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ABSTRACT

The effects of ion thermal motions and of electron collective behavior on
electron bremsstrahlung in fully ionized plasmas are separately investigated.
It is found that the influence of finite ion temperature enters only in terms
and factors of the form (1 + mTI/MTE), where m and M are electron and ion masses
respectively. Thus, except in quite unusual cases, the neglect of ion thermal
motions seems quite Justified.

A formula for a net absorption coefficient for photons due to electron
bremsstrahlung in a real electron gas (electrons and ions now at the same tem-
perature) is derived and discussed. The formula presented here differs signif-
icantly from others that have been proposed earlier. However, the absolute
effect of electron collective behavior appears to be small, and therefore the
differences between our results and those obtained by others are probably not

important.
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INTRODUCTION

The purpose of this investigation is the examination in some detail of
two aspects of environmental influence on bremsstrahlung rates in fully ionized
plasmas. One is the effect of ion temperature and the other is the effect of
collective electron behavior.

The first of these—the effect of ion motions—does not seem to have been
given much, if any, attention before. This 1s probably because of the (generally
correct) intuitive anticipation that it is a matter of little consequence—
either quantitatively or qualitatively. Unless the average ion velocities be-
come comparable to average electron velocities, an ion doppler effect is hardly
to be expected. Such a situation might obtain in a fusion-sustained plasma,
since the energy is being fed directly into the ion distributions whereas
energy losses are largely taken from the electron distributions by radiation.
But, except for this case, it is somewhat difficult to conceive of environments
capable of supporting such improbable energy distributions.

Consequently, the primary motivations for the examination of ion tempera-
ture effects on bremsstrahlung were to provide a little logical support for
intuition, and to fill in a small gap in the subject that seemed hitherto to
have been ignored.

The motivations for examining the possible effect of collective electron
behavior on bremsstrahlung were somewhat different. 1In this instance, formulas

(1)

purportedly describing such effects have appeared here and there in the literature-—



hence there is no apparent attention gap to be filled. However, the deriva-
tions of these formulas generally followed calculational routes quite foreign
to conventional bremsstrahlung theory,(g) and the question arose as to whether
or not the latter approaches to the problem could be made to yield the same
results. The attempt to answer this question provided the main motivation for
this part of the present study.

In Section I, we briefly sketch the arguments leading to the "working
formulas" from which, by diverse specializations, we may examine these two
problems. Conventions and notations will be the same as employed in an earlier
report in this series.(B)

In Section II, we consider an hypothetical ideal gas of electrons and
ions characterized by electron and ion temperatures of arbitrary ratio.

In Section III, treating the ions as at rest, we examine the effects of

collective electron behavior.

Section IV is comprised of a summary and concluding remarks.



SECTION I. A STATEMENT OF THE PROBLEM

Our main interest is in the absorption and emission of electromagnetic
radiation by electrons undergoing transitions between continuum states of the
ionic fields in plasmas. Consequently a nonrelativistic treatment of the
particle system should suffice. However, because of the specific aspects of
the problem to be considered here, we find ourselves forced to a perturbation
treatment which is known to be erroneocus 2) for such low energy emitters. Thus
it is not expected that the results obtained here will be quantitatively re-
liable; though it is hoped that, with respect to the specific issues raised,

they will be qualitatively meaningful.

The energy of the plasma plus radiation field may be displayed as

R E I ER
H = H +H +H +H +HIR+HEI, (1)

R E I
where H 1is the energy of the free radiation field, H and H are the energies
of the electrons and ions respectively—including electron-electron and ion-
. . ER _1IR ET . . .
ion interactions—and H , H , and H are interaction energies between elec-
trons and the radiation field, between ions and the radiation field, and be-
tween the electrons and the ions. The eigenstates of the "noninteracting"

system are

|nok> = [q>|a>[K> (2)



where

R
Hn> = En|n> , (3a)
E
H ’O‘> = Ea’Oé> ) (Bb)
I
H K> = EK|K> . (3c)

E I
Since H and H include particle-particle interactions, the states la:> and IK:>
are complicated and generally unknown many-particle eigenfunctions. Conversely,

(2,3)

the states of the radiation field are conventional and familiar. The for-
mula to be used here to represent the transition probability per unit time cor-

responding to photon emission is

2
<a'K! n}\‘k + l’HER + HEI I OC”K" nn>< Oé”K” T]n ] HER + HEI ' O(Kn)\k>
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Here we have introduced hw =hck to represent the energy of a photon of wave-
vector, k. The formula describing the transition probability per unit time

for absorption is similar. However, for the conditions that interest us here,
it will be seen that absorption rates can be computed from a knowledge of emis-
sion rates. Hence initially we will concentrate on the emission process only.

