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Small-amplitude harmonic oscillations of arbitrarily shaped cylinders are considered both
experimentally and theoretically. For the theoretical model, the flow regime is separated into
inner and outer regions. In the inner region, the flow is governed by the classical Stokes
boundary layer equation. In the outer region, the full Navier-Stokes equation for the steady
streaming flow is solved numerically by using a finite-difference method coupled with
conformal mapping techniques. Numerical results of streaming, a nonlinear response to
harmonic motion, show complicated flow schemes. Experimental results confirm the existence
of such flows. Streaming flow around a sharp corner of a square cylinder is investigated
through numerical calculation and experimental flow visualization. The absence of any vortex
shedding on the time scale of the streaming flow is noted. These results suggest that in the limit
of a small amplitude of oscillation, or equivalently large Strouhal numbers, sharp-edged bodies

experience attached flow in the mean sense.

. INTRODUCTION

A flow field that has both steady and unsteady compo-
nents can be initiated by a cylinder harmonically oscillating
with small amplitude, or equivalently by a stationary cylin-
der in a harmonically oscillating onset flow. That is, a forced
oscillation about a zero mean produces, in the Stokes layer,
an oscillatory motion that averages to a nonzero mean. The
phenomenon has classically been referred to as “steady
streaming.” Analytically it is explained by the presence of
the “organized Reynolds stress” in the unsteady Stokes lay-
er.! The average or mean motion is a consequence of the
nonlinear interaction of the solid body with pure oscillatory
flow.

With different combinations of Reynolds number and
Strouhal number, three different flow regimes are possible: a
regime without any boundary layer, a regime with one
boundary layer, and a regime with two boundary layers. Fol-
lowing the first experimental and theoretical treatments of
Faraday? and Rayleigh,* both hydrodynamicists and acous-
ticians have investigated streaming flows in the various re-
gimes. Schlichting,* Holtsmark et al.,’ Stuart,® Riley,” and
Wang,® among others, derived analytic solutions by apply-
ing a boundary layer approach and/or matched asymptotic
expansions. Using numerical techniques, Davidson and
Riley® solved the boundary layer equations for high Reyn-
olds numbers. More recently, Haddon and Riley'?solved the
full Navier-Stokes equations for a circle in a finite domain.
They used an explicit finite-difference scheme valid for mod-
erate streaming Reynolds numbers. Their calculations gave
satisfactory agreement with Bertelsen’s'' experiments.

Historically, most. of the streaming work concentrated
on the flow associated with circular cross sections. The axi-
symmetric geometry of a circle allowed researchers to sim-
plify the boundary value problem and produce solutions that
otherwise were difficult to find. There are, however, noncir-
cular bodies that are capable of generating streaming flow.
These flows may be quite unlike those found in the circular
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cylinder case. In this work, the hydrodynamics of oscillating
noncircular two-dimensional sections is investigated. The
fluid is assumed to be incompressible. The Reynolds number
based on the body velocity is large while the Reynolds num-
ber based upon the streaming velocity is assumed to be of
order 1 or greater. Consistent with earlier theories, the lead-
ing-order unsteady outer flow is given by the unsteady veloc-
ity potential, while in the inner region, the standard laminar
boundary layer assumptions are made. It is also assumed
that the flow does not separate. This assumption, on the lack
of separation for a body with sharp corners, is investigated in
the limiting case of the infinitesimal amplitude of oscillation.

Given the above assumptions, the tangential potential
velocity next to the body determines the inner region stream-
ing flow. Conformally mapped bodies, such as Lewis'?
forms, offer convenient closed-form expressions for the un-
steady tangential potential velocities and give optimal grid
generations in finite-difference approximations of the Na-
vier—Stokes equation in the outer region. Lewis forms, which
are based upon a three parameter mapping, include circles,
ellipses, near rectangular sections, and many shiplike
shapes. In this paper, the streaming resulting from Lewis
forms and from a rectangular section with sharp corners is
examined. The inner region solution is found analytically
and is used as a boundary condition for the numerical solu-
tion of the full Navier-Stokes equation in the outer region.
This type of numerical matching yields complex flow pat-
terns that are qualitatively confirmed by comparison with
flow visualization experiments.

li. MATHEMATICAL FORMULATION

Consider a two-dimensional body oscillating with
known frequency {) and amplitude A4, in an incompressible
Newtonian fluid. Assume that the flow resulting from the
unsteady body boundary condition is laminar and that sepa-
ration does not take place."

