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Bremsstrahlung of nonrelativistic electrons in a neutral gas is investigated including the polarization
and exchange effects. The intensity and spectrum of the bremsstrahlung and of the induced dipole
radiation are obtained for a Maxwellian distribution of electron energy in terms of the elastic scat-
tering cross section of the atom for electrons and its polarizability. The interference of the induced
dipole radiation with the bremsstrahlung is also considered. It is found that the exchange effects and
the induced dipole radiation are negligible as far as the total radiated power is concerned. The latter,
however, may be important at the short-wave end of the spectrum. Finally, the absorption coefficient
is obtained from the bremsstrahlung cross section. The results are evaluated explicitly for a Maxwellian

distribution.

I. INTRODUCTION

REMSSTRAHLUNG of slow electrons in the
field of neutral atoms has attracted interest
in recent years in estimating the intensity of micro-
wave radiation from slightly ionized gases and their
free—free absorption coefficients. The radiation from
a neutral gas containing free electrons is due to the
deceleration of the free electrons in the field of a
neutral atom and to the time-dependent dipole
moment of neutral atoms induced by free electrons.
In this paper, we refer to the former radiation mech-
anism as the “‘bremsstrahlung” and to the latter
as the “induced dipole radiation.” The spectra of
the radiation due to these mechanisms are entirely
different. The observed spectrum is a superposition
of the bremsstrahlung and the induced dipole radia-
tion. However, since these two emission mechanisms
are not independent in so far as they are caused by
the same collision event between a free electron and
a neutral atom, the resultant radiation ean not be
obtained by simply adding the two intensities. The
interference between these two radiation mecha-
nisms should be taken into account.

Furthermore, the exchange effect due to the in-
distinguishability of the incident electron and the
bound electrons in the neutral atom may also play a
role in estimating the intensity of the observed
radiation.

The aim of this paper is to derive an expression
for the intensity and spectrum of the total radiation
from a slightly ionized neutral gas taking into ac-
count the aforementioned effects.

Bremsstrahlung of slow electrons decelerated by
neutral atoms was discussed previously by Firsov
and Chibisov,’ who argued classically that the in-

1 Q. B. Firsov and M. 1. Chibisov, Zh. Eksperim. i Teor.

Fiz. 39, 1770 (1960) [English transl.: Soviet Phys.—JETP 12,
1235 (1961)].

duced dipole radiation may account for the large
portion of the radiation from a neutral gas. However,
as is apparent in the text, their quantum-mechanical
calculation includes neither the induced dipole radia-
tion nor its interference with the bremsstrahlung.
Their resulf gives the intensity of the bremsstrahlung
only in terms of the elastic scattering cross section
of an electron on a neutral atom. However, the ex-
change effects and the polarization of the atom by
the field of the incident electron are included im-
plicitly through the scatiering cross section. In this
paper, the induced dipole radiation and its inter-
ference with the bremsstrahlung are included in the
quantum-mechanical calculations, and the relative
magnitudes of bremsstrahlung, induced dipole radia-
tion and the interference effects, are compared as
a function of the gas temperature, assuming that
the electrons and the neutral atoms are in thermal
equilibrium. Moreover, the magnitude of the ex-
change effects on the radiation intensity is calculated

. explicitly, and its relative importance is discussed

and shown to be negligible.

It is hardly necessary to mention that the cal-
culations are approximate in view of the complexity
of the problem. Most of the approximations used in
the derivations are standard in the study of the
elastic scattering of slow electrons by a neutral
atom. Some of the approximations are made only to
derive a simple practical formula that contains all
the qualitative features of the phenomenon under
consideration. They can easily be relaxed if numerical
precision is required. These approximations enable
one to relate the intensity of the observed radiation
to some atomic parameters which are already known
either experimentally or theoretically for many
atoms, such as the elastic scattering cross section
for slow electron scattering and coefficient of polari-
zation.
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The exchange effects are discussed in the case of
hydrogen atom for simplicity. The calculation of
the intensity of bremsstrahlung and induced dipole
radiation is carried out in general for an arbitrary
atom.

