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INTENSITY FLUCTUATIONS OF THE RADIATION FROM A DISPERSIVE BIACK BODY
R. K. Osborn and A. Z. Akcasu
The University of Michigan

Department of Nuclear Engineering
Ann Arbor, Michigan

ABSTRACT

Statistical properties of the output fluctuations of a photon detector
measuring the intensity of radiation at.a.given frequency emitted by a dis-
persive black body are investigated using Langevin's technique. The variance-
to-mean ratio of the accumulated counts, and the power'spéctral density of
the count rate are obtained in terms of properties of the.emittihg medium.

The possibility and limitations of obtaining information about the emitter
by measuring these quantities are discussed. It is found in particular that
the temperature of the emitting medium can be determined in ?rinciple by
observing the intensity fluctuations of the fadiation at a. single frequency.
The photon fluctuations in a microwave cavity are also discuésed in‘the

framework of the present formulism and compared to previous work.



1. INTRODUCTION

The purpose of this paper is to investigate the intensity fluctuationg in
radiation emitted by a dispersive black body. The experiment which we intend
to analyze is illustrated in Fig. 1. The photons from the emitter are detected
by a photon detector, e.g., photo-cathdde, whose output Z(t) is assumed to be
in the form of an electric voltage, and proportional‘to the number of photons
absorbed per second in its active volume. Hence, Z(t) can be identified as
the "instantaneous count rate." The detector is visualized as a uniform
absorbing medium described . by the microscopic ebsorption probability per photon
rD(E) for photons with wave.vector k.

The emitter is assumed to be a homogeneous finite medium in which the
atoms are in thermal equilibrium at a temperature © (units of energy). The
medium is characterized by a(g) and €(k) which are the ebsorption and emission
rates, respectively, of photons with wave vector k. The scattering of photons
in the medium is neglected. The medium is allowed to be dispersive with a
photon speedrv(g) which is different than the speed ¢ in vacuum.

Let N(x,k,t) denote the instantaneous number of randomly polarized photons
at time t per unit volume about x in configuration space, and per unit volume
about k in wave-vector space. We shall denote a point in the six-dimensional
space by r = (x,k) to compress the notation. The instantaneous value of the
photon density N(E,t) is & fluctuating function of time with a statlonary mean
value <N(r)>. These fluctuations are due to the statistical nature of the
absorption and emission processes. We shall denote the fluctuating part of
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N(r,t) by n(r,t), i.e., n(r,t) = N(r,t) - <NW(r)>. The aim of this paper will

be to investigate some of the statistical properties of n(;,t) in terms of the
observed fluctuations z(t) in the count rate (or absorption rate) of the detector,
i.e., z(t) = 2(t) - <z(t)>. In particular we shall consider the autocorrelation
functions and the power spectral density associated with z(t) which are defined

by

o, (1) = < z(t) z(¢ + 1) > (1)

and
)

Gy(w) E\/ﬁ g ~1wT o, (T)ar . (2)

-0Q

we shall also discuss the variance-to-mean ratio of the accumulated counts,

am = [ue) e, ()

as a function of the gate time T, which is defined as*

T
<a%T) > 2

() = T <7> <> [ (1 - p)ep(r) ar . (4)
0]

The interest in these particular statistical quantities stems from the fact that
they are the quantities which are usually measured in fluctuation experiments.

The fluctuations in the count rate can be expressed as

() = [a% az) (5)
D

*use T T T
f dtf at o (t-t') =f (T-|7]) o,(r) ar .
o o] -T




where Z(E,t) is the fluctuating part of the "count rate density" at r in the
phase space. The autocorrelation function ®Z(T) can be expressed in terms of

z(r,t) as

%h)=/ﬁ%j}%”<z@ﬂ)ﬂzut+T)>. (6)
D D

Both, in (5) and (6) the integrations are performed in the active volume of the
detector in the phase space. It follows from (6) that the statistical quantities

O,(7), Gz(w) and n(T) can readily be obtained once the correlation function

CPZ(_:F_:I_‘; T ) =< Z(I‘,"G) Z(_I_";t + T) > (7)

associated with the count rate density is determined. Thus, our main task will
be to calculate @, (r,r', 7) in terms of the parameters o(k), &(k) and rD(E)
describing the optical source and the emitter. In order to achieve this

we must first determine the correlation function.

