Correlation of spectral and heat-capacity Schottky contributions for Dy_2O_3 , Er_2O_3 , and $Yb_2O_3^{(a)}$

John B. Gruber

Departments of Physics and Chemistry, Portland State University, Portland, Oregon 97207

Robert D. Chirico^{b)} and Edgar F. Westrum, Jr.

Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109 (Received 17 April 1981; accepted 12 May 1981)

A self-consistent interpretation of the Raman and infrared spectra and the heat-capacity measurements on Dy_2O_3 , Er_2O_3 , and Yb_2O_3 , which have the cubic (bixbyite) structure, is presented. New spectra recorded at 10, 80, and 300 °K on oriented single crystals of each oxide are compared with published spectral data and interpretations. Most of the data are consistent with earlier interpretations. However, several additional crystalline-electric-field split levels have been found for ions in the C_3 sites that, together with the established CEF-split levels for ions in the C_2 sites, now provide a total picture for the CEF splitting of the ground-state manifolds. These values allow calculation of the total Schottky contribution to the heat capacity. Experimental Schottky heat-capacity values are independently derived by the volume-weighted lattice-contribution scheme. Correlation between optical data and heat-capacity measurements is found to be excellent. Further confirmation of the analysis is found in the agreement (to within 3%) between observed and calculted CEF splitting for the lanthanide ions on C_2 sites.

I. INTRODUCTION

The cubic lanthanide sesquioxides possess two inequivalent cation sites, C_2 and C_{3i} , the latter with inversion symmetry. They have been of scientific and technological interest for many years in part because the lattice itself is an excellent host material for some of the most powerful lasers built.¹⁻³ Since the early sixties, lasers have made possible the study of many low probability nonlinear optical phenomena,⁴ including vibrational and electronic Raman scattering. 5-7 Coherent, polarized, and tuneable excitation sources permit identification through electronic Raman scattering and double-photon absorption of crystal-field states of lanthanide ions in sites having inversion symmetry.⁶⁻⁸ Moreover, energy transfer between inequivalent cation sites in the cubic lanthanide sesquioxides has been investigated quantitatively using laser excitation sources.⁹

The Schottky contributions to the heat capacity have been successfully resolved recently by Chirico *et al.* for the lanthanide trihydroxides¹⁰⁻¹⁴ and for the hexagonal lanthanide trichlorides¹⁵ through application of a lattice-heat-capacity approximation technique based on a volume-weighted interpolation between the heat capacities of compounds containing S-type ground states (i.e., interpolated from the La⁺³, Gd⁺³, and Lu⁺³ analogs). In view of these results the heat-capacity data of Justice and Westrum for the lanthanide sesquioxides¹⁶⁻¹⁹ provide an important check on the assignments made to the crystal-field split [SL] J-levels for lanthanide ions in both C_2 and C_{3i} cation sites as deduced from Raman and optical spectra.^{8,20-25} Such a check is particularly valuable in the interpretation of the Raman scattering experiments, which, in certain cases, exhibit vibrational and electronic spectral peaks of similar magnitude.^{8,23} Moreover, a recent comprehensive study of the Ln^{+3} crystal-field splitting of the $4f^n$ [SL] *J*-manifolds in both C_2 and C_{3i} sites in Y_2O_3 provides an additional independent check of the experimentally deduced Stark splittings.²⁶ In addition, these crystal-field calculations make possible further interpretation or reinterpretation of EPR, Mössbauer, and heat-capacity data.²⁷⁻³¹

We present a self-consistent interpretation of the Raman and optical spectra with the heat-capacity measurements of concentrated (i.e., 100%) Dy_2O_3 , Er_2O_3 , and $Yb_2O_3^{18}$ by analyzing unpublished, infrared and electronic Raman scattering data as well as extant data.²⁰⁻²⁵ The deduced Stark splitting for both sites are then compared with the crystal-field calculations of Chang, Gruber, Leavitt, and Morrison.²⁶

II. SAMPLE PROVENANCE AND SPECTROSCOPIC TECHNIQUES

Single crystals several cm in length and width and several mm in thickness were cleaved from 6.0 by 1.0 cm rods of oxides (99, 99*% R₂O₃) grown by D. M. Johnson at Douglas Aircraft Company, Santa Monica, California, in the mid-sixties using a modified flame-fusion technique. Crystal axes and planes were established using standard x-ray crystallographic techniques. Crystals selected for their size and clarity were further cut and polished. The oxides of Dy, Er, and Yb were found to have the cubic C (bixbyite) modification (T_n) 1a3). The elementary cell contains sixteen formula units with the thirty-two cations distributed 24 in C_2 sites and 8 in C_{3i} sites. The local axes of the C_{3i} sites are found in the [111], $[\overline{1}11]$, $[1\overline{1}1]$, and $[11\overline{1}]$ directions, respectively. The C_2 axes are parallel to [100], [010], or [001].