II. GENERAL FORMULATION

The physical system under consideration consists
of an atom situated at the origin of the system of
reference and an incident electron. We consider
a radiative transition of this system from an initial
state |¢) to a final state |f) with the emission of a
photon. The energy intensity of the radiation emit-
ted in all directions and in two polarization states
per unit energy is

Sis(hw) =

where
R = Zri @)

and where r; denotes the position of the jth electron
with respect to the nucleus of the atom which is
assumed to be at rest. There are Z electrons in the
atom. The frequency w is given by hw = §; — &,
where &; and &, are the energies of the initial and
final states. The symbol {{f| R [2)° in (1) is to be
interpreted as
3
IR [F = 2 01 R, [P, 3)
where R, are the Cartesian coordinates of the vector
R.
The state vectors |7) and |f) are the solutions of
the Schrédinger equation for the atom + electron,

H*+ H +V ~ &) i) =0, 4)

where H® is the Hamiltonian of the atom, H* is the
kinetic energy of the incident electron, and V is the
Coulomb interaction between the atom and the
electron. The final state [f) satisfies a similar equa-
tion.

We assume that the atom is in a ground state,
and the energy of the incident electron is insufficient
for the excitation of the atom. Thus, the atom is
found in a ground state after the collision in which
the incident electron is scattered from the initial
momentum state [k;) to the final momentum state
[k;). Conservation of energy requires

8 = Eo + (W'k3/2m), ®)
8 = Eo + (’k3/2m), ®)

@'e/3) IR P,
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where m is the electron mass, and E, energy of the
atom in the ground state.

The interaction potential V in (4) is the Coulomb
interaction between the electron and the atom,

+Z[r_r|, 9

where r is the position vector of the incident electron.

The central problem is to compute the matrix
elements (f[ R [7) using the solution of the Schro-
dinger equation (4), for energies &; and &, given by
(5). Let the wavefunction associated with initial
and final states be denoted by ¢.(r1, o1 * - - Tz41, 0241)
and y,(t,, ¢y; -+ + ,Tz.1, 6z+1). These functions must
be antisymmetric with respect to the interchange
of any pair (r;, ¢;) and (r;, o), where o; denotes the
spin of the jth electron. In the nonrelativistic theory,
the total spin of the system is a constant of motion,
and the spin state of the system is not altered by
the collision. However, the symmetry with respect
to the interchange of the position coordinates of the
wavefunction depends upon the symmetry properties
of the spin state. Therefore, the spin state of the
system affects indirectly the intensity of the radia-
tion (exchange effects). In order to discuss the ex-
change effects in a most simple way, we focus our
attention to the hydrogen atom. However, the other
effects are calculated for an arbitrary atom.

In the case of a two-electron system, there are
two possible spin states: a triplet and a singlet state.
The triplet state is symmetric, whereas the singlet
state is antisymmetric with respect to the inter-
change of spins. Therefore, the coordinate wave-
function is antisymmetric in the triplet state while
it is symmetric in the singlet state. Let us denote the
symmetrized initial and final wavefunctions by

‘I/ti(rli 1'2), ‘ptf(rly 1‘2),

where the superscripts (+4) and (~) indicate a
symmetric and an antisymmetric wavefunction, re-
spectively. Using symmetrized wavefunctions one
can modify the intensity formula (1) as follows:

Ly = (4u'e’/3) (Wi R [P (8)

In the case of an unpolarized incident electron, the
probabilities of finding the system in a triplet and
singlet state are £ and 3. Hence, S}, and S7,, must
be combined by the ratio 1 to 3 to yield the total
intensity

S:—'f = _ c—v! + S:«v! (g)

The symmetrized wavefunction can be constructed
from an unsymmetrized wavefunction as



BREMSSTRAHLUNG OF SLOW ELECTRONS

Vi, ) = (1 + Pu)/V2ly@, ), (10)

where P,, is the exchange operator. The matrix
element of R between two symmetrized wavefunec-
tions can be expressed in terms of the unsymmetrized
wavefunction as

WHR YD) = W R [¥) £ (W[ RPy [y, (11)

where we have used the fact that the exchange
operator P, commutes with R = r, 4+ r,, and that

(1 & Pyp)* = 2(1 — Pyy). 12)

Substituting (11) into (8) and combining the
resulting equation with (9), one obtains

Siasw)
= (4“’492/303)[1(¢fl R l'l’w)lz + I(be‘ RP,, l¢1>l2
~ B.Y A R {¢a)* (¢ | RP [¥:))]. 13)

The last two terms accounts for the exchange effects.

