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In the classical statistical mechanics setting, a set of positivity conditions on certain two­
point correlation functions is exhibited that implies Debye screening for a large class of 
Coulomb-like models. For example, for the model treated by Brydges, for which he has 
rigorously proved shielding, in a range of parameters where (ct.>'(x)J(y»z 0 for all x 
and y and all s odd, there is screening. (Alternative conditions require positivity for 
only two correlation functions.) Strong estimates are obtained for the rate of 
exponential falloff. 

Currently there is much interest in acquiring under­
standing of De bye screening. An outstanding problem is the 
question of proving shielding in quantum statistical mechan­
ics (assuming it is valid). Toward this end, the short range 
difficulties of the 1/ r potential have been controlled. I 
Brydges has recently proved screening for classical Coulomb 
systems. 2 We feel the present approach may provide insight 
into the problem, dealing with shielding charges in a sugges­
tive way. We will deduce exponential falloff of the two point 
correlation function, for a large class of models, under the 
assumption of positivity for certain two-point correlation 
functions. This work may be interesting for a number of rea­
sons. First, it is possible a proof of these positivity conditions 
will be forthcoming, giving a new proof of shielding. Second, 
we obtain strong statements on the rate of exponential 
falloff. Third, the positivity conditions may be tested for in 
numerical experiments (or theoretically) to provide a good 
estimate of the range of parameters for which shielding 
holds. 

We study a classical statistical mechanical system of 
several species of "charged" particles, species i with charge 
qiand fugacity Zi' See Ref. 3, for example, for the basic defini­
tions. The partition function is written as 

(1) 

with 

v = ! f : J ( ~ + V)J:, (2) 

v the short range potential, y/r the Coulomb term, and 

p, the density of species i. We assume for convenience 

We define cp as 

It is helpful to define the notation: 

Z = I (e - /3v), 

[A]=I(e f3VA), 

(A) _ [A] 
-Z' 

(6) 

(7) 

(8) 

to discuss ensemble averages of a function A. We also define 

w = (- Ll )v. (9) 

We are now prepared to state several conditions from 
which we will prove a number of results. 

Condition I: There existsf(z,x) J(z) (i.e., the x depen­
dence is suppressed) satisfying 

( -.1 + 41TY ~ Zi q7!3 + ~ Zi Q7!3W* y<Z) 

= 41TYO(Z - x) + w(z - x), (10) 

withj>O all z (andjfalling off exponentially). 

Later we will show such anjexists in a number of inter­
esting cases, and find the falloff explicitly in these cases. 

Condition II: (J (y) dJ (x»>O ali x,y, (11) 

Condition 1/1.1: (J (y) cp '(x)bO all x,y, s odd, 
(12) 

Condition IIl.2: 

(13) 

Condition III.3: 

\J(y) ~Ziqi( - e /3q,q,(x) + I -j3q,4> (x») »0 all x,y. 

(14) 

A system is charge symmetric if the species occur in 
pairs with equal fugacities and equal and opposite charges. 

Theorem 1: For a system satisfying Conditions I, II, and 
111.3, or for a system satisfying Conditions I, II, and 111.2, or 
for a charge symmetric system satisfying Conditions I, II, 
and 111.1, one has 

O.;;;«y) cp (x»';;;cj(y,x). (IS) 
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From the conditions onf, this implies the exponential falloff 
of the two point correlation function; the system shields. 

For the system studied by Brydges, suitably scaled, (10) 
becomes 

( -.1 + 2zq2(3)f = 4m5, (16) 

an equation on a unit lattice,.1 the discrete Laplacian. [we 
have picked his I = 1, and y = (l/41T).] 

Theorem 2: For this system one may pick 

(17) 

where g is the fundamental solution of (16), some of whose 
properties are given in the Appendix. 

We note that it is not known that Conditions II or III 
hold in the region where Brydges has proved shielding, but 
we believe they do. 

We next consider a system with 

e - ar 

v= -y--. 
r 

(18) 

This choice eliminates the singularity ofthe total potential at 
r = O. Equation (10) in momentum space becomes 

41Ta2Y)t 2 - 41T =ay , 
k 2 +a2 k 2 +a2 (19) 

with 

(20) 

We pick 

j _ 41Ta2y (1 1) 
- r

2 
- r, k 2 + r, - k 2 + r2 ' 

(21) 

(22) 

r, = 
a 2 _ (a' - I61Ta2y)1I2 

2 
(23) 

Theorem 3: For this system, with 

a 2 > I61TY> 0, (24) 

one may pick/satisfying 

0 /1"( ) cexp(-V-;:/x-y/) 
"V x,y <; . 

/x-y/ 
(25) 

We thus have two natural systems satisfying Condition 
I. 