The traditional nondimensional numbers, which deter-
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mine the flow characteristics, are defined as the following:
Strouhal number: S = QL /U, =L /A,

Reynolds number: Re = U,L /v,

Streaming Reynolds number: Re, = Re/S = Ul/vQ,

where L is a length dimension of a cylinder, O = 27fis a
circular frequency, and U, = Q4,. Experiments indicate
that streaming motion becomes significant for small ampli-
tudes of oscillation compared with a body dimension.
For most fluids with small viscosity, the product of the
Reynolds and Strouhal number is much greater than one,
i.e., Re:S> 1. Under these conditions there exists an un-
steady Stokes layer, outside of which unsteady motion
vanishes exponentially. In the outer region of the Stokes lay-
er, flow characteristics are divided into three regimes, de-
pending on the order of magnitude of Re,, the streaming
Reynolds number.® For Re, € 1, the outer region is governed
by the biharmonic equation (V*¥ = 0). For Re, » 1, in addi-
tion to the Stokes boundary layer, there is another boundary
layer where streaming motion decays to zero. This double
layer is described by Stuart.® This paper will consider moder-
ate flows characterized by Re,>O(1), where the outer re-
gion is governed by the full Navier—Stokes equation.’

The two-dimensional vorticity representation of the Na-
vier—-Stokes equation and the continuity equation are given
below. The dependent variables are separated into steady
and unsteady components (an overbar denotes the steady
component and an overtilde indicates the unsteady compo-
nents), or

o (#V)o = vWo,
at

where o is the vorticity and u is the two-dimensional velocity
vector. In this paper, ¢ will represent the steady component
of the streamfunction. Equation (1) can be nondimension-
alized, with respect to 1/91 for time, d for length, and U, for
the unsteady velocity, or yU, for the steady velocity. The
ratio between the steady and unsteady velocities is defined as

y. The unsteady equivalent of Eq. (1) becomes

Vu=0, o=o0+o (1)

9B _ Y (UXEXE + IXAXB) — - (VXAXB),
ar S S
1
= ———(VXVX®a), Vi=0, 2
Re-S( XVXa) u (2)

and the steady parts are
(VXaX3), + (VXEXD)

= — (y/Re)(VXVXD), V=0 3)

A thorough analysis of the problem posed by Egs. (2)
and (3) is given in Riley,” Wang,® and Haddon and Riley.°
For a more detailed discussion, refer to those references.
Only the relevant conclusions of the theory will be repeated
here. The existence of a Stokes layer of thickness of
O(Re*S) ~'/%is apparent from the fact that Re:S» 1 in Eq.
(2). Outside this distance the unsteady vorticity decreases
exponentially. In order for the diffusive and Reynolds stress
terms in Eq. (3) to balance in the Stokes layer, the velocity
ratio ¥ must equal 1/8.2

In the region outside the Stokes layer, Eq. (3) becomes
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VXuXa = (1/Re,) (VXVX®). 4)

From Eq. (4), the ratio of the diffusion term to the convec-
tion term is proportional to Re,, which for the purpose of
this work is assumed to be Re > 0O(1).

Similar to Wang’s® or Riley’s’ expansion for a circular
cylinder for Re, € 0(1), a perturbation scheme is now used
to set up the governing equation for the inner and outer re-
gions for Re, >0(1). A small parameter ¢ is defined as fol-
lows:

1 1
e=—<¢1l, —=ae,
S< Re
Res=&=L, where a = 0(1).
S a

In a straightforward manner, the streamfunction and
vorticity can be expressed in an asymptotic expansion of
successive orders of €. The unsteady component, through
the second order, is potential flow. It includes the displace-
ment effects of the Stokes layer but does not satisfy the no-
slip condition. A stretching coordinate in the normal direc-
tion is introduced to cover boundary layer behavior.

The result in the inner region is the generalized unsteady
Stokes problem of flow over an oscillating curved surface.
The effect of the body shape is found indirectly in the vari-
able pressure gradient. Specifically, the first-order steady
streaming solution expressed as streamfunction ¥,, is
du, ( 13 3 1

—_— ———ﬂ*—e_ZH—e_"Siﬂ
P d§ n

W, =u
° 8 4 8

—%e‘"cosnwé—-ne‘"sinn), (5)

where (7,£) are the local inner region normal and tangential
coordinates and u,(£)e™ is the potential flow resulting
from harmonic oscillation. As 77— oo there is a mean motion
of

3 du,(£)

U~ —Tup(é') e

This becomes the steady inner boundary condition for the
steady outer region in the sense of numerical matching. Fora
finite domain, 1<r<A, Eq. (6) becomes, as shown in Had-
don and Riley,'°

3a* du,
U~ — 2 2 U, s
4(A%—1) d¢

(6)

at the inner cylinder (r =1)
and (7
3 du,
Us~ — 2 7 4p i
4A(A*-1) dé
at the outer cylinder (r = A).