We now attempt to determine the wavefunction
¥, and ¢, in order to compute the matrix elements
appearing in (13), For this purpose, one”*® expands
(1, 1,) into the atomic wavefunctions $,,

Vro = 2 Fl )., (14)
where F,(r,) are the state functions of the scattered
electron when the atom is in the state ®,(r,), and
satisfies

[V + (') — UndFi' = 3 UnFL. (15)
n’#n
In this equation, one defines
Urm’ = (2,'”/h2)<<§"[ V iq)ﬂ'>7 (16)
(k') = ki — @m/R)E, ~ By), (A7)

where E, is the energy of atomic state |@,).

In (14), the summation over n includes the in-
tegration over continuous spectrum also.

One observes in (17) that (k/'%)* < 0 for all
n # 0, and only (k)'¥)® > 0, since the incident
electron energy is assumed to be insufficient for
excitation of the atom. In other words, the inter-
action of the electron with the atom is an elastic
scattering collision. The solution of (15) with the
asymptotic condition

F, = exp (k1) 6, + fuo(Q) exp (kr)/r  (18)
is standard in the study of elastic scattering of

2 G. G. Drukarev, The Theory of Electron-Atom Collisions
(Academic Press Inc., New York, 1965).

3 N. F. Mott and H, W. W. Massey, The Theory of Atomic
Collisions (Clarendon Press, Oxford, England, 1950), 2nd ed.
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electrons by neutral atoms’® and is not repeated
here. The relevant results are’

Fi~ —[V./(E. — B)IFi, (19)
(V2 + k5 — Uy — UDF; = 0, (20)
where
- WVul
Uzj;(r2) = ,.2;;1 E, _on ’ (213')
Upylr) = @m/R)@,| V [@). (21b)

Similar equations are obtained for Fi(r,) by replacing
the index f by 7. The symbols |®;) refer to the initial
and final ground states of the atom belonging to
the energy E,. They may differ from each other in
their magnetic quantum numbers, viz., |[®;) =
{ri M) and [®;) = |8..M,), where J; and M,
refer to the total orbital angular momentum and
its projection, respectively. The 7, denote the re-
maining quantum number describing the ground
state of the atom. When the latter is an s state,
i.e,, when J; = 0 and thus M; = M, = 0, there
is no distinction between the initial and final ground
states. Such atoms are referred to as spherically
symmetric. Although the hydrogen atom which is
being used for the discussion of the exchange effect
is spherically symmetric, we retain the distinction
between the initial and final ground states, because
most of the results here are used for an arbitrary
atom. It is to be noted that the additional potential
energy Ul(r,) in (20) represents® the effect of the
polarization of the atom by the field of the incident
electron when the atom is in the state |®;). The
potential U,,(r,) represents the mean potential, or
the ‘‘rigid”’ potential of the atom in the state |®,).
Thus, (20) yields the wavefunction of the electron
in the potential field U,,(r,) + Ul(r,).

We now return to the calculation of the matrix
element (Y,| R |¢;) appearing in (13). Substitution
of the expansion of ¢’ and ¢ in (14) and the use of
the orthogonality of ®,’s yield

(AR [y = 2o (FL{FL X8, 1, |®.)

+ T Eln . @)
Note that the functions ¥, and F: are essentially
the expansion coeflicients in (14) and are not orthog-
onal.