Before turning to a proof of Theorem 1 we first consider 
a simpler statistical mechanics model, a Gaussian distribu­
tion of continuous charges on a unit rectangular lattice. 

Z = 1) (J dJ,e - a/2J;)exp [ ( ~P) {; J{ ~ + v)JJ]' 

(26) 

There is a J j for each lattice site i. I/r denotes the Green's 
fUGction for a discrete Laplacian.1. With a notation similar 
to Eqs. (6)-(8) one has the pull-through formula (an integra­
tion by parts), 
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J(J/J) = J..J( aB ). 
a aJi 

(27) 

As in (5) one defines 

¢ = I (~ + v) /i' (28) 

We want to study (Jy¢x), y and x lattice sites, and write 

(29) 

(the dependence of/on x is suppressed). We apply (27) to the 
third term in braces, 

= ! /y + \Jy{¢x - IfJi - ! Ih( ~ + V}jJj}). 

If we can find an / satisfying 

(a + (Jy(lIr)* + pv*)/ = a( ~ + V). 
an exact analogy of (10), we get 

1 
(J)x) = -fr, 

a 

(31) and (32) directly yield 

( I) (JJ) = . 
I } a + py / r + {Ju Ij 

(30) 

(31) 

(32) 

(33) 

Any correlation function can be calculated by this result and 
Wick's theorem for this Gaussian model. It follows that for 
such a Gaussian model if a, p, y and v are picked to ensure 

(Ji ¢);;,O all i and j, 

and (as is automatic) 

(¢i ¢i);;'O all i, 

(34) 

(35) 

that it satisfies Conditions II, 111.1, 111.2, and 111.3. It is easy 
to show that a Gaussian model approximating the models of 
Theorem 2 or Theorem 3, having the same/in a discretized 
form, satisfies (34). That is, our Conditions II and III hold 
for the continuous approximations of our models, essentially 
the P-D limit (with (Jz fixed). 

Returning to a proof of Theorem 1, we first exhibit an 
analog of the pull-through formula (27) in the classical sta­
tistical mechanics setting. We let B be a functional of the 
!Pi (x) j. Then 

J (p,{x)B) = Zi J (B (.IX), (36) 

where B (-ix) is B with Pi (y) replaced by Pi (y) + 8(y - x). As 
in (29) we write 

(J(y)¢ (x» 

= (J (y) {¢ (x) - f/(Z)J (z) + f /(z)J (Z)}) (37) 

and apply (36) to the last term in braces getting 

V(Y~W)=C+E+~ 0~ 

where Cwill be a set of terms identically canceling, Mwill be 
the main term, and E will serve the place of an error. 

Paul Federbush 1091 



(39) 

Applying the Laplacian to the coefficient of J one gets exact­
ly Eq. (10) in Condition I, 

M = I Zi q~f(Y,x) (e - (3q,q, (Yl) . (40) 

The expectations in (40) are all positive, their values deter­
mine the constant in (15) of Theorem 1. 

E= IZiqi f f(z)(J(y)(e-(3q,q,(z) -1 + (Jq,¢J (z»)). 

(41) 
By Condition 111.3 we assumeE<;O. Thus from (38) we have 

O<;(J(y),p (x» = M + E<;M, (42) 

The first inequality is Condition II; this is Eq. (15). The 
statement of 111.1 trivially yields 111.3 for symmetric sys­
tems, The inequalities of(13) and (14) are identical by a 
simple application of (36). 

Proceeding to collect some final points we note that it 
was only necessary to ensure C<;O, not that C = 0, and this 
freedom may be helpful in some situations. It is amusing to 
attempt to eliminate the need for an error term in (38) by 
allowing thefin (37) to be a functional of the J's. This was 
attempted in Ref. 4 with very limited success; other expres­
sions like (38) were obtained with smaller error terms. 
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APPENDIX 
We look at some properties of the Green's function for 

the discrete Helmholtz equation on a unit rectangular 
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lattice, 

with 

( - L1 + a)g = 4m5. 

(I) In one dimension, 

g(x) = c'e- k lxi, 

ek + e - k - 2 = a. 

(II) In three dimensionsg(x 1,X2>X,), symmetric in its ar­
guments, satisfies 

for the same k as in (I). 

(III) In three dimensions 

( 
Ix. I N+r) " ,,' I ' , g<;c exp - L-- n--- , 

i 2 Ni-ri 

where 

and 

4(~Ny + (6 + a)'?; 2 
=N i, Ni>O. 

(6 + a)' 

(II) follows easily from (I). (I) is verified by directly substi­
tuting into the difference equation. (III) is derived from a 
random walk expression for the Green's function. s 
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