Infrared spectra (5 to 400 wave numbers) on powdered

^{a)}The portion of this research performed at the University of Michigan was supported in part by the Structural Chemistry and Chemical Thermodynamics Program of the Chemistry Section of the National Science Foundation under grant CHE-8007977.

^{b)}Present address: Bartlesville Energy Technology Center, Box 1398, Bartlesville, Okla. 74003.

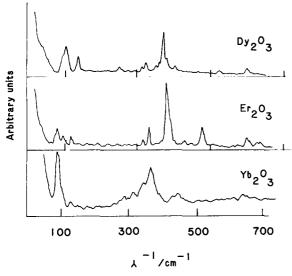


FIG. 1. Raman spectra of Dy_2O_3 , Er_2O_3 , and Yb_2O_3 observed at 80 °K. Intensities are relative to each spectrum and incident excitation was chosen so that all Raman-active modes are observable. The horizontal axes for each spectrum (in cm⁻¹) increase to the right away from that of the excitation source frequency.

mulls of the oxides were recorded in the mid-seventies by JBG at Washington State University using a Beckman FS-720 Fourier interference spectrophotometer. Samples were cooled to 80 K using a liquid nitrogen conduction dewar. A Cary-14 spectrophotometer and Perkin-Elmer-301 spectrometer recorded single-crystal and powdered mull data between 10000 and 4000 and between 4000 and 250 cm⁻¹, respectively. Samples were cooled to 15 K using a liquid helium conduction dewar. These measurements were recorded by Gruber, Henderson and Muramoto at Douglas Aircraft (later McDonnell Douglas Astronautics) Company, Santa Monica, California between 1965 and 1969. Part of these data, including the single-crystal spectra, were reported earlier.^{24,25} The remaining unpublished data are included here since they also aid in the interpretation of the following Raman data and observed Schottky contributions reported earlier by Justice and Westrum.¹⁶⁻¹⁹

Two-photon absorption and scattering experiments on the oxides of Dy, Er, and Yb were first begun by JBG at Washington State University in 1969 with assistance from Stoner and Olsen³²⁻³⁴ and continued from 1975 through 1980 at North Dakota State University with assistance from Larson, Daly, and Schmidt.³⁴⁻³⁶ Details on the experimental design and early data were first described in 1971 by JBG.⁸ Much data were recorded since then but not analyzed. With the recent collaboration involving Leavitt and Morrison,²⁶ who began to calculate crystal field splittings for the rare earth ions in both C_2 and C_{34} sites, it became possible to identify electronic Raman transitions and thus to once again examine the Schottky contributions to the heat capacity data reported by Justice and Westrum.¹⁶⁻¹⁹

The Raman scattering experiments reported here follow the approach described earlier by Schaack and Koningstein²² in the use of symmetry types and choice of coordination axes. Raman spectra were recorded with a 1.0 m McPherson Czerny-Turner spectrograph, equipped with a 1100 mm⁻¹ grating. Optical path lengths up to 1.0 cm in oriented crystals could require up to 15 h exposure time in order to pick up weak lines or bands. Measurements were carried out at 10, 80, and 300 K. In addition to the use of a 60 mW helium-neon laser and a 100 mW argon-ion laser, many of the Raman-active vibrational levels could be seen using the traditional A-H6 1 kW high-pressure, mercury arc lamp. The exciting wavelength was selected according to the optical properties of the samples and produced Raman spectra similar to that reported by Schaack and Koningstein²² and by Lejus and Michel.²³ For that reason we include only a representative figure of the Raman spectra (see Fig. 1) for the reader to compare with similar details appearing in earlier publications.^{22,23}