The double sum in (22) contains the matrix ele-
ments of the dipole operator er, associated with the
bound electron and represents the induced dipole
radiation. Similarly, the second term in (22) contains
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the matrix elements of the dipole moment of the
incident electron between various states of the scat-
tered electron and represents the bremsstrahlung in
the field of the neutral atom. The cross term which
appears in the expression of |[(¢,] R |¢.))® accounts
for the interference of the induced dipole radiation
and the bremsstrahlung.

The second and third terms in (13) represent the
exchange effect as indicated by the presence of the
exchange operator P;,.

It is in order to mention at this point the sim-
plification introduced by considering the hydrogen
atom for the discussion of the exchange effect. The
crucial problem in the discussion of the exchange
effect is the construction of the (Z + 1)-electron
functions from the Z electron and the incident
electron wavefunctions. This problem has been dis-
cussed in detail for an arbitrary atom in Ref. 2.
The coordinate wavefunction for the system of the
electron plus the atom for a given total spin is
rather complicated even in the case of the helium
atom. It has a simple form only in the case of a
2-electron system already indicated by (10). Since
the exchange effect is expected to be small as far
as the radiation intensity at low electron energies
is concerned, its inclusion for an arbitrary atom is
considered as an unwarranted complication in the
present analysis. However, the magnitude of the
error due to the neglect of the exchange effect is
estimated quantitatively in the case of hydrogen
atom as a guide by considering the last two terms
in (13).

II1. BREMSSTRAHLUNG

The radiation due to the deceleration of the in-
cident electron by the neutral atom is represented
in (22) by

2 (Filr |,
where we replaced r, by r, which we recall refers
to the position of the incident electron. Since the
energy of the latter is insufficient to excite the atom,
the dominant contribution comes from the first term

L = (Fi@)| 1 [F3a)), (23)

where Fj(r) and Fi(r) are the wavefunctions of the
scattered electron when the atom in the initial and
final states and satisfy (20). They can be expanded
into spherical harmonics as

({(r) = 47 ; (i)lF o(kr) Ylm(i{f) YE.(8), (24)

where F,(k,) are the solution of the radial Schré-
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dinger equation. Substituting (24) and the similar
expansion for Fi(r) into (23), performing the angular
integration and retaining only the terms in the
resulting equation containing the product FF,;, one
obtains

I = 41ri<i(.~ f dr r*F*(k ) F (k)
0

—k [ arrmenRen), @

where k; = k,/k; and k;, = k;/k,. As pointed out by
Firsov and Chibisov,' the terms involving F, for
[ = 2 correspond to electrons at a large distance from
the atom at low energies and do not interact ap-
preciably with it. Therefore only the terms in (25)
are of significance. Following this reference, we
use

Folkr) = sin (kr + &) /kr,
F\(kr) = ji(kr),

(26a)
(26b)

where 8, is the phase shift of the s wave and j,(kr)
is the spherical Bessel function. We ignore the phase
shift 8, associated with the p wave which is justified
at small incident-electron energies. The phase angle
3, is a function of k, and represents the interaction
of the electron with the atom. It is related to the
elastic-scattering cross section by

a(k) = (4= /k) sin 8,(k). @7

Substituting (26) into (25) and performing the
indicated integrals, one obtains

I, = drti(h/2me) (oK — [o(k)Ph}.  (28)

This can be further simplified if the cross section
does not change appreciably in the region (0 ~ k)
then o(k;) = o(k;) =~ ¢(0), and

L = 4ri(h/2me)’(o(0)]'q, (29)

where

q =k, —k,. (30)

The intensity of the bremsstrahlung alone can be
calculated substituting (29) into (13), multiplying
the resulting equation by the density of final electron
states per unit electron energy, viz., v2(m/k*)}(E,)}
/(27)?, and integrating over the direction of k,, one
obtains

S, ()



BREMSSTRAHLUNG OF SLOW ELECTRONS

where « is the fine structure constant (e*/kc), E, is
the incident electron energy, and finally N, is the
number of neutral atoms per unit volume.