Consider the characteristics of this solution set repre-
sented by Egs. (6) and (7). These solutions, which will be
used as the matching condition for the outer boundary value
problem, are separable into normal and tangential coordi-
nates. The dependency in the tangential coordinate is only a
function of the potential pressure gradients in a tangential
direction. This fact suggests the use of conformal mapping in
order to expand the results for the circular cylinder to arbi-
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trary bodies. In the next section, transformations of both the
governing equations and boundary conditions, based on this
idea, are formulated.

From (4), the streaming in the outer region is governed
by the full Navier-Stokes equation. Haddon and Riley'°
solved this equation for an oscillating circular cylinder in a
finite domain using an explicit finite-difference scheme. This
paper uses a similar procedure expanded to include noncir-
cular shapes.

The outer flow is driven by the boundary conditions
given in Eqgs. (6) and (7), which are only dependent upon
the potential pressure gradient in the tangential direction
evaluated on the boundary surface. Conformal mapping of-
fers not only a convenient method for the analytical deter-
mination of these potential flow quantities, but also provides
an optimal grid generation near sharp corners. Around
corners, finer meshes are expected to cover larger changes in
vorticity and pressure gradients in both the normal and tan-
gential directions. Conformal mapping automatically trans-
forms uniforrn mesh in the computational circular domain
into finer mesh near corners in the physical domain.

The nomenclature used to define the mapping function-
als and variables are shown below in Fig. 1, where z = f({)

=X+iY, (=% and ®=7/2—0 +arg[ f'({)].

There, a circle in the computational plane is mapped
into the desired arbitrary shape in the physical plane. In this
paper the Lewis transformation'? for a series of rounded
square cylinders, the transformation for a square cylinder,"*
and a three-parameter mapping for an asymmetric body are
employed.

(1) Lewis transformation

z=fO) =11/ +0NE+b/?). (8)

Body shapes that correspond to =0, —0.04, — 0.06,
— 0.08, — 0.10, — 0.12, and the rounded square used in the
flow visualization experiment (solid line) are depicted in
Fig. 2.

(2) Transformation for a square'*

(é’ + Z ;?;_ ') = re’,

and (9)

&-le(+5)"

where L is a number of truncation and

Q= 1.180 340 6,
Ay —1
=(—D"[(1:3-5 - |2m =3|)/2"m!\(4m — 1) ] .
3 (
zat ) .
3 x

FIG. 1. The nomenclature for the conformal mapping of a circle into an
arbitrary shape.
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Since the mapping functionals are the form
z2=C,{ + Cf 73+ O(£ ~*), where C is some constant,
both the outer boundaries in-the physical and computational
planes are essentially circular in shape. In this work, the
ratio of the representative cylinder dimension to the outer
boundary diameter is approximately 1:26. This has the effect
of reducing the second term in the mapping functional to
0(10~%) on the outer enclosure. The expression for the tan-
gential velocities on arbitrary body boundaries is given by
(A1) in the Appendix.

Bodies with sharp corners, such as a square cylinder
produce flows around edges, which are difficult to analyze.
The assumption of nonseparating mean flow must be ex-
amined. From the flow visualization experimental results
shown in Sec. IV the following observations are made: (i)
there exists no visible separation around corners in the mean
sense (4 sec exposure photograph); (ii) the flow around a
corner is similar to that of a stream incident upon a 45°
wedge; and (iii) a trajectory of a fluid particle around a cor-
ner does not cross the corner; instead the particle forms a
thin elliptic orbit that lies between the body and the 45° sym-
metry line. The nonzero mean of this orbital motion moves
in from the symmetry line and leaves along the body surface.

Also from the theoretical and experimental works on
the estimation of force components on an oscillatory cylin-
der by Graham'® and Bearman et a/.,'¢ it follows that (i) the
length scale in the size of vortices and shedding is propor-
tional to the amplitude of oscillation, 1/8, (ii) the bigger S is,
the more shedding processes take place in one cycle, (iii) at
the larger S, diffusion of vortices into each other, i.e., equal
magnitude and opposite signed pair vortices, is so rapid that
little or no convection of the vortex pair was seen, and (iv)
the effect of the onset of vortex shedding becomes significant
at a small but finite amplitude of oscillation.

Following these observations in the limiting case of
S— 0, the mean motion can be analyzed with the assump-
tion of nonseparating flow. The only difficulty remaining in
the analysis of a square is the singular behavior of the surface
potential velocity at a corner. This singularity, however, can
be excluded by introducing the locally valid Stokes flow
around a sharp corner.'”'® A detailed investigation of the
multiscaled viscous regions is beyond the scope of this paper.
Rather, the effort is focused on the necessary potential pres-
sure gradient assumptions required for the approximate
streaming flow description.