III. RESULTS OF SPECTRAL STUDIES

Table I presents Raman-active $\langle A_g, E_g, and T_g$ symmetries) and infrared-active (T_u symmetry) phonon and electronic transitions for Dy_2O_3 , Er_2O_3 , and Yb_2O_3 at 10 K. Symmetry labels for phonon transitions are taken from Schaack and Koningstein²² and agree with the interpretation of our data. The assignments to electronic transitions $\Gamma_n(C_2)$ and $\Gamma_n(C_{3i})$ are based on unpublished infrared and Raman data as well as on the absorption spectra of Dy₂O₃ reported by Henderson, Muramoto, Henderson, and Gruber^{24} and Er_2O_3 published by Gruber, Henderson, Muramoto, Rajnak, and Conway.¹⁷ The Yb_2O_3 data have not been reported previously. $^{35}\;$ The electronic Raman scattering data reported here add new information especially regarding Dy_2O_3 and essentially confirm the previous assignments by Bloor and Dean, $^{\rm 20}$ by Dean and Bloor, ²¹ by Schaack and Koningstein, ²² and by Lejus and Michel.²³ In fact, to show the correlation, Table I includes also previously published values (in parentheses) together with our data. A general shift of Raman spectra from approximately 3 to 8 cm⁻¹ occurs between 10 and 300 K. Electronic Raman lines are generally weak and appear to be more easily detected for ions in C_{3i} symmetry than for those in C_2 symmetry. Reasons for these observed intensities have been given earlier. 7,8,37,38

IV. THE SCHOTTKY HEAT-CAPACITY CONTRIBUTIONS

Resolution of Schottky contributions in lanthanide compounds requires an evaluation of the much larger "lattice" (vibrational) contribution to the total measured heat capacities. In view of its previous success, the volume-weighted lattice-approximation technique¹⁰⁻¹⁵ has been applied. The lattice heat capacities of the Ctype lanthanide sesquioxides may be expressed as

$$C_{\rho}(\text{lattice, } \text{Ln}_{2}\text{O}_{3}) = (1 - f)[C_{\rho}(\text{Gd}_{2}\text{O}_{3}^{*})] + f[C_{*}(\text{Lu}_{2}\text{O}_{3})], \qquad (1)$$

where f is defined as

$$f(\text{Ln}_2\text{O}_3) = \frac{V(\text{Ln}_2\text{O}_3) - V(\text{Gd}_2\text{O}_3)}{V(\text{Lu}_2\text{O}_3) - V(\text{Gd}_2\text{O}_3)},$$
 (2)