Cpn(_lifz‘?T) =< 1’1(_1;,‘6) 1’1(3' PR T) > . (8>
appropriate to the phcton density flucutations and then use the relations between
¢, and @, as discussed in section 3, by Eq. 31.

2. CORREIATIONS IN PHOTON DENSITY FLUCTUATIONS

The mean photon density <N(r,t)> in an inhomogeneous, dispersive medium
satisfies, when the photon scattering is neglected, the following approximate

transport equation



[j%; +Q v v(r) + c(%é] < N(g,t) >= &(xr) o(k) (9)

where o(xr) = a(g) - €(x) ,
p(k) = density of photon states = k2/4ﬂ5 ’
o = k/

We consider the optical source, vacuum and the detector as a single inhomogeneous
medium. Then, both ofr) and &(r) are zero in the vacuum, and a(r) = rp(k) within
the detector.

Equation (9) is‘a simple statement of photon balance. The right hand side
represents the spontaneous emission, the term £(r) < N(r,t) > denotes the rate
of stimulated emission, and the terms & * V v{r) < N(r,t) > and ofr) < N(zr,t) >
account for the rates of loss of photons by streaming and absorption. A careful
derivation of (9) can be found elsewhere.l

In a stationary system, as we assdme here, the mean photon density 1s

independent of time. Therefore, (9) reduces to
Q 'V F(r)+2Zr) Fr) =84(x) (10)

where we have defined

F(r) = v(r) < N(z) >, (1la)
X(r) = o(x)/v(r) , (11pb)
so(r) = &r) o (k) (11c)

clearly, F(r) is the mean photon flux. Equation (10) can readily be solved by

the method of characteristics to obtain



[ee]

F(r) =\/p dus (x - ou, k) p(u,r) (12a)
where
p(u,r) = eXPIjAfZ(z— u'Q, k) du] (12v)

The neutron density < N(r) > in various regions can be obtained from (12) as:

a) In the emitter

1 - exp [-2(k) fs<§s’Q>J

<Nrg) > =8,(k) (5 (13)
b) In the detector
<Nx) > - 8k v(k) 1 - exp [-2(k)Ig(xg,0)] e-ZD(_lg_)/ZD(z,Q) (14)

T el

where the distances fg(xg,0), Lg(x,Q) apd_lD(z,Q), as well as Ip(x,0) which
will be used later, are indicated in Fig. 1.

We shall now investigate the. fluctuations n(g)t) in the photon density by
means of Langevin's technique. The discussion of this technique as a method
for investigating fluctuation phenomena in other physical systems can be
found elsewhere,2 and will not be reproduced here in detail. This approach,
which is somewhat phencmenological, is adopted in this work for its simplicity

as opposed to the more detuctive kinetic approach{g’5 The lLangevin technique

starts with the "stochastic" equation

[_%E +9 9 v(z) + o(z) | nlz,t) = s(z,t) (15)

where s(r,t) is a random source introduced to account for the fluctuations. about

the mean photon density. This random driving force is called the "noise-
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k2

equivalent source" in the theory of neutron fluctuations. Since < n(r,t) > =0

by definition, one requires that
< s(r,t) >=0. (16)

Physically, s(r,t) represents the natural fluctuations in the rate of absorption,
stimulated emission and spontaneous emission processes. In addition to (16),

one attributes the following statistical property to s(r,t) as a postulate:

< s(r,t) s(r',t) >=0Qg(zr) 8(z' -z) 8(t' -t), (17)

where

Ag(r) = [olr) +&(r)] <NMzx) >+ 8,(x) . (18)

Equation (17) implies that the fluctuations in the noise-equivalent source are
uncorrelated in phase space and in time. Equation (18)'15 based on the assump-
tions that a) absorption, stimulated emission, and spontaneous emission of
photons are statistically independent, and b) each of these processes is
described by a Poisson distribution.