The interactions may be represented as



and

E

H = - ze® [° x a%x' . (5p)
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In these formulas, A is the vector potential of the radiation field, J is the
E . . I,
electron current, p 1is the electron density, and p 1is the density of ions of
charge ze. The part of the electron-radiation interaction which is proportional
to A% has not been included in Eq. (5a) because it makes no contribution to the
matrix elements appearing in Eq. (4). For present purposes, the vector poten-

tial is conveniently displayed as

ame CEX (k) a(x) (6)

where I° is the volume of the "quantization box”,(LL €1 and ep are the unit

1.
polarization vectors for the photon of wave-vector k, and ak(h> is a creation
operator. Entering (6) into Eq. (5a), we obtain for the electron-radiation

interaction

ER 2rtIc T B
= - 3 €, "’ )
L"k X -\ -

Inserting (5b) and (7) into Eq. (4), we find that
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where we have introduced the notation

e e e G ik d (9)

For our purposes here, it suffices to treat the ion system as an ideal

gas. Thus

T
N E, o o]
ET L <" K - X" )a>
<Q"k"|V7 K> = 13 2 [lK%EK,,oTE ) ) (10)

where EG is the wave-vector for the oth ion. Equation (8) then becomes
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In this expression we have made explicit use of the fact that the electron-
o.
ion system states are factorable, i.e., |Ka> = k> [a> = ]K‘>|K2>>‘..\K >, o>,

If, at this point, the electrons were also regarded as an ideal gas, we

would find that

Ea’ - Ea” + M = tw + @Q;;% )
o o} “hw
Ea + EK - Ea" - EK‘ -hw = - + 9(52%9 R (12)



and that the cross-terms in the coherent sum over ions would vanish. Assuming
that this situation is not significantly altered for the real gas of electrons,

we find that

e
T \k) =
oc‘K’,ocK( )

<o |, a7 (-k), 0" (& - K)]|a>

® ®w 5(E  + E +'hw-Ea-E) , (13)

K - K'[%w

where now the label, K, stands for the wave vector of a typical ion in the

plasma. The commutator in Eq. (13) is readily shown to be

B E sl B
[e - (-k), o (K-K')] = —¢ - (K-K')o(K-K -k) , (1k)
A m —A
so that
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a'K',0K / mEweL” K - x'|*
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At this point is is useful to note that a formula for the transition
probability per unit time for the system to go from state |oK>to state |a'K'>

while absorbing a photon is readily obtainable from Eg. (15), i.e.,

a e The
= T
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Emission and absorption rates may now be computed from Egs. (15) and (16)

according to

e(\k) = Z ¢ (\k) B° PL = ——g———8n 2 e r y(l fn )P
- a'K',o0K a K LPn > N "k a
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I I
In these equations we have introduced the ion density according to n = N /LB,
and have approximated sums over wave vectors by integrals in the usual way.
The quantities Pa and PK are the probabilities of finding the electron system
in the initial state |0> and an ion with initial momentum hK, respectively.
The ion distribution in the continuum is defined by
I I
P = [akP(k) . (19)
Kk © -

If the electron and ion distributions are thermodynamic, i.e.,



E -1 e'Eo/g

o a

-EK/@

P(K) = 2z e ) (20)

then it is easily seen from Egs. (17) and (18) that

a(k) = éhw/@

e(k) . (21)

However, these formulas have a validity which extends beyond this case. In
particular we will be interested in the case in which the electron and ion
distributions are of Boltzmann type, but characterized by different tempera-
tures.

Before leaving this section, we construct from Egs. (17) and (18) a net
absorption probability per unit time per photon of wave-vector k and polari-
zation A. Note that the emission rate given by Eq. (17) includes both spon-
taneous and induced emission. Calling eS the stimulated emission, the net

absorption rate that we desire is obtained from

T
8m z2rihc5 P

— g e
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Here we have introduced re = e2/m02 to represent the classical radius of the
electron. This formula represents the starting point for the applications of

the next two sections. A useful, alternative way of writing Eq. (22) is

I
8mn z2r§hc5

— a5 (EE)
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SECTION II. THE TWO-TEMPERATURE PLASMA

In this section, we examine in some detail the case alluded to just above,
i.e., the mixture of two ideal gases each characterized by its own temperature.
In such an instance, the electron system matrix elements in Eq. (22a) reduce

to single electron matrix elements of the form
1 E 1 i
(K - K' - k)|a>[-N" 8 (K+gq-K -g' -k) , (23)

where we have employed g to represent a free electron wave vector. Entering

(23) into Eq. (22a) we find that

IE
8mn z°rne® 5
04 (w:ﬂﬂ\) £

— ()