$\Gamma_n (C_{3i})$ $\Gamma_n (C_2)$ T_u T_u	66 (66) ^a 74 (78) ^a 88 (88) ^a 98 (96) ^a	$\Gamma_n (C_2)$ $\Gamma_n (C_{3i})$ $\Gamma_n (C_2)$ $\Gamma_n (C_{3i})$ $\Gamma_n (C_{2i})$	38 (39) ^a 41 (41) ^a 75 (75) ^a 80 (80) ^a		
$\Gamma_n (C_2)$ T_u T_u	74 (78) ^a 88 (88) ^a	$ \begin{array}{l} \Gamma_n & (C_2) \\ \Gamma_n & (C_{3i}) \\ \Gamma_n & (C_2) \end{array} $	75 (75) ^a		
$\Gamma_n (C_2)$ T_u T_u	74 (78) ^a 88 (88) ^a	$ \begin{array}{l} \Gamma_n & (C_2) \\ \Gamma_n & (C_{3i}) \\ \Gamma_n & (C_2) \end{array} $			
$\Gamma_n (C_2)$ T_u T_u	88 (88) ^a	$ \begin{array}{l} \Gamma_n & (C_{3i}) \\ \Gamma_n & (C_2) \end{array} $	80 (80) ^a		
T _u T _u		$\Gamma_n (C_2)$			
T _u			88 (89) ^a		
T _u	98 (96) ^a	T _u	90 (90) ^a	T _u	83 (83.2) ^b
		T_{u}^{T}	96 (95, 97) ^a	$\tilde{T_u}$	90 (90) ^a
T _g	101	T_{g}	100 (99.7) ^b	$\tilde{T_g}$	99 (99.2) ^b
•		T_{u}°	100 (101) ^a	8	
T _u	106	T_{μ}	105 (106) ^a	T_{u}	103
$A_{R}^{+} + T_{R}$	128	$A_g + T_g$	122 (123.2) ^b	$A_g + T_g$	122 (121.0) ^b
	129 (128) ^a	T_{u}	128 (128) ^a		125 (125) ^a
T_{μ}	135 (134) ^a	T_{u}	135 (134) ^a	$T_u^{"}$	134 (132) ^b
T_u	146 (146) ^a	T_u, E_g	147 (146) ^{a, c}	T_{μ}^{μ}	140
- u		$\Gamma_n(C_2)$	159 (165) ^a	- u	
		$\Gamma_n(C_{3i})$	168 (168) ^{a, c}		
T _u	186 (184) ^a	T_{u}	$184 (183)^{a}$	T_u	183
$\Gamma_n(C_2)$	261	$\Gamma_n(C_2)$	265 (298) ^b	- u	100
- n (- 2)		- 1 (02)	200 (200)	Eg	304 (305) ^b
T _g	316			- <i>y</i>	
T_u	320	T _g	322 (322)°		
$\Gamma_n^{-u}(C_{3i})$	326	$\Gamma_n(C_{3i})$	328 (328)°		
n · 50		T_u	334 (335) ^b	$\Gamma_n(C_{3i})$	334 (334) ^b
E _g	340	E_g	338 (337.9) ^b	T_{μ}	341 (341) ^b
$\Gamma_n(C_2)$	355	T_g^{-g}	359 (359)°	$A_{g} + T_{g}$	359 (358) ^b
-n (-2)		T_{u}	375 (375) ^b		000 (000)
T _g	375	$A_g + T_g(T_g)$	381 (384.1) ^b	$\Gamma_n(C_2), T_u$	388 (388) ^b
	386	E_g	391 (390)°	-n = 2/3 - u	000 (000)
~8		$\frac{Z_g}{T_u}$	395 (395) ^b		
Tg	400	$\Gamma_n^{-u}(C_{3i})$	405, 416 (417) ^c	T_{u}	405 (405) ^b
$\Gamma_n(C_{3i})$	423	-n (031)	100, 110 (111)	T_g	418 (420) ^b
- n (031)	120	Tg	436 (436) ^c		443 (443) ^b
		T_{u}	475 (475) ^c	18	110 (110)
		$T_{g}; \Gamma_{n}(C_{3i})$	485 (484) ^b	T _u	488 (490) ^b
$\Gamma_n(C_2)$	505	$\Gamma_n(C_2)$	490	¹ u	100 (100)
$\Gamma_n(C_{3i})$	512	$\Gamma_n(C_2)$	505		
T_{g}	520	$r_n(c_2)$	000		
^ g	520	T _u	566 (565) ^b	T _u	570 (573) ^b
		$\Gamma_n^{u}(C_{3i})$	580	$\Gamma_n(C_2)$	595 (595) ^b
$\Gamma_n(C_2), T_g$	602	T_{g}	600 (598.3) ^b	$1_n (C_2)$	000 (000)
$n(0_2), 1_g$	002	1 g	000 (000.0)	T	620 (621) ^b
$\Gamma_n(C_{3i})$	682			T _g	520 (021)
$\Gamma_n(C_3i)$ $\Gamma_n(C_2)$	746			$\Gamma_n(C_{3i})$	740
$\Gamma_n(C_2)$ $\Gamma_n(C_{3i})$	834			$T_u^{(C_{3i})}$	820
	965			$\Gamma_n^{I_u}(C_{3i})$	980
$\Gamma_n(C_{3i})$	300			$\Gamma_n(C_{3i})$ $\Gamma_n(C_2)$	1021

TABLE I. Raman and optical spectra for Dy₂O₃, Er₂O₃, Yb₂O₃.

^aNumbers in parentheses are infrared spectra from Refs. 20 and 21.

^bNumbers in parentheses are Raman spectra from Ref. 22.

^cNumbers in parentheses are Raman spectra from Ref. 23; labels $\Gamma_n(C_2)$ and $\Gamma_n(C_{3i})$, refer to Stark level assignments for Ln^{3*} ions in C_2 (see Refs. 24, 25) and C_{3i} (see Ref. 26) sites, respectively; Raman active $(A_g, E_g, \text{ and } T_g)$ and infrared active (T_u) phonon transitions serve as labels for vibrational spectra.

where V is the molar volume. The superscript in Eq. (1) indicates that the cooperative magnetic contribution to the heat capacity of Gd_2O_3 has been deleted. This contribution is usually quite small above 10 K in Gd^{*3} compounds; however, it is clear from Fig. 2 that it is significant to at least 75 K. Because of this unusually large cooperative magnetic contribution, the lattice contribution calculated from Eq. (1) must be considered less reliable in this temperature region. This is partially offset by the reduced magnitude of the lattice con-

tribution at low temperatures. Although the fractional variations of the lattice contributions across the lanthanide sesquioxides is relatively smaller than it is for the trihydroxides and trichlorides, the maximum difference between the interpolated volume-weighted lattice heat capacity (C_p/R) and the linear in atomic number approximation used earlier is approximately 0.1 per mole of Ln_2O_3 .