The foregoing statistical properties, i.e., (16) and (17), are sufficient
to investigate the space,.time and energy correlations of the photon density
fluctuations, viz., ¢n(£,£',f) = < n(r,t) n(x',t + 7) > . In order to obtain

¢, we must first solve (15) for n(r,t). Defining

£(r,t) = v(r) n(x,t) (19)

and taking the Fourier transform of (15), one. finds



iw

Q- v E(r,iw) + [ + I(r)) £(z,i0) = 5(r,i0) (20)

vir
where f and s denote the Fourier transforms of the respective time functions.

This equation is readily solved in a similar fashion to (10) to obtain

o u

-_— -— t
f(r,in) =f du s(x-u@,k, iw) expl:- iwf ———gll———il

o] o) V(l(_-u'f_l_,_ls)
(x) P(u)?_) (21)

The inverse Fourier transform yields

© u
1 du'
n(;_,t) = o f du s |:_)£-US_2,E,’G -f m}
o 0 £

which is the desired solution of (15).
We are now in a position to evaluate CPn(_:E‘_,E_' ,t) in terms of the assumed
statistical properties of s(r,t). Substituting (22) into the definition of

¢, in (8), one finds

(x) & . dg + -—d&—] (23)
|: ([ v(x'-q0',k') f v(x-qQ,k)

where we have used (17) and (18) to evaluate < s(r,t) s(r',t') > This equation

can be simplified by meking use of k' =k, Q@' = Q and x' =x+ (u -u)g in ap-



propriate terms:

o (r,r',7) = 8(k'-k)[v(r) V(_lg')]—lk/‘du Qg(x - uQ,k) pe(u,_l_:)
o
o] U."U.
(x)fdu’ exp [—f Z(§+q_sz,_l_{_)dc£]6[;_c_' -x-(u' -u)Q_]
o o

6[7 -f dq/v(§+q§_2,g):]. (24)

we shall now perform the integration on u' assuming that T > 0. The case of

T < 0 need not be considered separately because the following relation holds

o (r,x', - I7]) = oz, x, |7]) (25)

which can be verified easily using the definition of ¢, (r,r',r) in (8).

The last delta function in (24) can be replaced by*

where r_ = ro(r) is a number obtained by

r

o= f dq/v(x+eQ,k) . (27)

)

In the case of a constant speed, (27) yields ry = vr. The integration on u'

can now be performed easily yielding
T

0
o (r,r',7) = d(k'-K) 5[5‘ -X-Qro] exp I:—[ Z(E*Qq,}s)dq]
-1 2
(x) v (r) | au p (u,r) Qg(x-ug,k) (28)
o
*Use 5[0(x)] = T X'X{)l where the xi are the roots of ®(x) = O which are
o' (x1)

assumed to be simple, and ' = d®/dx.



where Qg(x-u@,k) and p(u,r) were defined before in (17) and (12b) respettively.
We shall now specialize (28) to the case of a uniform emitter, vacuum, and
detector as indicated in Fig.l. We shall be interested in the values of

¢ (r,r',r) within the detector. One can see that
n——_

Qg(x-u@,k) = rp(k) < N(x-uQ,k) > for O<u<uy

(k) + E(k)] < N(x-u_,k) >+ S (k) for uy <u<ug

= 0 elsewhere .

Hence the integration on u will be pérformed only in the intervals (O, ul)
and (ul,ug). On the other hand (27) gives r_ = Tc because v(x + q@,k) =fc in
the detector and in vacuum.

After some lengthy but elementary calculations one finds

Pplz,x',7) = 8(k'-k) 8(x'-x-0rc) exp [-ryr] < N(r) >

(x) [1+ )], for 1 >0 (29a)

where

or) = elx) e-ZD(E) ﬂD(,zs,Q)u ) e—Z(E)Ls(zC_,Q)) } (290)
(k)

Q
[~

and where the distances Iy and LS are already indiceted in Fig. 1.

