesr6(x) by solving the time homogeneous equ
tions

S 0
0D

5S ]x$V82F1D]x%2
1

2t

1

2t

1

2t
]x$V81F1D]x%2

1

2t

D
3S r1~x!

r2~x! D ~18!

with periodic boundary conditions forxP@0,L#. The average
particle drift velocity, i.e., the nonequilibrium transport,
then determined by the steady-state current according to
~17!, i.e., ^dx/dt&5JL. We are interested in the dependen
of J on the system parametersD, t, F, and functionally on
f (x).

The physical mechanism for particle transport under
influence of the mean zero fluctuating force is evident fro
the considerations mentioned around Eq.~8!. For anisotropic
periodic potentials the net drift in the6 directions need not
be, and in general is not, the same. Time reversal symm
is broken by the spatial anisotropy together with the loss
detailed balance induced by the symmetric external for
For the relatively simple ratchet potentials in Fig. 1, the
rection of the current may also be understood: the ene
barrier for diffusion to the right when the force pushes to t
right is lower than the energy barrier for diffusion to the le
when the force pushes to the left, so in these cases we ex
~and we will find! positive net drift to the right.~For more
complicated shapes this intuition breaks down and we m
resort to analysis of the model to determine not just the m
nitude, but even the direction of the current.! And because
the external force in this model does not react to the parti
switching regardless of the particle’s position, it may expe
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net energy on the particle and hence perform useful wo
Indeed, we could include a homogeneous ‘‘load force’’
the system~a uniform bias! and, in cases where the induce
drift opposes the load force, measure the net useful w
exerted in the transport process.

Equation~16! is not exactly solvable in general, but w
can deal with particular limiting cases. Of course in the lim
F50 there is no external fluctuating force,r1→r2→req,
and the current vanishes. The power series expansion ofJ for
small F may be obtained via a regular perturbation analy
of the differential equations.

In the limit t→`, for example, the external force fluc
tuates so slowly that the equations forr1 andr2 decouple,
becoming independent versions of Eq.~8!. The net current is
then the difference between the steady-state currents for1F
and2F. A systematic perturbation analysis forJ in powers
of t2n for this case—also a regular perturbatio
expansion—is described in Ref. 9~a!.

In the case that there is no thermal white noise, i.e.D
50, the problem reduces to two coupled first-order ordin
differential equations which may be solved exactly, as w
originally done in Ref. 4~a!. For the situation F
.supx u f (x)u, the current is

J5
12ef~L !

Q
, ~19!

where

f~x!52
1

t E
0

x f ~y!

F22 f ~y!2 dy ~20!

and

Q5E
0

L e2f~x!

F22 f ~x!2 XE
x

L

dy S 1

t
2V9~y! Def~y!C dx

1ef~L !E
0

L e2f~x!

F22 f ~x!2

3 XE
0

x

dy S 1

t
2V9~y! Def~y!C dx. ~21!

This solution, although exact, is far from transparent: ev
the sign ofJ is not obvious. For ratchet potentials as in F
1 it does, in fact, yield a positive current. This is hinted at
the shape of the ‘‘effective’’ potentialf(x) as shown in Fig.
2; the ratchet potentialV(x) is periodic butf(x) is not and
its bias indicates the current-generating effect of the none
librium fluctuations for these simple cases.

Other limits, particularly thet→0 fast noise limit, are
more delicate. In the next section we focus on the analysi
this limit with particular interest paid to differences betwe
the D50 and theDÞ0 situations and continuous and di
continuous force cases.

III. FAST NOISE ASYMPTOTICS

In this section we consider asymptotic expansions for
ratchet currentJ in the fast noise limit,t→0 with all other
parameters fixed. This is a singular limit of the different
equations forr6 , and we will find some correspondingl
k.
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singular dependence of the current on the system variab
There are two cases of this limit which must be analyz
separately: forD50 we have the exact solution which ma
be studied directly, while forDÞ0 we must use singula
perturbation methods on Eqs.~18!. The extreme sensitivity
of J on D will be the hallmark of the cooperative effect o
the internal~white! and external noises. Additionally we wil
see that each of these cases has two subcases: for sm
ratchet potentials, i.e., with continuousV9(x)52 f 8(x),
there is one form of behavior, while for simple piecewi
linearV(x), i.e., discontinuous forces, there is another. In
cases we will only consider the relatively strong extern
force situation whereF.supx u f (x)u.