A simple model for the flow around a corner is one com-
posed of three flow regimes, as shown in Fig. 3(a): the local-
ly valid Stokes region (I), the unsteady boundary layer (I1),
and a potential flow regime (III). For small 7, the behavior

aODY N

&= A2
e = 010
s = -0.08
B = 008
B = 004

FIG. 2. The bodies generated by the Lewis transformation.
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FIG. 3. The corner flow details. (a) Flow regimes near a corner (stretching
the normal coordinate). (b) The characteristics of the unsteady velocity at
each regime.

of the velocity near a corner is depicted in Fig. 3(b), where
u~1r"34% in regime I and u, ~r~'/? in regime III. In the
intermediate boundary layer region, the two velocities are
matched. The location of maximum potential velocity, in
Fig. 3(b), is represented by the point that is € from the body
surface (corner).

We assume that the potential velocity is equivalent to
that on a body surface generated by the transformation, Eq.
(9), with » = 1 + €. Body shapes and corresponding poten-
tial pressure gradients are depicted for some values of €:in
Fig. 4. This assumption allows us to consider potential flows
that are noninfinite at the corner.

HIl. NUMERICAL SOLUTICN PROCEDURE

In numerical analysis, it is possible to solve an elliptic
partial differential equation for a steady-state problem by
solving an equivalent unsteady problem, parabolized in
marched in time until a steady-state solution is attained. For
the streaming problem described in this work, the initial
solution corresponds to Re, = 0, for which there exists an

L

g
L

£S5t 000
EP52- 007

T BPSie Q0
TTTT EP34s 020

FIG. 4. The approximate modeling of the corner flow. (a) The bodies gen-
erated by the transformation shown in Eq. (9). (b) The potential pressure
gradients for bodies in (a).
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FIG. 5. The conformally mapped numerical system.

analytic solution. After the solution for a given streaming
Reynolds number stabilizes, the parameter, Re, in Eq. (4),
is incremented and the time-stepping scheme repeated.
While the solution technique is based upon numerical con-
siderations, it also resembles the flow visualization experi-
ments where the amplitude of the mechanical oscillator was
increased by small increments, allowing for sufficient time
between amplitude changes, so the streamlines could reach a
steady-state condition.

As a result of the symmetry of flow, consider a quarter
domain, as shown in Fig. 5, where i=1,.,M 4+ 1 and
Jj=1,..,N + 1. Then, define increments in r and 8 as

Sr=(A—1)/M and 66 = n/2N.

The numerical formulation for the outer flow is given as
1 V2 1 3(Y,w) 1 dw

— Vi — — = —_—

Re, r a(r0) H*(r,6) ot
and

VY= —w/H*(10), (11)
where the transformation function (the inverse of a Jacobian
of the transformation) is

2
,__.2_1___... P _‘i{. =J ( r’o) .

H?*(r,6) dé
Equations (10) and (11) are the conformal transformations
of the Navier—Stokes equation and the Poisson equation.
The boundary conditions are

¥=0, on r=14, for 0KO<7/2
and

¢=0, on 8§=07/2, for I<r<A.

From symmetry the vorticity has values of

on @ =0,7/2, for 1<r<A.

From the matching condition, Eq. (7), the tangential veloc-
ity becomes

W _

e— 2 us,

ar

Specifying the boundary conditions for vorticity on the
body surface is one of the main difficulties when using a
vorticity representation of the Navier—-Stokes equation.
There are many ways to represent the numerical boundary
conditions. In this paper, a formula that is second-order ac-
curate in & is adopted.

The results at the inner cylinder, r = 1, are

(10)

w=0,

on r= 14, for 0<OL7/2.
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12[¥,, + (u"/2)dr(2 — dr + 2dP) + (dP/12) (4o, ,/HY, — w0, ,/H2 ) |H

W, =

y dr(3 —2dr)
and at the outer cylinder r = A,

2
Y+ 0wdr)

12{‘1’1\“ + (u¥/2)dr[2 —dr/A + 2(dr/A%) ] + (drz/lz)(%M.j/an.j — Wy l.j/thw— l.j)}Hil+1[j

Dpyyry = —

where W} ; denotes a point value of y at 7 = i6r, 6 = j66, and
t = nét. Further, 4"’ and #!® are the matching velocities at
the inner and outer cylinders, respectively.

Take the solution of Eq. (10) at Re, = 0; i.e., the solu-
tion to V*y° = 0, as the initial steady state. The biharmonic
equation can be solved to give

¥°(r,0)

3 du B
TRAAI 1) m (B"z + B! +';%+B“)’
(12)

where
B, =204+ A*4+ A" +2, B,= —(A*+1)
B, =A*A°+1), B,= — (A®+2A°+2A%+1),

and u, is the potential velocity on the cylinder in an infinite
domain. Equation (12) was derived through the use of the
separation of variables. The algebraic programming system
REDUCE'® greatly aided in the determination of the coeffi-
cient matrix leading to Eq. (12).