The spectral density for a Maxwellian electron
distribution is obtained from (31) by averaging it
with 2x(x@) N E} exp (—E, | ©) as

2 )*
m®
D (i)

where N, is the number of electrons per unit volume,
© is the temperature of the gas, and K,(z) is the
modified Hankel function. Equation (32) gives the
intensity of bremsstrahlung per unit energy from a
unit volume of gas containing N, atoms and N,
electrons. The ratio of N,/N, can be obtained from
the Saha equation at the specified temperature.

The total radiated power in all energies is obtained
by integrating (32) over Aw. The result is

J - _2_5_(_5‘."1(_92 (_2_@)% 2
S, = 15z mc* \am O'NN..

Sy(hw) = NN, ——(

(32)

33)

— Z (F(ﬂ Vin |F0><¢,.I D l¢> + (Fol Vi lFO><¢f‘ D t¢,.)
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IV. INDUCED DIPOLE RADIATION

The dominant contribution to the double sum
E’ (F’{ { F:b'><¢ﬂ| l'1 [¢n’>

in (22), representing the induced dipole radiation

comes from terms for which eithern = O orn’ = 0,
Z KF3 | Fa)os| D |¢n)
+ FLFea| D 6],  (34)
where
= ZZ T (35)

im
In (34) we replaced r, by D such that the subsequent
analysis is valid for an arbitrary atom. The neglect
of the terms for which both n = 0 and n’ # 0 can
be justified by observing that they contain the
product of two interaction potentials, viz.,

anvin'/(Eu - EO)(En’ — EO)}
whereas the terms in (34) are proportional to

V.:/(E., — E,). Substituting F, and F; from (19)
into (34) one obtains

n*0

where

In order to calculate the integration with respect to
r appearing in (Fg|V,.|Fs) and (F|V..|F), we ap-
proximate ¥ and F} by plane waves. The result is

E, - E, (36)

4re®

(F3| Vi |Fo) = el -2+ Z exp (ig-1;) |6.)

. 4ré
N q-(¢f|Dl¢,.), (37

where the last step is obtained by approximating
exp (iq-r;) by 1 -+ 4q-r;. This is justified when
q-r; << 1 which is the case for low-incident electron
energies. Substituting (37) into (36) yields

_i 4 5~ 6,1 9°D [6.)(4a] D l6) + @] 4-D [9:)(6,| D [¢w),

Id == T = E,. — Eo (38)
Using Wigner-Echart theorem, one evaluates (38) 8,.(M;) = —8_(—M))

as follows: = 10@M, + 1)[(J: — M), + M, + DI @1)
4 a(M)e., for M; =M, l The expression g, and b, in terms of reduced matrix
I = —i 2 3B.(—& +48,), for M, =M,+1 elements of D can be obtained from (40). In the

q 1 { 4 . .
6. + ie), for M, =M, —1 ease of a spherical atom for which J; = M, = 0,

s — 2

(39) Id - 1’(47‘-/ q )ao‘l- (42)

where &,]|d, and where

@) = 0 = b} = 28 3 LBLLLIE

a=0

The quantity a, is the polarizability of the atom,
which is (9/2)r2 for hydrogen.®

The intensity of the induced dipole radiation
alone is obtained by substituting (39) into (13),
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summing over M,, averaging over M,, and integra-
ting over k;,

N4/9,. A\ F
st = .50 (B (22
L <1+<1~x>§
o\ T 1= 2 (43)
where
TIZEQJI_TPIZ(%+25++23)“‘ao“‘f‘bo
-(—zao+-29(2J‘:+2J ))‘”J +1 4

and where x = (hw/E,).

One observes in (43) that the spectrum vanishes
when fiw — 0 in contrast to bremsstrahlung of the
incident electron given by (31). Certainly both
spectra vanish at iw = E,. The spectrum of the
dipole radiation has a peak at approximately hw =
0.97E ;. The major portion of the total induced dipole
radiation for a given electron energy K, is emitted
in the frequency range under this peak.