First consider the caseD50 and smooth ratchet poten
tials. The exact solution is given in Eqs.~19!–~21! and the
fast noise limiting behavior ofJ is obtained by direct
asymptotic analysis of the integrals in the formula v
Laplace’s method.10 For the particular structure of the ratch
potential as in Fig. 1~b!, with the corresponding structure fo
the ‘‘effective’’ potentialf(x) as in Fig. 2, the factoref(L)

is exponentially small andef(a) is exponentially large. All
the integrals are dominated by contributions neara and/orL,
and a straightforward accounting of all the terms yields
asymptotic formula

J;
1

p
AuV9~a!uuV9~L !ue2f~a!, ~22!

where for reference we recall that

2f~a!5
1

t E
0

a f ~x!

F22 f ~x!2 dx. ~23!

Hence we observe an exponentially small current,J
5O(e2C/t) with a positive constantC that depends onF
and functionally onV(x). It is interesting that this expres
sion, in particular the exponential term, only depends on
ratchet potential betweenx50 andx5a. That is, the current
in this formula is independent of the details of the structu
of V(x) and f (x) for x betweena andL. This suggests tha
ast→0 the transport process proceeds only to the right w
essentially no ‘‘backslips’’ to the left. The ratchet curre
rapidly becomes very small ast→0, but when the particle
does move from the neighborhood of the stable equilibri
point at 0~same asL), it evidently finds it ever more pos

FIG. 2. A sketch of the ‘‘effective’’ potentialf(x), from Eq. ~20!, for
ratchet potentials of the form of those in Fig. 1.
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sible to go the larger distancea to the right under the influ-
ence of the larger net force than the shorter distanceL2a
pushed by the weaker net force.

Now consider the caseD50 andV(x) piecewise linear
as in Fig. 1~a!. The previous asymptotic analysis is not a
plicable as indicated by theuV9u terms in the prefactor in Eq
~22!, undefined for the discontinuous force problem. In ord
to see theD50, t→0 behavior when the ratchet force
piecewise constant we may directly evaluate the integral
the exact solution to obtain a formula forJ as a function of
the system parameters. This is a straightforward but exc
tionally tedious exercise, the result of which is the ex
result

J5
1

Q F12exp H 1

t

E

F22E2/a22
1

t

E

F22E2/~L2a!2J G ,
~24!

where

Q5
~L2a!2

E
2

a2

E
1

tL2F2

E2

3S exp H 2
1

t

E

F22E2/~L2a!2J 21D
1

tL2F2

E2 exp H 1

t

E

F22E2/a2J
1S a2

E
2

~L2a!2

E
2

tL2F2

E2 D
3expH 1

t

E

F22E2/a22
1

t

E

F22E2/~L2a!2J , ~25!

andE is the height of the energy barrier as indicated in F
1. The leading behavior in thet→0 limit is significantly
simpler:

J;
E2

tL2F2 exp H 2
1

t

E

F22E2/a2J . ~26!

As for smooth potentials, this is alsoO(e2C/t) but with a
qualitatively different prefactor whichdecreasesas F in-
creases andincreasesasE increases. The dominant term
the exponent is precisely2f(a), so this exponential aspec
is apparently insensitive to the regularity of the ratchet
tential and the relevant considerations above apply to
discontinuous force case as well.

Turning our attention to theDÞ0 situation, consider the
case of a smooth potential. The singular perturbation anal
of Eq. ~18! proceeds with the ansatz that the probability de
sities may be expanded, for smallt, in an asymptotic series

r6~x!;r6
~0!~x!1tr6

~1!~x!1t2r6
~2!~x!1¯ , ~27!

and similarly thatJ has an asymptotic expansion

J;J~0!1tJ~1!1t2J~2!1¯ . ~28!

Inserting the expansion into the equations and examin
them order-by-order, we can systematically compute
functions r6

(n)(x). As usual in such singular perturbatio
problems, some of the equations at each order arise as
-

r

in

p-
t

.

-
e

is
-

g
e

te-

grability conditions for higher-order equations. This proc
dure is directly analogous to other singular perturbat
analyses for Fokker–Planck equations,11 and the detailed cal-
culation for another version of this kind of problem has be
described in Ref. 5. The result of this lengthy calculati
yields the first nonzero contribution toJ at third order int:

J;
t3

YZ F F4

D3 E
0

L

f ~x!3 dx1
F2

D E
0

L

f ~x!V9~x!2 dxG ,
~29!

where

Y5E
0

L

eV~x!/D dx and Z5E
0

L

e2V~x!/D dx. ~30!