E I E I
= [ 4°qa®ka®q'a®k' [P (g') P (K') - P (g) P (K)]
g, (K - k)
5K + - K' - q' -k E +E -E , - -hw) .
x |E_—I§,‘4 (_ g o _g_ _) 6( K q K, E‘ )
(24)
The Dirac delta function in Eq. (24) is obtained from the Kronecker delta
function introduced in Eq. (23) by, e.g.,
LogpE+rg-K -g' -k = [a% 8(K+g-K -g -k . (5
1

a

To illustrate the effect of different electron and ion temperatures, it

is sufficient to consider the integral in the emission term of Eq. (24), i.e.,

11
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] @%qa®q'a®ka’k’ P (g) P (K)

ma(g+g-§-3-5)6(EK+Eq-EK,-Eq,-m) . (26)

A convenient way of rewriting this integral for the purpose of integration is

e ()t 7 e kl® -E /o -E/6.
I~ = ~—F— [ ay [ dsxdsndaquq'dBK BR——F— € 4 € e *
(2n)* = K
0 . ‘- - ' - 03 - - -
ix+(q - k - g 5)+1y(EK + Eq EK+K Eq' )

(27)

I
where z and z are the electron and ion ideal gas partition functions evaluated
at the respective temperatures, and where we have introduced the coordinate
transformation k = K' - K. Making only the approximations of neglecting (m/M)

and (hw/me?) compared to unity, the integral in Eq. (27) reduces to

ﬂmb[l+u2+i§5_uu]2
) “he_[(1re)u™+ 1 uprn 2]
e 1 271m e
T = —== |=— 1/ au[an |e -0 |? - : (28)
1671 | 8, N S o T

I, E
where p = E-QK, Qn = E/K, £ = mT /MT , and 7 E'hw/mcz. Evidently, unless the
ion temperature is of the order of 10° times the electron temperature, the
effect of ion motion on electron bremsstrahlung is truly negligible. Thus, we
. . . . I E
complete the evaluation of the integral in (28) by setting T = T, and hence
1+ &~ 1; by neglecting the terms in the integrand containing 7; and by sum-

(5)

ming over photon polarization states. We obtain

12



e 1 ‘2__mn -B/2[1 ~ dy -y-(B/2)%/by) _ 1 [2m -B/2 B
ZI = on o e [2£m ¥ e = 6n o e KO(Q) ’
A e e
(29)

where we have introduced B E'hw/ge. This result, together with the relation

displayed in Eq. (21) enables us to express the net absorption coefficient of

1,6
Eq. (24) (summed over photon polarizations) as< ,6)
IE225
— n'n z°r-c
- 8x [2mm &2 e 5 B
- = = inh = K (= 0
OC(‘D)Q) 3 \@e e o3 ® sin 5 0(2) (30)
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SECTION TII. ELECTRON COLLECTIVE EFFECTS

In this section we examine some of the effects on free-free absorption
accrueing from real gas behavior of the electrons in the plasma. Since we
do not anticipate that ion temperature effects will be significant, we initiate
the analysis on the assumption that the electron and ion temperatures are the

same. In this instance, Eq. (22a) may be rewritten as

Snn z rghc 2

- B \’ 8pa3, pb pl
ow,Q,N) = ——Eg—g—"—(—> (e - 1) [ aka%k P P (K)
w!
e, 0 |®
ELLKQIQ(—K-}{IODIZEB(E +E  +Mw-E -E)
! K+k Q K’ ’

(31)

where here, as before, we have introduced k = XK' - K and B = Tw/6. Employing

conventional arguments, the net absorption coefficient is readily displayed

as

8ﬂnInE22r205 2 5 I | <. -QK|2
— e - '
alw,@,0) = =3 (55) = (8 - 1) ] a%a®k PH(K) —=— = S(q,0") ,

(32)
where
in't B ET

S(g,w") = = [ dte s 1P <ale” (a) o (g,-t)|a> , (33)

2nlN o
and

@ =®+(K+K'EK)/H’
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1l
1

I
1

1=

and

E _ e-itHE/h E itHE/H

o (g,-t) p(a) e

(34)

The formula in Eq. (32) is particularly convenient for present purposes,

since the function, S(g,w'), has been extensively studied elsewhere.(7)
However, most of the studies of this density-density correlation function for
plasma applications have been in the sense of some sort of classical limit.
Thus, to use the results of such studies here, we first need to manipulate
Eq. (33) into a form suitable for classical computation.