The spectrum for a Maxwellian distribution of
incident electron energy is found as

- A\ }
St vl 28 v ()

and the total radiated power
(ch @) (@) :
T he
It is interesting to compare the total radiated
power in the case of bremsstrahlung and induced

dipole radiation. From (33) and (46) one obtains
their ratio as

. 31 5 (46)

S _ L2 0 (me)
S, T 21 4(0) (he)’

e’ 47)

The magnitude of 5 and ¢(0) are of the order of
10™*em’® and 107"°em’, respectively, for most atoms.
For example n = 2.2 X 107*cm’ and ¢(0) =
48 X 107 "°cm® for hydrogen.” For ® = 0.5 eV which
corresponds to a temperature 5000 °K this ratio is
less than 8%, (for hydrogen 0.7%,) indicating that
the induced dipole radiation will be insignificant
in most cases. This statement is particularly true
in the microwave range of the spectrum because of
the difference in the shape of the spectrum in the
two cases as discussed above. This conclusion is at
variance with that given in Ref. 1 by classical argu-
ments.

Z. AKCASU AND L.

H. WALD
V. INTERFERENCE EFFECTS

The interference of the dipole radiation and the
bremsstrahlung is determined by the cross term in
the expression of (I, 4 L, L* + L) +
2R,(1,-T%*). We have already discussed the first
two terms. Using (29) and (39) we find that

Ly = 2R(L-TY)
= —32r'(h/2mo)'as(M )(O)}. (48)

Note that there is no contribution for M, = M,.
The interference correction to the radiation intensity
is obtained by averaging I;,, over M, multiplying
it by the density of final electron states, integrating
over k;, and finally substituting the resulting ex-
pression into (13). The spectrum for a given electron
E,, the averaged spectrum and the total radiated
power are calculated as

Suate) =~ (@) o ("D) g, — s a0
Sinu(fies)
_ 16v2 5:‘0[0;(0)] 3 —de 26 )
= T Tgy CRmey MK (2@) (50)
S = — 222 07 apOF, 6D
where
Ty 1 ;ao(
=ty — o, (J; + 1), (52)

In performing the average over M, we have ap-
proximated the average of (M) [s(0)]! by the
product of the averages. When the atom is spheri-
cally symmetric in the ground state this approxima-
tion becomes unnecessary because there is no M,
dependence in a,(M;) = a, and [¢(0)]%.

We now compare the combined effect of the in-
duced dipole radiation and the interference term to
the bremsstrahlung intensity. Using (33), (46), and
(51) we obtain

Sa+ Su_gz_oe_ﬁ,(mg>@

S, 21 o(0) K’
2 2
[o-a 90
Sﬂ' (2%

It is interesting to observe that this ratio depends
on the type of the neutral atom only through the
ratio {&3/0(0)]. To estimate the relative error we
again use & = 107cm® and ¢(0) & 10 %cm?® as

(53)
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typical values in (53) and obtain 0.3 (@ — 1.7),
where 0 is in electron volts. In the range of validity
of the foregoing derivations, which require the in-
cident electron energy to be small, ie,, ® < 1 ¢V,
one finds that the effect of the interference term on
the radiation intensity is more important than the
induced dipole radiation alone. It tends to decrease
the total intensity as indicated by its negative sign.
For ® = 0.5 eV, the above ratio becomes 189, (for
hydrogen it is less than 3%) which is probably an
upper estimate for many atoms. It can be concluded
that the dipole radiation and its interference with
the bremsstrahlung, which are associated with the
polarization of the atom by the field of the incident
electron, are insignificant as far as the total radiation
intensity is concerned. The relative error at a given
frequency can be easily discussed with the foregoing
formulas for the various spectra. At low photon
energies the spectrum of the bremsstrahlung is flat,
whereas that of the induced dipole radiation and the
interference term decreases as #’w’. Hence, the emis-
sion due to the polarization of the atom can be
ignored at low photon energies.

It must be pointed out at this point that the
polarization of the atom affects the intensity of the
bremsstrablung considerably. However this effect
is taken into account through the elastic scattering
cross section ¢(0), which is to be calculated from
the asymptotic form of Fo(r). The latter is the solu-
tion of (20) which includes the effect of polarization
of the atom through the additional interaction energy
U,(r). The elastic scattering cross section decreases®
when the effect of polarization of the atom is added
to the rigid potential scattering. Hence, the intensity
of the bremsstrahlung is also smaller when the
atom is polarizable, than when it is rigid, by a
ratio which may be as high as } as is the case for
hydrogen.”