The calorimetrically derived Schottky contributions

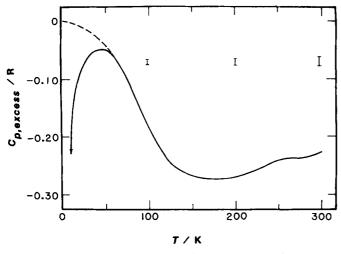


FIG. 2. $C_{p}(Lu_{2}O_{3}) - C_{p}(Gd_{2}O_{3}, \text{ total})$ —. Estimate of $C_{b}(Lu_{2}O_{3}) - C_{b}(Gd_{2}O_{3}, \text{ lattice}) - - - - -$.

to the heat capacities of Dy_2O_3 , Er_2O_3 , and Yb_2O_3 are represented by the uninterrupted curves in Figs. 3-5, respectively. The error bars in the figures reflect not only the uncertainties in the heat-capacity data but also those in determining the lattice contribution.

V. INTERPRETATION OF DATA

Table II presents the observed crystalline electric field splitting of the ground state manifold [SL]J for the ions $Dy^{3*}(4f^9)$, $Er^{3*}(4f^{11})$ and $Yb^{3*}(4f^{13})$ in both C_2 and C_{3i} cation sites in the cubic (bixbyite) lattice of the rare earth oxide R_2O_3 . The experimental values listed in column 4 are based on the unpublished infrared data appearing in Table I. Assignments to these values have been verified against the references cited in Table I also. In column 7 the experimental values are derived

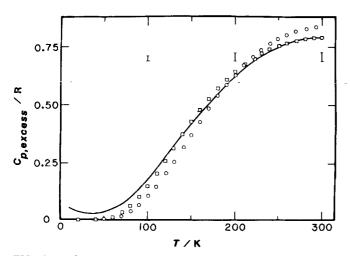


FIG. 3. Calorimetric Schottky contribution, i.e., $C_p(Yb_2O_3) - [0.90 \ C_p(Lu_2O_3) + 0.10 \ C_p(Gd_2O_3)$, correction for magnetic ordering)]—. Spectroscopic Schottky contributions calculated from Stark levels $\Box \Box \Box \Box : C_2 = 0,388,595,1021; C_{3i} = 0,334,740,980$. Theoretically derived Schottky contribution with "lattice sum" C_2 levels 0000 : $C_2 = 0,469,567,996$, and C_{3i} levels above.

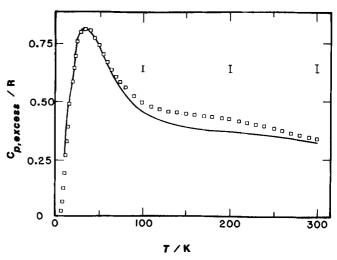


FIG. 4. Calorimetric Schottky contribution, i.e., $C_{p}(\text{Er}_{2}O_{3}) - [0.64 C_{p}(\text{Lu}_{2}O_{3}) + 0.36 C_{p}(\text{Gd}_{2}O_{3})] -$. Spectroscopic Schottky contribution calculated from Stark levels **DDD**: $C_{2} = 0$, 38, 75, 88, 159, 265, 490, 505; $C_{3i} = 0$, 41, 80, 168, 359 (or 328), 416, 485, 580.

from the Raman spectra (see Fig. 1). Identification of levels is based on orientation-dependent studies²² and agreement with assignments reported elsewhere.^{9,22,23}

The calculated Schottky contributions to the heat capacities (represented by Figs. 3 through 5) are based on the levels appearing in columns 5 and 8 in Table II. These values are identical—save for the Z_8 level in Dy_2O_3 —to the levels identified from the various spectroscopic measurements as Kramers' doublets associated with the CEF splitting of the ground state manifold of the lanthanide ions in both the C_2 and the C_{3i} sites. The agreement between spectroscopic and thermal Schottky contribution to the total heat capacity lends assurance to the consistency of assignments to the CEF levels. The Z_8 level at 1080 cm⁻¹ used in the Schottky calculation for Dy_2O_3 was observed in the absorption