When T < O, one obtains frdm (25) and (29)
¢z, r',7) = 8(k'-k) d(x'-x + @ |r]|c) exp [-rp|r]]

(x) <N(x') > [1+Q)], for T<O0. (30)

10



3, FLUCTUATIONS IN THE COUNT RATE

This section is devoted to the calculation of the count rate correlation
function defined previously in (7). It is shown in reference 2 that @Z(E,E',T)

can be expressed in terms of ¢n(£,r‘,7) as
o, (r,x',7) = < Nr) > rp(k) &(z'-r) 8(7)
2
+rp(k) 4 ¢ (r,r',7) - <NMz) > g(z,z',7) p, 720 (31)

n

where gl(g,g',T) is the Green's function which satisfies the photon transport

equation in the detector, i.e.,

[2— HC Q! Wy rD(Eﬂ 81(5,3',7) = 8(r'-r) &(7) . (32)

Here we have used explicitly the fact that the detector medium is non-dispersive

and a pure photon absorber. Thé solution of (32) is readily found to be
g (r,r',7) = 8(k'-k) &(x'-x-Q rc) exp [-rp(k) 7] . (33)
Substituting (29a) and (33) into (31), one obtains
¢, (r,r',7) = rp(k) &(k' -5){8(5‘ -x) ()
+ rp(k) Q(r) &(x'-x-QTe) exp [-TDT]:}; T:> 0. (34)

The Autocorrelation Function

The autocorrelation of the detector output, defined by (6), is now obtained

by integrating (34) on r and r'. The result is

11



0,(7) =\/q d6r rD(E) < N(r) > {:B(T) + rp(k) exp [EITI ri]

D

(x) &z) U [ (x,0) - ITIC]:}' (35)

where U[x] is the unit step function arising from*

k/“ x 8(x' -x-gltle) =k/qdq 5(a-|7|c) = U[!D(x Q) - |r]e]

\'i vV

Observe also that we have replaced T by ITI since after the integration over

r.and r', (34) becomes an even function of the time lag .

The Power Spectral Density

Fourier transforming (35) with respect to T yields the power spectral

density associated with the count rates:

elo) = fdr%W)<M)>[l+MyI(LM] (56)
where
I(x,w) E\/ﬁdT e_rD(EHTl ule'(x,0) - |r]e) eimT

=00

expl Lplpl [@/rp) sin(®h/c) - cos (@ip/e)] + 1
= 2 5 ‘ (37)
1+ (o/rp)

The Variance-to-Mean Ratio

The variance-to-mean ratio, n(T), was defined in (4). We first note that

*Use 6(5'-§-QIT|C) = 3(g-|Tle) S(Q_Z_Q-Q)/q2 where q = Xx'-X

12



the mean count rate is

L

<Z> = /ﬁd6r rD(E) < N(r) > . (38)
D

We then perform the integral indicated in the right hand side of (4). The final

result is found to be

n(T) = 1 +{;/; a®r rp(k) Q(r) < Nz) > {f(E,T)/ <Z TZ] (39)

where

(N
UW
=]
|

rD(E)k/\(l - %) exp [—rDu} U [Zb(gjg) - uc ]
o

-2 I
= (1-e DD -r-f—ll:;[l - (1 + /ZI')ZD)e D D], Te> 11')(3:_,9_) ’
(40a)
: 1 - e-rDT o |
= 1 - PG ] s Te< ID(E)Q_)
(LOob)

The limit of large gate time, i.e., Tc >> LD<§;Q) and T T >> 1, is of particular
interest because large gate times are easier to work with experimentally. In
this case, the second term in (LOa) can be ignored as compared to the first one,

and (39) reduces to

T » ) =1 +[b/\d6r rp(k) &r) < N(E)‘> (1 - G-ID(ﬁ’Q)E] /< Z >{]-
’ (41)

We shall now apply these general results to a particular geometry in order

to gain more insight into the intensity fluctuation phenomenon.