VI. EXCHANGE EFFECTS

This section is devoted to the investigation of the
exchange effects in the calculations of the brems-
strahlung intensity for the hydrogen atom. The
matrix element associated with the exchange effect
in (13) is (Y,(1y, 12)| 1, + 15 (1,5, 1)), To evaluate
this matrix element we substitute the expansion
(14) for ¢, and ¢; and retain the terms for which
n=0andn =0,

I, = (Fir) | BN Bo(r)| 11 [Fo(r))
+ <F6r(r2)‘ Iz | Bo(ra) )} Dolr) I Fé(”x))-

In order to calculate vy = (F} | &) we use the ex-

6L
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pansion of F} into spherical harmonics given by (24).
Using the fact that ®,(r,) is a function of |r,|, one
obtains

v = @) = 4x [ " Py k) dr.

Substituting Fo(kr) = sin (kr -+ 8,)/kr as before one
gets

y = % [cos o fo r dr ®(r) sin kp

-+ sin &, f r dr ®,{r) cos k;’r:l-
o

Since we are dealing with slow electrons whose wave-
length is larger than the size of the atom, kr < 1.
Then, using cos §, ~ 1, sinkr ~ ki, and coskr~ 1,
we find

y = dr f " dr By(r) + [roO))F fo T rdr &), (55)

For the hydrogen atom, the wavefunction of the
ground state is ®,(r) = (3}t exp (—r/ro), where
ro = B /(me’) = 53 X 10 °cm, the Bohr radius.
Hence for the hydrogen atom

y = 2rd{4rer’ + [«(O)]).

In Ref. 2, the elastic scattering cross section is given
as o(0) & 60wr). With this value of ¢(0), we obtain
v =2 23.48r

Next we consider (®,| r |F;). Using again the
expansion of F§ into spherical harmonics, and the
fact that &, is a function of |r] only, we find

(56)

(@ |1 = itek, [ " P (er) () dr.

Putting F (k) = (k) and using the asymptotic

form of 4,(k;r) for small arguments we get
(®o| r |Fg) = idr 8k, 67

where

d = f ri®y(r) dr. (58)
0
For hydrogen atom, 5 = 413(ro/m)}.
Repeating similar caleulations for the second term
in (54), we obtain the desired matrix element as

I = 'il‘q ’ (59)

where

p o= $ry & = 64nri{dry + [0(0)/x]}.  (60)
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The corresponding radiation intensity is obtained as

2\f( )5/2% .
hz & [

Scho) = Nog s

-2E; — ho)(E; — ho)t.  (61)

One observes again as in the case of dipole radiation

that the spectrum vanishes when Aw — 0. The total

power for a maxwellian distribution of incident
electron energy follows from (61) as

2M\6

8, = 4.54 X 107 54—2 ML 2 ne

T g c’h

Using the value of the elastic-scattering cross
section given in Ref. 2, i.e., ¢(0) = 60xr], one finds
that the ratio (8,/8,) ~ 107°@*, where © is in
electron volts. Hence the contribution of this term
is negligible for ® < 1 eV.

As a final step, we consider the last term
~2 R.[Wd R [W:)*- @l RPy; [¥4)] in (13), which
18 equal to —2 R,[(1; + I,)-I*]. Ignoring the induced
dipole term I; one finds the spectrum associated
with this term as

N,. (62)

Seimlfs) = —2—‘@—? u[oO) i 2E; — hu)
(B — h)t.  (63)
The total average power is
_ 211&
Sc.int = - 63_"3‘1 “[U(O)]q( 4h8> 4N0Nl' (64)

The ratio of this term to the intensity of the
bremsstrahlung is approximately equal to #0* where
O is in electron volts. Hence, for ® < 1, this ratio
is less than 109, and decreases rapidly with the
gas temperature.