This result indicates an exponentially large increase in
current, fromO(e2C/t) to O(t3), for DÞ0 as compared to
the D50 expression in Eq.~22!. So, the presence of whit
noise greatly enhances the transport for fast external no
even though the two fluctuation sources are~in this model!
statistically independent. The extreme sensitivity to the wh
noise is indicated by theY factor in the denominator of the
prefactor above: it diverges exponentially for smallD so the
expression in Eq.~29! vanishes likeO(e2E/D) asD→0. Of
course the limitsD→0 andt→0 do not commute in these
formulas, but the physical effect is clear: a very sm
amount of white noise can result in orders of magnitu
greater current whent is small. What is perhaps more su
prising, though, is the appearance ofV9(x)2 in Eq. ~29!. The
second integral in Eq.~29! is undefined for discontinuou
forces—even within the most liberal interpretations!—and
signals the appearance of different effects.

Consider now thet→0 problem for the piecewise linea
potential with discontinuous force. The mathematical diffe
ence between the continuous and discontinuous force c
is the effect of the boundary conditions. As the asympto
expansion in Eq.~27! is solved order by order, we impos
periodic boundary conditions asx varies between 0 andL.
When the force is continuous, then the densitiesr6

(n)(x) are
continuous and this is a straightforward procedure. When
force is only piecewise continuous, say, on~0,a! and (a,L)
as in Fig. 1~b!, then the global periodic boundary condition
must be applied in pieces. The new feature that arises re
from the fact that there are other asymptotic solutions to
perturbation equations which arenot periodic on the full in-
terval but which must now be included on the subinterva
The ‘‘new’’ solutions appear when we start with a mo
general ansatz for the asymptotic expansion of linearly in
pendent solutions of the ordinary differential equations
Eq. ~18!, namely,

r6~x!;exp H c~x!

At
J @R6

~0!~x!1AtR6
~1!~x!

1tR6
~2!~x!1¯#, ~31!

where the new functionc(x) is to be determined. This ap
proach is inspired by the usual Wentzel–Kramers–Brillou
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~WKB! approach to such problems, noting that Eq.~18! may
be rewritten with the small parametert multiplying the
highest-order derivative.

Inserting Eq.~31! into Eq. ~18!, we find the leading
O(t21) vector equation

S 0
0D5

1

2t S 2112Dc8~x!2 1

1 2112Dc8~x!2D S R1
~0!

R2
~0!D .

~32!

The solvability condition determiningc(x) is the vanishing
of the determinant of the matrix above:

05Dc8~x!2
„Dc8~x!221…. ~33!

Hence there are three possibilities forc(x):

c~x!5const or c~x!56
x

AD
. ~34!

The constantc solutions are those that arise in th
smooth potential analysis~the constant may without loss o
generality be taken to be zero!. The new solutions have com
ponents dominated by boundary-layer-like functions

exp H 6
x

ADt
J . ~35!

These functions are not periodic on the full interval and
do not play a role when the periodic boundary conditio
may be imposed in one step, but there is no reason no
include them in the general solution on the subintervals. T
is, the density takes the form of one linear combination,

r6~x!;(
k50

tk/2FR6
~k!~x!1exp H 1x

ADt
J N6

~k!~x!

1exp H 2x

ADt
J M 6

~k!~x!G , ~36!

for xP(0,a), and another,

r6~x!;(
k50

tk/2F r 6
~k!~x!1exp H 1x

ADt
J n6

~k!~x!

1exp H 2x

ADt
J m6

~k!~x!G , ~37!

for xP(a,L). As usual, the functionsR6
(k) , N6

(k) , M 6
(k) ,

r 6
(k) , n6

(k) , andm6
(k)(x) are determined by integrability con

ditions for higher-order terms in the expansion. The bou
ary conditions are then imposed, order by order, as cont
ity and jump conditions acrossx5a andx5L ~appropriately
identified as 02).

The mathematical complexity increases tremendousl
comparison to the smooth potential case, and closed ana
solutions are all but impossible to obtain. However, progr
can be made with the help of computer algebra routi
guided by direct numerical solutions of the differential equ
tions, and to date we have algebraically computed terms c
tributing to the current up to and includingO(t3/2). To that
o
s
to
at

-
u-

in
tic
s
s
-
n-

order there is no current. Direct numerical solution of t
differential equations, as shown in Fig. 3, indicates that
t→0,

J;t5/2. ~38!