For the second Re, increment, Eq. (10) can then be
solved by an explicit finite-difference scheme while Eq. (11)
is solved by a generalized cycle reduction algorithm. The
number of divisions in the & direction, N, must be 2135,
where N,, N,, and N, are integers. Refer to Sweet?® for de-
tails of this algorithm. This process is repeated with succes-
sive Re, increments until the desired Re, is reached. Consult
Haddon and Riley'® and Telionis' for a discussion of this
technique.

The effectiveness of the explicit scheme is limited by
stability considerations. A significant reduction in the com-
puting effort can be achieved by using the alternating direc-
tion implicit (ADI) scheme. The streamfunction is updated
by using the generalized cycle reduction algorithm per each
half-time step. This can be done also by using the ADI
scheme of the parabolized Poisson equation per full time
step.

Numerical solution procedures and brief stability analy-
ses for both schemes are considered in the following.

The following is an outline of the-numerical method of
Haddon and Riley.'® Starting

Re, = O(1),the solutions neverreally reached a steady state
in finite time (creeping flow). These partially convergent
next increment of Re,. Thereafter the solution was obtained
in increments of ARe, == 20 up to Re, = 90. The time taken
to advance the solution from one steady state to another was
typically O(10%) in this range of values of Re,. For Re,
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dar[3 —2(dr/8)] ’

T
= O0(1), the time for a partially converged solution was tak-
en so that body boundary values of dw/dt were O(1074).
Despite the simplicity of the explicit scheme, its effectiveness
is limited by stability considerations. Approximate stability
criteria for this scheme are

diffusion time step:
Re,
2(1/A7 + 1/r Ar+ 1/ A8?)
convection time step:
1
|u, |/7Ar + [ug|/(r AG) ’
and the actual nondimensional time step is
A[1/(AD, + 1/(AD, 17" (13)

Since the maximum velocity of the fluid in the annulus is
less than 1.5 from Eq. (7) for a circular cylinder and for the
mesh size employed here, Ar = 0.109 26 and A@ = 0.052 36;
the maximum At available for this calculation is 0(10~2)
for Re, = O(10) and O(1073) for Re, = O(1). The crite-
rion for convergence to a steady state is based on the maxi-
mum value of dw/dt in the flow at each time step and
O(10~*) was found to be adequate.

(An),<

(A<

B. Alternating direction implicit scheme

It is difficult to obtain the exact stability criteria for an
ADI approximation of the nonlinear Navier-Stokes equa-
tion. However, since the ADI scheme is second-order accu-
rate in time and, for the heat equation, it is unconditionally
stable, the time increments of this problem can be approxi-
mated by the convection time (At) ., which is much larger
than the time increment of Eq. (13). Moreover, the ADI
scheme provides a strong numerical damping, which effec-
tively removes short period disturbances resulting from in-
correct initial conditions. These disturbances adversely af-
fect the numerical solution in the early time stage. However,
this damping is so strong that it results in an overdamped
solution. Therefore a combination of the ADI and the ex-
plicit schemes is expected to obtain an accurate solution with
still a far smaller computing time. The strong numerical
damping and large time increment of the ADI scheme enable
us to exclude all intermediate solutions in Re, of the explicit
scheme with the expense of only O(10?) time steps at Re,
= 90. Using this damped solution as a new initial condition,
the explicit finite-difference scheme is applied as before. A
large saving in computing time was achieved.

IV. FLOW VISUALIZATION EXPERIMENTS

Flow visualization experiments were conducted in the
Ship Hydrodynamics Laboratory at The University of
Michigan. Three different techniques using hydrogen
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FIG. 6. The experimental setup for flow visualization photographs.

bubbles, fluorescent particles, and glass microcarrier beads
(SoloHill Engineering, Inc., Ann Arbor, Michigan) as
tracers were tried. The experimental setup consisted of a
large circular dish, mechanical oscillator, and a 35 mm cam-
era. A general schematic of the equipment layout is given in
Fig. 6.