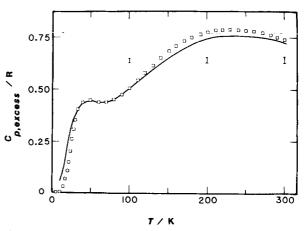


FIG. 5. Calorimetric Schottky contribution, i.e., $C_p(Dy_2O_3) - [0.36 C_p(Lu_2O_3) + 0.64 C_p (G_2O_3, correction for magnetic ordering)] - . Spectroscopic Schottky contribution calculated from Stark levels occur: <math>C_2 = 0, 74, 261, 355, 505, 602, 746, 1080; C_{34} = 0, 66, 326, 423, 512, 682, 834, 965.$

Oxide	[SL]J			C_2 sites	C_{3i} Sites		
		Z_n	$E ({\rm cm}^{-1}), {\rm Sp.}^{a}$	E (cm ⁻¹), Sch. ^b	$E \text{ (cm}^{-1}) \text{ calc.}^{c}$	$E (\mathrm{cm}^{-1}), \mathrm{Sp}^{d}$	$E \text{ (cm}^{-1}), S$
Dy ₂ O ₃	⁶ H _{15/2}	1	0	0	0 ^e	0	0
	1072	2	74	74	74	66	66
		3	261	261	263	326	326
		4	355	355	368	423	423
		5	505	505	505	512	512
		6	602	602	606	682	682
		7	746	746	728	834	834
		8	•••	1080	830	965	965
Er ₂ O ₃	⁴ <i>I</i> _{15/2}	1	0	0	0 f	0	0
		2	38	38	36	41	41
		3	75	75	73	80	80
		4	88	88	89	168	168
		5	159	159	166	328	328
		6	265	265	262	416	416
		7	490	490	485	485	485
		8	505	505	507	580	580
Yb ₂ O ₃	${}^{2}F_{7/2}$	1	0	0	0 ¢	0	0
	.,.	2	388	388	410	334	334
		3	595	595	586	740	740
		4	1021	1021	1014	980	980

TABLE II. Stark levels for ground state manifolds: C_2 and C_{3i} sites.

^aAssignments based 9n unpublished infrared data described in text and verified from assignments and spectra reported in references included in Table I.

^bEnergy levels used to calculate the Schottky contribution to the heat capacity appearing in Figs. 3-5.

^cEnergy levels calculated using first-order perturbation theory as described in Refs. 1 and 2. Normalization of CEF parameters follow Wybourne's treatment of crystal-field theory in Ref. 39.

^dAssignments based on unpublished electronic Raman scattering data described in text and verified from assignment and spectra reported in references included in Table I.

•B(k, m); B(2, 0) = -259.0; B(2, 2) = -654.9; B(4, 0) = -1384; RB(4, 2) = -1410; IB(4, 2) = 413.8; RB(4, 4) = 835.5; IB(4, 4) = -815.3; B(6, 0) = 75.10; RB(6, 2) = 275.5; IB(6, 2) = 22.64; RB(6, 4) = 503.1; IB(6, 4) = -400.3; RB(6, 6) = -6.365; IB(6, 6) = -76.10 all in cm⁻¹; standard deviation for 38 levels is 5.6 cm⁻¹.

 $^{I}B(k,m)$; B(2,0) = -149.7; B(2,2) = -678.0; B(4,0) = -1389; RB(4,2) = -1061; IB(4,2) = 239.0; RB(4,4) = 712.3; IB(4,4) = -852.4; B(6,0) = 252.1; RB(6,2) = 270.6; IB(6,2) = 119.2; RB(6,4) = 180.0; IB(6,4) = -218.1; RB(6,6) = -23.50;

IB(6,6) = -41.58 all in cm⁻¹; standard deviation for 46 levels is 7.9 cm⁻¹.