We must await the outcome of the computer-aided alge
analysis to identify the prefactor. This ‘‘anomalous’’ scalin
is to be contrasted witht3 scaling ~see Ref. 5! for smooth
ratchet potentials.

IV. SUMMARY AND DISCUSSION

We have performed a detailed investigation of the fa
noise limit of the nonequilibrium fluctuation-induced curre
in the simplest model of a stochastic ratchet. In particular
studied the dichotomously forced overdamped average
of a particle diffusing in an anisotropic periodic potentia
focusing on the asymptotic behavior of the probability cu
rent as the time scalet of the applied force approached zer
The analysis uncovered some interesting and relativ
subtle aspects of the mathematics and the physics.

In the absence of white noise perturbations, we fou
that theO(e2C/t) residual current becomes independent
the ‘‘uphill’’ portion of the ratchet potential. This sugges
that the transitions, rare though they may be, become m
one sided in thet→0 limit. The analysis was sensitive t
details of the regularity of the potential. By comparison
the full explicit exact solution of the piecewise linear ratch
potential problem with an asymptotic analysis of the ex
solution for smooth potentials, we observed that t
O(e2C/t) factor is robust while the prefactor adopts ve
different forms in the two cases. This result is not altoget
surprising in view of the similar dependence of the prefac
on the smoothness of the potential in the Kramers rate p
lem. There, the different low-temperature~small D) prefac-

FIG. 3. Current versus fluctuation rate 1/t on a log-log scale. Thet5/2

asymptotic scaling ast→0 is visible in the data from direct numerica
solution of Eq.~18! for the piecewise linear potential as in Fig. 1~b! with
parametersD51, E51, F55, a53/4, andL51 ~discrete points!. The
dash–dot line;t5/2 is drawn to guide the eye. The solid line is theD50
current versus fluctuation rate for the piecewise linear potential from
exact result in Eqs.~24! and ~25! with the other parameters the same, i.e
E51, F55, a53/4, and L51. The leading zero-diffusion-fast-nois
asymptotic term in Eq.~26! is also plotted~dashed line!.
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tors arise in a well-understood way from different applic
tions of Langrange’s method to the integral expression
the mean exit time. In the case studied here, the small n
correlation timet played the mathematical role of a temper
ture or diffusion coefficient in this regard. Beyond su
strictly theoretical considerations, these exact mathema
results for theD50 case may also be useful as benchm
calculations for checking numerical solutions a
simulations—and possibly someday for calibrating expe
mental devices.

White noise had a profound effect on the magnitude
the current in the smallt limit: the current was elevated from
O(e2C/t) to O(t3) in the presence of additional white nois
fluctuations; see Fig. 3. Apparently the two noises act
together can potentially generate far more organized mo
than either can alone, even though they are statistically in
pendent noise sources in this model. This constructive co
eration between the random fluctuations is reminiscen
fundamental phenomena in the more widely studied are
stochastic resonance.12 In each situation the combined effe
of ostensibly independent perturbations results in enhan
organized system response. The example studied here
vides a quantitative illustration of this effect in a simp
physical model.

Beyond the ratchet current induced by the two nois
our analysis has uncovered a new quantitative aspect o
interaction of the noises: they combine to produce a n
~small! length scale,

«5ADt. ~39!

This small scale emerges as the boundary layer thicknes
the probability densities in the neighborhood of discontin
ties in the force, leading to typicalO(e2uxu/«) boundary layer
correction terms. This is not an unnatural length scale; i
the typical distance the particle may diffuse betwe
switches of the dichotomous force. It is of special interest
the purposes of this discussion that« depends fundamentall
on the two different noise sources; there are no such bou
-
r
se
-

al
k

i-

f

g
n
e-
p-
f

of

ed
ro-

s,
he
w

for
-
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n
r

d-

ary layers in the absence of one source of fluctuations or
other. The qualitative effect of these terms on the noneq
librium current is profound. The scaling exponent for t
current in the smallt limit changes from 3 for smooth po
tentials to5

2 when the boundary layers appear. Such dram
mathematical effects of the potential regularity are surpris
when one notes that there isO(1) diffusion in the equations
For simple diffusion problems most quantities of physic
interest are quantitatively robust to such considerations
remains to be seen if such quantitative aspects of the co
erative effects of independent noises plays a role in ot
problems in physics or engineering.
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