13



L. SIAB GEOMETRY

We consider an experiment indicated in Fig. 2. The source is an infinite
slab of thickness a, and the detector is a cylinder of length [ and cross
section A. We look at the photons with wave vector k,, which is parallel to
the axis of the detector. The relative positions of the detectof and the source

are shown in Fig. 2.

The following quantities are needed to calculate the autocorrelation func-

tion, power spectral density and variance-to-mean ratio:

LD=/Z, £b=£-X, 1D=X
LS=8

Ax) = &eToN(L - &)
<Hx)> = L E (1 - )X

<z> = v (1 - e'za)(l - e-ZDl)A

We shall discuss only the power spectral density and the variance-to-mean ratio,
because the autocorrelation function is usually used only to obtain the power

spectral density. Equations (36) and (41) reduce in the present case to

-2 pl 2pl i
- 1+ D*-2 D 2
G, (w) =<2 > (} + 21 L) ° " cos CJ, (42)
1+ “i; ] - ¢LD!
D
and
WD) =1+ E(L e - T )

Two limiting cases are of particular interest:

1L



a) Za>>1, Ipl>1

These conditions imply that the emitter is optically thick and that all

the photons entering the detector are detected. One finds

o) = Y0 g 1
() o [l i 1+ (w/rD)EJ ’ )
and

(T ow) = 14E (5)

b) Za>1 , ZD1<<1

This case differs from the previous one in that the detector is now

optically thin:

R
_ v g £ S o
Gz(a)) = - = V[1+E(2Dz) ” :|, (46)
2c
and
T » w) = 1*%@M)- (47)

where V = Af, i.e., is the detector volume.

5. DISCUSSION

Tt is observed from (4L) and (L6) that the break frequency in the power

spectral density, i.e., r_  or (c/l) depending on the value of ZDI , is related

D
to the characteristics of the detector only, and hence does not yield any in-

formation about the optical properties of the source medium. This implies that

15



one does not gain more information by measuring G,(w) at different frequencies.
However, one can measure (1&/0), which is related to the source, by determining
Gy(w) for very small (w << Min (c/Z, rp)) end very large (@ >> rp) values of w.

Indeed, one finds from (42) that

GZ(o) - GZ(Q)

=S(1- e ) (1 - ety |
G, ()
=T »w) -1 (48)

As already indicated in (48) this quantity (%) is also obtainable from the
variance-to-mean experiment. The choice between these two experimental techniques
may depend on the mode of operation of the detector. If the detector is operated
in the current mode, i.e., the output Z(t) is a continuous fluctuating voltage,
the power spectral density can be determined by conventional technigues. If
the detector is operated in the pulse-mode, i.e., 7Z(t) is a train of pulses,
then the variance-to-mean experiment is the natural choice.

Consider now the information contained in &/¢, assuming that it is
measured. If we are looking at a black-body system in which the atoms are in

thermal equilibrium at a temperature T, one can show that
o = exp Hfdb/KT] (49)

where K is Boltzmann's constant and hw, is the energy of the observed photons.

Recalling that 0 = @ - &, one finds

= [exp (+-Hb,/KT)- 1] -

alee

16



i

hmo

]

, (/ﬁoo/KT) << 1

Y

exp l:-hwo/KT] , ('cho/K!I‘) > 1, (50)

Thus, one can obtain the temperature of a black-body source by observing the
fluctuation in the intensity of radiation at a single frequency.

According to equation (50), it appears that it would be preferable to
measure the fluctuations of the low energy photons (hmb/KT << 1). However, it
must be borne in mind that both the power spectral density and the variance
are proportional to the average photon density which is, in turn, proportional
to the ratio of the photon speed in the emitting medium and ﬁhe speed of light
in a vacuum. In at least some circumstances this fact presents a significant
limitation on the feasibility of such measurements at very low frequencies.