Harmonic oscillations were achieved by attaching:the
specimen to a 38.1 cm musical instrument speaker. The us-
able frequency range of the speaker was between 20 and 409
Hz. Test specimens had representative dimensions (d :
ter for the circular section or width for the rounded sqy

ly 3.8 cm. An outer boundary was created by a dish of 66.0
cm. This produced a ratio.of body width to dish diameter-of
approximately 1:26. The sinusoidal input signal to.ti
speaker was created by a sine wave generator and moriito

quency of oscillation were measured by a quartz acc
meter (model No. 392A, PCB Piezotronics, Inc., D

tory. The relatively small streaming velocities were affected
by the velocities caused by bubble buoyancy. A more suc-
cessful approach was to sprinkle fluorescent powder on the
water surface and follow the particle paths under ultraviolet
light. This approach, however, was suspect as a result of the

presence of capiliary waves. In order to eliminate the possi-
ble free surface effects, a glass cover was placed over the fluid
and glass microcarrier beads were floated in a water—glycer-
in mixture. To make the mixture, water was carefully poured
over glycerin resulting in a water—glycerin interface. The
mixture was then allowed to rest for 24 h, producing a gradu-
al density gradient varying from nearly pure glycerin on the
bottom to nearly pure water at the top. The glass beads are
available with a specific gravity of 1.02, 1.03, or 1.04 and a
diameter range of 90-150 um. Various combinations of wa-
ter—glycerin and bead weight were tried. The best results
were achieved when the beads had a specific gravity of 1.03.

In a typical test run, the test specimen would start oscil-
lating from rest. The wave generator frequency would be set
and the gain increased in increments. Sufficient time, usually
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3-5 min, would be allowed between gain changes for the flow
to reach steady state. When the desired streaming Reynolds
number and Strouhal number were reached, a time lapsed
photograph was taken. Typical exposure times were two to
four seconds. Some of the resulting stream patterns are
shown in Figs. 7-9, where both the fluorescent powder and
the glass microcarrier beads results are presented. The
streaming Reynolds numbers given in the figure captions are
based upon a kinematic viscosity of v = 1.35 cm?/sec for the
water—glycerin mixture (several samples of the mixture in
the interface where the beads floated were taken, and the
viscosity was measured by a viscometer and averaged ten
times per sample) and v = 0.015 cm?*/sec for pure water. In
the water—glycerin mixture, there was a certain amount of
fluid stratification at the interface where the beads were lo-
cated. Visual inspection indicated that the effect of this was
small on the overall flow patterns. In spite of a large change
in viscosity, but a relatively small change in the density, the
persistence of two-dimensionality could be seen in the ex-
periments. Generally, the patterns were repeatable with
both the fluorescent powder and glass microcarrier beads, if
care was taken. The flow, however, also exhibited marked
regions of instability, particularly if the apparatus was not
aligned properly.

(o)

(b)

FIG. 7. The streaming flow around a circle. (a) The streaming flow on the
free surface; Re, 50, $§=30. (b) The streaming flow on the interface of
water and glycerin; Re, = 50, § = 30.
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(b)

FIG. 8. The streaming flow around a rounded square. (a) The streaming
flow on the free surface of water; Re, > 30, $=50. (b) The streaming flow
on the interface of water and glycerin; Re, = 30, § = 50.

V. RESULTS AND DISCUSSION
A. Circular cylinder

Trial runs to check the numerical solution technique
were performed for a circular cylinder with A = 20.67 and
Re, = 90. This is the case Haddon and Riley'® solved nu-
merically and Bertelsen'! investigated experimentally. Satis-
factory comparisons with the previously published results
were obtained by using both numerical schemes with ¥ = 30
and M = 180. The center of the recirculating region is at
r. = 12.14and @, = 33°, which compares well with the mea-
sured values of . = 12.2 and 6, = 34°, taken from the flow
visualization photographs of Bertelsen'! and the values of
r, = 12.2 and 8, = 32.9°, resulting from the numerical solu-
tion of Haddon and Riley.'°

Streamlines at Re; = 90 are depicted in Fig. 10(d) with
its inner solution [Fig. 10(a)], reduced grid generation
[Fig. 10(b}}, and initial solution {Fig. 10(c)]. The experi-
mental results at Re, = 50 are shown in Figs. 7(a) and 6(b).
Since Re-S for the experiment is much greater than O(1),
the inner cells are compressed next to the body and cannot be
seen in the photographs.

B. Rounded square cylinder

A second set of shapes varying from nearly circular sec-
tions to rounded square sections was also investigated. The
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(b)

FIG. 9. The streaming flow around a square. (a) The streaming flow on the
free surface of water; Re, > = 10, $=100. (b) The streaming flow on the
interface of water and glycerin; Re; = 10, § = 100.

sections are mathematically represented by the Lewis trans-
formation, given in Eq. (8). A value of b = 0 corresponds to
acircle, while a value of b = — 0.13 corresponds to a nearly
square shape. The section contours for various values of b
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FIG. 10. The numerical solution of outer streaming flow for a circular cylin-
der. (a) The inner solution for a circle with b = 0. (b) Grid generation for
the outer solution. (c¢) The initial condition of the outer solution; Re, = 0.
(d) The outer solution at Re, = 90.
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FIG. 11. Inner flows for bodies generated by the Lewis transformation.

are shown in Fig. 2. Inner solutions for the bodies of Fig. 2
are depicted in Fig. 11. A valueof 5 = — 0.13 is the limit for
Lewis forms whose contours do not exceed the square
boundary, based on the maximum width. This shape, with
small radii of curvature, most closely represents a square
with rounded corners.