The final conclusion is that the exchange effects
can be ignored completely in estimating the in-
tensity as well as the absorption of radiation in a
neutral gas containing slow electrons.

VII. THE EFFECTIVE ABSORPTION COEFFICIENT
DUE TO FREE-FREE TRANSITIONS

We have seen that, for the low electron energy
range, the only processes responsible for transitions
between states of the whole system (neutral atom
+ electron + radiation field) are bremsstrahlung
and inverse bremsstrahlung. It is possible to use
the energy intensity of emission due to brems-
strahlung of Eq. (32) to calculate the effective ab-
sorption coefficient for radiation. This calculation
is now performed.

If it is assumed that the medium is isotropic, then

A. Z, AKCASU AND L. H. WALD

the effective absorption coefficient for unpolarized
photons is*
aii = g T [ dula® — w@], 69

where A is the index of the polarization state, e is
the transition probability per unit time for emission
of a photon of polarization \ into direction Qi, and
o, is the transition probability per unit time for
absorption of a photon of polarization A traveling
in direction Qi.

It is possible to show that for a Maxwellian elec-
tron distribution the absorption and emission transi-
tion probabilities are related by the equation

an(k) = 7 %, (k); (66)

also, the total radiation intensity S(fiw) per neutral
atom per unit energy interval is related to (k) by

3
w
= F@ny f aik ; a(k).
The use of Eqgs. (66) and (67) in Eq. (65) yields
for the effective absorption coeflicient
aers = (/)" S(hw)(1 — ¢7*/8).

Substitution of S(w) which was obtained previously
in Eq. (32) by ignoring polarizability and exchange
effects and approximation of K,(fiw/20) and
exp (hw/O) in the result yields for a,g

22 v2 -"}- S OBNN, =

It is interesting to note that, if one defines an
“effective collision frequency” in the standard way
[ef. Ref. 5 where v,y = 8/3(v5/7)0(0)N.(®}/m)),
the absorption coefficient may be seen to agree with
the power absorption coefficient a,¢ of the Maxwell-
Lorentz theory® for nondispersive media and small
collision frequencies (v, << v°)

Qerr = (Pore/C)(w3/7),
where the plasma frequency
wy = 47¢’N,/m.
VIII. CONCLUSION

S(hw) (67)

(68)

Qe =

The present analysis indicates that the dominant
contribution to the intensity of radiation from a
neutral gas containing slow electrons comes from
the deceleration of the free electrons by the field

* E. H. Klevans, The University of Michigan, Radiation

Laborat.ory Report No. 2764-12-T (1962).

°J, M. Anderson and L. Goldstein, Phys. Rev. 100, 1037
(19553,
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of the neutral atoms. The contribution of the in-
duced dipole radiation is always negligible. However,
the interference of the induced dipole radiation with
the bremsstrahlung may decrease the total intensity
as much as 189, depending on the ratio of the
polarizability of the atom and its elastic scattering
cross section for slow electrons with energies less
than 1 eV. The induced dipole radiation may become
appreciable in the short-wave limit of the emitted
spectrum.

It is also found that the exchange effect in the
calculation of radiation intensity for the hydrogen
atom is much less than 109, and can be ignored
entirely. The same conclusion is expected to be also
true for a multi-electron atom.

The intensity of the bremsstrahlung of the free
electrons in the field of the neutral atoms which is
the dominant emission mechanism is shown to be
proportional to the elastic-scattering cross section
of the atom for slow electrons in the limit of zero
incident energy. This cross section includes the effect
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of the polarization of the atom by the field of the
incident free electron. Thus, the polarizability of
the atom affects, and decreases, the intensity of the
bremsstrahlung, although the induced dipole radia-
tion which is due to the polarization of the atom
is negligible.

In view of these results, it is concluded that the
free~free absorption of the microwaves in a slightly
ionized neutral gas is predominantly due to the
inverse bremsstrahlung. The absorption coefficient
has been found to be in good agreement, above the
plasma frequency, with that given by the classical
Lorentz formula of electromagnetic theory for non-
dispersive media.
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