^gB(k, m); B(2, 0) = -173.0; B(2, 2) = -726.9; B(4, 0) = -1118; RB(4, 2) = -1066; IB(4, 2) = 340.4; RB(4, 4) = 529.9; IB(4, 4) = -711.1; B(6, 0) = 189.4; RB(6, 2) = 140.2; IB(6, 2) = -30.70; RB(6, 4) = 350.3; IB(6, 4) = -310.4; RB(6, 6) = -106.0; IB(6, 6) = -44.75 all in cm⁻¹; standard deviation for 7 levels is 4 cm⁻¹.

spectrum of concentrated Dy_2O_3 by Henderson *et al.*²⁴ It should be noted that the energy of this level is not in good agreement with the calculated value of 830 cm⁻¹ (see Table II). The relatively high energy of the Z_8 level together with the high degeneracy of the ${}^{6}H_{15/2}$ ground J manifold render the Schottky heat capacity relatively insensitive to the positioning of this level. If the calculated Z_8 energy value had been employed in the Schottky calculation, only a small increase would obtain in the calculated Schottky heat capacity relative to those shown in Fig. 5 above 100 K. The positive deviations of the calorimetrically derived Schottky contributions at low temperatures from those calculated from the spectral data (see Figs. 3-5) are almost certainly due to cooperative magnetic contributions, which are ignoredexcept in the case of Gd_2O_3 —in the current treatment. At higher temperatures the deviations rarely exceed the estimated experimental uncertainties.

Projected measurement of the heat capacity of C-type Eu_2O_3 should provide an improved estimate of the lattice contribution (since there are no magnetic contributions) as well as a reliable check of the resolution of the

Schottky contribution reported here (cf. Ref. 11). Moreover, the absence of very low-lying electronic states (i.e., $< 150 \text{ cm}^{-1}$) implies that the Schottky contribution is relatively insensitive to small errors in the energies of these sites.

A further confirmation of such assignments is found by comparing the recent crystal-field splitting calculations for these ions in both sites²⁶ with the reported experimental splittings. Column 6 in Table II presents the calculated CEF splitting for the lanthanide ions in the C_2 sites. The calculations make use of first-order perturbation theory as developed by Judd and Wybourne in the early sixties.^{1,39} Normalization of CEF parameters follows Wybourne's treatment³⁹ of CEF theory. A least-squares fitting of calculated to observed levels has established a set of crystal-field parameters $B_{n,m}$ for Dy^{3+} , Er^{3+} , and Yb^{3+} in C_2 sites. These parameters are found in footnotes e, f, and g of Table II with a standard deviation for each calculation. A point-charge and dipole lattice sum calculation originally developed by Morrison and Leavitt⁴⁰ has been extended to include calculations for ions in both C_2 and C_{3i} sites for many of

the expected CEF levels up to 40 000 cm⁻¹ for all lanthanide ions in the Y_2O_3 (bixbyite) lattice. Our intent here is simply to indicate that calculations expected to be published soon substantiate the experimental assignments made here. With the agreement between spectroscopic and heat capacity data relevant to Schottky contributions, it now appears that with the aid of the forthcoming lattice-sum calculations, CEF parameters, and wave functions, further interpretation or reinterpretation will be possible for existing and published EPR, Mössbauer, and heat-capacity data on the cubic lanthanide sesquioxides.

ACKNOWLEDGMENTS

We wish to thank Dr. J. R. Henderson for providing the crystals used in the spectroscopic measurements and for his recent review of the manuscript. JBG wishes to acknowledge preliminary infrared measurements made in collaboration with J. R. Henderson, M. Muramoto, and assistance from T. R. Stoner, D. N. Olsen, E. D. Larson, J. G. Daly, and J. A. Schmidt at various stages of this work between 1970 and 1980.

- ¹G. H. Dieke, Spectra and Energy Levels of Rarc Earth lons in Crystals (Interscience, New York, 1968).
- ²S. Hüfner, Optical Spectra of Transparent Rare Earth Compounds (Academic, New York, 1978).
- ³R. Reisfeld and C. K. Jørgensen, Lasers and Excited States of Rare Earths (Springer, New York, 1977).
- ⁴B. DiBartolo, *Optical Interactions in Solids* (Wiley, New York, 1968).
- ⁵A. Yariv, Quantum Electronics (Wiley, New York, 1967).
- ⁶J. T. Hougen and S. Singh, Proc. R. Soc. London Ser. A 277, 193 (1964); Phys. Rev. Lett. 10, 406 (1963).
- ⁷J. D. Axe, Phys. Rev. A **42**, 136 (1964); see also R. J. Elliott and R. Loudon, Phys. Lett. **3**, 189 (1963).
- ⁸J. B. Gruber, in *Proceedings of the 9th Rare Earth Research Conference*, *Blacksburg*, *Virginia*, 1971 (U. S. Dept. of Commerce, Springfield, Virginia), pp. 465-478 NTIS.
- ⁹J. Heber, K. H. Hellwege, U. Köbler, and H. Murmann, Z. Phys. 237, 189 (1970), and references therein; G. J. Mc-Carthy, J. J. Rhyne, and H. B. Silber, *The Rare Earths in Modern Science and Technology* (Plenum, New York, 1980).
- ¹⁰R. D. Chirico, E. F. Westrum, Jr., J. B. Gruber, and J. Warmkessel, J. Chem. Thermodynamics **11**, 835 (1979).
- ¹¹R. D. Chirico and E. F. Westrum, Jr., J. Chem. Thermodynamics 11, 71 (1979).
- ¹²R. D. Chirico and E. F. Westrum, Jr., J. Chem. Thermodynamics 12, 311 (1980).