This problem is a knotty one, but the results of some recent investiga-
tions suggest a way out suitable to our purposes. In an examination of the
(8)

same question in the context of slow neutron scattering, Aamodt, et al.,

have shown (at least for the so-called "self" part of S) that

“w' nZ%?
T 20 8me
S(Q:w‘) = € " Sc(ﬂ:w') ’ (35)

where SC is to be computed from Eg. (33) with the reinterpretation of all
operators as classical c-numbers. Subsequently, Schaibly(9) has shown that
the relation in Egq. (35) holds for both the "self" and "distinct" parts of S,
provided Sc is computed in the sense of a certain approximation scheme which
is, in fact, consistent with the calculations of others(8) whose results we

wish to use here. Thus we now display the net absorption coefficient as

(summing over photon polarizations),

15



8HnInEzzr265 5 - -E )P

- _ e e . B ap.3 Ktk K’ T =h®q® /8mo
afw,Q) = —3 (hc)(z sinh 2) [ a°kaZ* e P (K) e
1 - (QK-Qk)g
B 2 Sc(g,w‘) ) (36)

and borrow the function SC from the classical calculations of others.(8) Since
here, SC represents the effects of density fluctuations in a pure electron gas,

we find that

where

E
Lo e® du u ME(u)
A = 1+ =} foo T N
og =00 w' - 1y
U - —t
q

’ (38)

and ME is a one-dimensional Maxwellian normalized to unity. The integral in
Eq. (38) is to be evaluated in the sense of a limit as the positive quantity
v tends to zero. The effect of electron-electron interactions is, of course,
contained entirely in A. In fact, if we set A = 1 and then evaluate the inte-
grals in Eq. (36) setting Pl(g) = 5(K), (zero ion temperature limit), and then
letting M > » and g ~ k; we recapture the result presented in Eq. (30) above.
It is interesting to note the importance of the momentum transfer factor in
the relation between S and Sc’ Eq. (55), to the process of carrying out these
integrations.

Finally, keeping the electron-electron interactions, but still setting

I
P (K) = 8(K), q¢ ~ k, and taking the limit of infinite ion mass; we find for

the net absorption coefficient,

16
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SECTION IV. DISCUSSION

The results of the present study are summarized in Egs. (28) and (39) for
ion thermal effects and electron collective effects, respectively. Actually,
we should probably have reduced both the emission and absorption terms of
Eq. (24) to integrals of the form displayed in Eq. (28), since our interest
here is in a net absorption coefficient. DBut, as ion temperature enters only
in terms like 1 + mTI/MTE, it did not seem that the extra effort required for
completeness was warranted.

The result presented in Eq. (39) disagrees with some of the formulas
presented elsewhere purportedly describing the effect of collective electron
behavior on photon absorption in fully ionized plasmas. Furthermore, the
reason for the disagreement is readily ascertained; since, if instead of the
identification displayed in Eq. (35) we had simply taken S(g,w') = S (qw'),
the disagreement disappears. Evidently, in this particular instance, a cer-
tain amount of care is required in the use of classical estimates of electron
density correlation functions.

The denominator in the integrand of Eq. (39) may be written somewhat

more explicitly as

> -5 w _ o du ME(u) 2 Tw wi)?
L N ] *[—‘W ] D

-ooU.-(l)/K. K D

E =1/2
where xD = [é/hnn eé] / is the electron Debye length. For those values of k
for which (w/x) is large compared to the thermal speed of the electrons, Eq.

(LO) may be approximated by

18



Cl)e 2 2 T w 2
|k w) |5~ [l - ("(’D—)} + [E(-EZ_)E ME(-K-)] , (L1)

D
thus suggesting the possibility of unusually strong absorption for light fre-

1/2. But

quencies of the order of the plasma frequency, i.e., @ ~ we = (hnnEe2/9)
this is already to be anticipated on other grounds. The absorption coefficient

given in Eq. (39) is to be used in a radiation transport equation of the form

%f% ¢ vmf = - of + ek?/hn® | (k2)

where n is the index of refraction for the plasma. Consequently, the net ab-

sorption coefficient per unit distance is given by

ad = afen . (43)

For the fully ionized plasma, in lowest approximation, we have therefore

w > 1/2
[1 + (f)] , (40)

Thus, as the light frequency approaches the plasma frequency, the absorption

04 =
d

o 1Q1

begins to increase independently of collective effects on bremsstrahlung.
Hence it is unclear whether or not the collective effects described in Eq. (39)

play an observable role in this mode of light absorption.
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