For comparison with the rounded square used in the
flow visualization experiments, the outer flow for a Lewis
form of b = ~ 0.13 was calculated. As shown in Fig. 2, the
experimental and numerical shapes have small differences in
geometry. The inner flow patterns shown in Fig. 11, how-
ever, indicate that streaming inner flows are quite similar
when values of b are more negative than — 0.09. Since a
finer mesh size in the @ direction is expected from the inner
solution, the actual number of angular and radial increments
used in the simulation were N = 60 and M = 180, respec-
tively. The initial solution for the first value of Reynolds
number, Re, = 0, is shown in Fig. 12(c). The streamlines
for the final Re, = 30 are then shown in Fig. 12(d). In the

g- -0.13 B= -0.13

{e)

REex 0.0

FIG. 12. The numerical solution of the outer streaming flow for a Lewis
form cylinder. {a) The inner solution for a rounded square with & = 0.13.
(b) Grid generation for the outer solution around a corner. (c) The initial
condition of the outer solution; Re, =0. (d) The outer solution at
Re, = 30.
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FIG. 13. The outer solution of streaming flow near a Lewis form cylinder.

limit of zero streaming Reynolds number, the outer flow
pattern resembles the far field behavior of the inner solutions
shown in Fig. 12(a). That is; the outer region is divided into
two approximately equal recirculating cells. As the stream-
{10) become more important and one recirculating region
shrinks to a small cell while the other grows to cover most of
the outer domain. Experimental results of the streaming pat-
terns for the rounded square at Re; = 30 are shown in Figs.
8(a) and 8(b). Time lapsed photographs of fluorescent par-
water—glycerin interface are given. Figure 13 shows an ex-
panded view of the calculated streaming flow around a
rounded square. Comparing Fig. 13 to Figs. 8(a) and 8(b),
itis evident that there is qualitative agreement between theo-
ry and experiment. The general flow characteristics predict-
ed by theory, four large cells in the direction of oscillation
and four small cells on sides perpendicular to the direction of
motion, are present in the experiments. The grid generation,
as shown in Fig. 12(b), having a finer mesh around corners
where the values of ¥ and w vary rapidly, is expected to
produce better accuracy and convergence.

C. Square cylinder

Another obvious shape of interest is the square, since
flows associated with sharp corners provide some of the
more challenging problems in hydrodynamics. With the as-
sumption on the potential pressure gradient given before, the
numerical solution at Re, = 10.0 is solved with ¢ = 0.07
(see Fig. 4).

The inner flow patterns for the square, the grid genera-
tion, the initial solution for Re, = 0.0, and the final outer
solution, are shown in Figs. 14(a)~14(d), respectively. A
magnification of the outer solution near the square boundary
is shown in Fig. 15. Experimental results of streaming pat-
terns for the square are shown in Figs. 9(a) and 9(b). Com-
paring Figs. 9 and 15, it is clear that there is a qualitative
agreement between theory and experiment.

D. Nonsymmetric cylinder

In another application of the solution technique, the
streaming of fore and aft asymmetric bodies were computed.
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FIG. 14. The numerical solution of the outer streaming flow for a square
cylinder. (a) The inner solution for a square with LK = 20. (b) Grid gener-
ation for the outer solution around the corner. (¢) The initial condition of
the outer solution; Re;, = 0. (d) The outer solution at Re, = 10.

The bodies were generated by the three-term conformal
mapping of

z=—l~—_'-—i—-:;(§+z_a"2—+-§‘3—),

where the two cases of @ =0.06, b =0.0 (body 1) and
a=0.03, b= — 0.1 (body II) were tried. Numerical solu-
tions are shown in Figs. 16 for body I at Re, = S0and Fig. 17
for body II at Re; = 30, respectively. These shapes were not
tested experimentally, though flow patterns similar to these
were observed when the symmetric test specimens were
mounted incorrectly.

All of the experimental flow patterns were matched in a
qualitative sense with the theoretical computations. The two
dissimilar experimental techniques gave similar results,
thereby increasing the level of confidence in the experiments.

FIG. 15. The outer solution of streaming flow near a square cylinder.
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REe=50.0

FIG. 16. The numerical solution of the outer streaming flow for an asym-
metric body I. (a) The inner solution. (b) The outer solution; Re, = 50.