- ¹³R. D. Chirico and E. F. Westrum, Jr., J. Chem. Thermodynamics 13, (1981).
- ¹⁴R. D. Chirico, E. F. Westrum, Jr., and J. Boerio-Goates, J. Chem. Thermodynamics (in press, 1981).
- ¹⁵R. D. Chirico, E. F. Westrum, Jr., and J. G. Gruber, J. Chem. Thermodynamics 12, 117 (1980).
- ¹⁶B. H. Justice and E. F. Westrum, Jr., J. Phys. Chem. 67, 339 (1963).
- ¹⁷B. H. Justice and E. F. Westrum, Jr., J. Phys. Chem. 67, 345 (1963).
- ^{[18}B. H. Justice and E. F. Westrum, Jr., J. Phys. Chem. 67, 659 (1963).
- $^{19}\mathrm{B.}$ H. Justice, E. F. Westrum, Jr., E. Chang, and R.
- Radebaugh, J. Phys. Chem. 73, 333 (1969).
- ²⁰D. Bloor and J. R. Dean, J. Phys. C 5, 1237 (1972).
- ²¹J. R. Dean and D. Bloor, J. Phys. C 5, 2921 (1972).
 ²²G. Schaack and J. A. Koningstein, J. Opt. Soc. Am. 60, 1110 (1970).
- ²³A. M. Lejus and D. Michel, Phys. Status Solidi 84, K105 (1977).
- ²⁴J. R. Henderson, M. Muramoto, T. M. Henderson, and J. B. Gruber, J. Chem. Phys. 47, 5097 (1967).
- ²⁵J. B. Gruber, J. R. Henderson, M. Muramoto, K. Rajnak,
- and J. G. Conway, J. Chem. Phys. 45, 477 (1966). ²⁶J. B. Gruber, N. C. Chang, R. P. Leavitt, and C. A. Morrison (to be published).
- ²⁷M. Mandel, Appl. Phys. Lett. 2, 197 (1963).
- ²⁸G. Schäfer, Phys. Kondens. Materie 9, 359 (1969), and references therein.
- ²⁹D. Vivien, A. M. Lejus, and R. Collongues, Nov. J. de Chem. 2, 569 (1978).
- ³⁰D. W. Forester and W. A. Ferrando, Phys. Rev. B 14, 4769 (1976).
- ³¹R. M. Moon, W. C. Koehler, H. R. Child, and L. J. Raubenheimer, Phys. Rev. 176, 722 (1968).
- ³²T. R. Stoner and J. B. Gruber, J. Chem. Phys. **52**, 1508 (1970).
- ³³J. B. Gruber, USAEC Progress Report RLO-2221-T6-20,
- pp. 171-204 (1974); NTIS, U. S. Dept. of Commerce, Springfield, Virginia.
- ³⁴J. B. Gruber, E. D. Larson, D. N. Olsen, and T. R. Stoner Ann. Proc. N. D. Acad. Sci. **31**, 218 (1978).
- ³⁵J. G. Daly, Ph.D. dissertation, North Dakota State University, 1980 (unpublished).
- ³⁶J. G. Daly, J. A. Schmidt, and J. B. Gruber (to be published).
- ³⁷W. F. Krupke, Phys. Rev. 145, 325 (1966).
- ³⁸J. B. Gruber, Progress in Science and Technology of Rare Earths, edited by L. Eyring (Pergamon, New York, 1968), pp. 38-61.
- ³⁹B. G. Wybourne, Spectroscopic Properties of Rare Earths (Interscience, New York, 1965).
- ⁴⁰C. A. Morrison and R. P. Leavitt, J. Chem. Phys. 71, 2366 (1979).