To illuminate this point a little, consider the case in which the emitter is
a plasma—at least in sofar as its dispersive properties are concerned. Accord-

ing to reference 1, the speed, v, which appears in Eq. (9) is defined to be
Vv =2 _.C._ = Cn P . (51)

where 1 1s the index of refraction and w as a function of k is given by the
dispersion relation for the propagation of transverse electromagnetic waves
in the medium. In the plasma case, at a sufficiently low order of approximation,

this dispersive relation is

where W, 1s the plasma frequency and w, is the vacuum frequency of the photons

17



observed. Thus, for this example, one finds that

w2 _
Yoo [1+(__e)]l/2. (53)
C (03]

O

Therefore, if one were to attempt to measure the fluctuations in the emergent
photon distribution at frequencies for which wo/we << 1, one must expect that
both the variance and the power spectral density will be proportional to this
small quantity and that hence the feasibility of a statistically significant
measurement is called into question. Thus the desirability of measuring the
variance at frequencies such that wO/KT << 1 is in competition with the feagi-
bility of any measurement at all if the corresponding index of refraction is
small.

Finally, it must be pointed out that the present theory is predicated upon
the assumption that the principal mechanisms for the emission and absorption
of radiation involve free-free praticle transitions only, i.e., that particle
states of short life time do not play a significant role in the observations
discussed above. The point is that Eq. (15), which purported by describes the
fluctuating photon density, has been derived with the explict use of a coarse-
graining, or averaging, in time which implies a loss of information regard-
ing the fluctuations in time intervals of the order of, or less than, the life
time of atomic bound states. Consequently the effects of emission and absorp-
tion on Eq. (15) cannot be represented simply by & term of the form, on.
Instead there should be resonant elastic and inelastic scattering terms, as
- well as fission—like terms which describe the multiple production of photons

following the absorption of a single one. In such an event, the equation

18



describing the fluctuating photon density i1s not simply soluable as is the case
in the present example. Furthermore, because of the possibility that two or
more photons may have common ancestors due to the fission-like processes,
an entirely new mechanism for correlation is introduced into the system (quite
analogous to the correlations observed in neutron counting experiments in
multiplying media). The contribution to the variance, or spectral density
due to this latter mechanism may be as important—or even more so—than the
one investigated in this work.

The present approach based on the stochastic equation (15) has been
applied also to the study of photon fluctuations in a microwave cavity as
a special case in which the transport effects can be neglected. The des-
cription of the physical system and the results are given in the appendix.
The results agree exactly with those obtained by McCombie(5) using the master

equation.

19
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APPENDIX

FLUCTUATIONS IN A CAVITY

The system under consideration consists of a microwave cavity, a source
and two detectﬁrs. The source and the detectors are located at the center
of the cavity, which supports a radiation mode of frequency w,. The dimensions
of the source and the detectors are small as compared to the wave length of
the radiation. This assumption eliminates transport effects which play an
important role in the general problem treated in the text. The source is
described by €4k,) and aS(Eo) which are the emission and absorption rates.
The detectors consist of atoms which absorb photons. The re—émission of photons
by the detector atoms is neglected. Thus, the detectors are deécribed only
by the absorption rate Qb(go), Dropping the arguments in EL(EO), ag(k,) and
Ob(gb), and defining o =.2ab + Qg one obtains the stochastic equation (15)

in present case as

The correlation function associated with the photon density n(t) is

obtained by the technique described in the texts as
<n(t) n(t + 1) >=(afo) N expl -o|r| ]

where N = (©p/0) and denotes the mean number photons in the mode under con-
gsideration. Recall that p is the density of photon states which is unity if
there is only one mode with frequency w,. If there are degenerate modes with
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the same frequency, then p will denote the number of such modes. The cross-
correlation between the accumulated counts of the detectors in a collection

time T is found to be

1+0T - expl-0T]
T2 o)

<C4(T) CE(T) >= 2 ¢(T)

et

where C(T) is the common value of the mean number of counts of the detectors

in T. For large gate times, i.e., oT >> 1, this reduces to
-2
< ¢c¢(T) CQ(T) > =2 ¢(T)” /Top

which is identical to (4.1L4) of reference (5) apart from differences in notation.



FIGURE CAPTIONS

Fig. 1. Intensity fluctuation experiment.

Fig. 2. ©Slab geometry.
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