Quantitative differences were apparent, particularly in the
location of the large vortex cells. Possible sources of experi-
mental error may be the following: (i) The water—glycerin
mixture was actually a stratified rather than homogeneous
fluid; (ii) the rounded square did not match the exact con-
tour of the Lewis form as shown in Fig. 2; and (iii) the
fluorescent particle paths may have been influenced by the
capillary waves on the free surface. These effects and the
influence on streaming of the assumed pressure gradient for
the square shape should be the subjects of future investiga-
tive efforts.

Vi. SUMMARY

A general procedure for solving the streaming flows re-
sulting from small amplitude oscillations of an arbitrarily
shaped cylinder has been presented. The conformal mapping
technique with its inherent adaptive grips, has been shown to
be useful in solving the full Navier—Stokes equation for two-
dimensional nonseparating flows. For the limiting case of

FIG. 17. The numerical solution of the outer streaming flow for an asym-
metric body II. (a) The inner solution. (b) The outer solution; Re, = 30.
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S— o, the nonseparating model for bodies with sharp edges _ {I(Re{W})
produces a reasonable numerical solution when compared - rob ret
with the experimental flow visualization results. The time-

lapsed photographs clearly demonstrate that sharp cornered X ( _r cos ® + X sin @) ,
bodies do not experience large scale separation in the limit of J J r=1
large Strouhal number S. where the Jacobian of the coordinate transformation is
The lack of separation on the time scale of the streaming X /"X,
flows indicates that the net effect of the vorticity generated at - = °l = (_‘2: oY  ox Q’_)
Y, (1/nY, ar rd8 raé ar

the corner is small. During each half-cycle of oscillation, a h
vortex is generated. This vortex is nearly equal in strength  and Re{W} represents the real part of the complex potential
but opposite in direction to the previously generated vortex. ~ W. Finally,

Since there is little time for the two to separate, they combine u,(8) = (2U, sin 8 /) (X, sin® — ¥, cos ®), _,
and cancel. This is a hypothesis, however, and should be '_( Al)
tested by additional research.

where J, =J(r=1).
(i) For a Lewis-form cylinder,

Jo=[1/(1+ 5)]*[(1 — 3b cos 46)* + 3b sin 46]
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APPENDIX: THE POTENTIAL VELOCITY AND THE _ -
CORRESPONDING INNER STREAMING VELOCITY ON Xlrwi=0 (°°s 0— % (4m—1)
THE BODY SURFACE
Given the complex potential of a circle, X4y, _y cOs(4m — 1 )0) ,

W=U, &+ 1/0).

Refer to Fig. 1 for the definition of the variables. Then using
complex variable analysis, the tangential velocity on arbi-

L
Y| _: =Q(sin0 + Y (4m—-1)
m=1

trary bodies, u, (8)e™, can be shown to equal Xd,,, _, sin (4m — 1)0) .
u,(6) = (ﬁ%‘i’g}l) cos ® Also, the tangential angle to body surface is
() 7r= 0 [7/2, for 0<8 < /4,
(3(Re{ W ) sin ® 0, forn/4<6<n/2.
axY(r,0) /.- Therefore, from (A1), the surface potential velocity is
1

" _Uosina[cose+2f;,=1(4m—1)a4,,,_,cos(4m—1)0] for 0<0<.T

P Q”2|00820| - ) or < <‘I‘9

A3l
" U, sin @ [sin @ — 27, _, (4m — 1)a,,, _, sin (4m — 1)8 ] for T o< (A3
= , for—<O0<—.
P Q'"?|cos 26 | 4 "2

I
For a finite domain r€[1,A], that is, a flow resulting  can be generalized for an arbitrary-shaped cylinder, as in the

from an oscillating circular cylinder (r = 1) inside a finite ~ following:

fluid domain surrounded by a stationary outer circular cyl- U)o =1/(A%—1 o _
inder (» = A), the potential velocity on body surface canbe (p Dt 2( , )(u.’ Yotwic 3L r=4  (A4)
found by the process in Haddon and Riley, '® and this process (#p)niee = BY/(A* = 1) () Dingire 8t r=1.  (AS)

964 Phys. Fluids A, Vol. 1, No. 6, June 1989 S. K. Kim and A. W. Troesch 984



From these results, the inner solution of streaming flow
for a finite domain at r = 1 and » = A, using the coordinate
system fixed in the mean position of circle as 7 — w, is

a.‘p) 3A° du,(8)

—(2Y = - 7] , A6
"s (8r . TS TEA AT (A®)
aﬁ) 3 du,(6)

_(%) __ 9 (A7
“ (ar T Ty e Oy AD

Here (A6) and (A7) are used as a matching condition for
the outer streaming problem.
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