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When waves enter a region covered with a surfactant, the spatial variation of the surface 
tension causes reflection and refraction of the waves. The simplified inviscid-flow problem of 
two adjacent half-spaces with different surface tension coefficients is solved analytically 
for plane waves at oblique incidence. The linearized wave potential is described by a complex 
contour integral representation for which uniqueness is obtained from the requirement 
of energy conservation. The reflection is found to be small for some typical cases. 

1. INTRODUCTION 

Propagation of capillary waves in deep water has long 
been known’ to be influenced by the presence of a surface 
contaminant, through added viscous damping that results 
from the presence of the surfactant. In regions of the free 
surface covered with surfactant, the surface tension coeffi- 
cient is different from that in clean water; a gradient in 
surface tension is accompanied by a balancing viscous 
shear stress and therefore increased dissipation. Moreover, 
a wave encountering a gradient in surfactant concentration 
is expected to be partially reflected. For these reasons, sur- 
factant slicks behind moving ships have sometimes been 
thought to be responsible for the dark return observed in 
synthetic aperture radar sensing of ship wakes.’ Here we 
seek to determine whether significant reflection of energy is 
possible as small-amplitude waves enter a region covered 
with surfactant. 

To focus on calculating the reflection of capillary- 
gravity waves, we neglect viscous effects and with this sim- 
plification consider a prescribed surfactant concentration 
in a very thin layer. For one limiting case, we assume that 
the surface tension coefficient has only two values, each 
occupying a half-plane, and that the change from one to 
the other occurs over a distance much smaller than a wave- 
length. Then the linear inviscid problem is further simpli- 
fied to one with an abrupt change in surface tension coef- 
ficient across a straight line. The other limiting case, for a 
slow spatial variation in concentration, is considered in 
Part II. 

Experiments of Sellin, Scott,4 and others have shown 
that a steady state with essentially discontinuous surface 
tension is possible, but that a small current is required to 
maintain this equilibrium. If the current is decreased,3 the 
surfactant begins to spread over the surface. Thus it is 
expected that a small current may be required for a fully 
self-consistent problem formulation, or at least that the 
time scale of the surface motion should be large in com- 

parison with one period of the wave motion. We omit these 
considerations here in the belief that useful information 
can be obtained without including additional effects, that 
the influence of other features may be secondary, and that 
refinements can be added in a later study. 

For a plane wave at oblique incidence, the reflected 
and transmitted waves will likewise be plane at large 
enough distances from the discontinuity, with amplitudes 
that are consistent with energy conservation. But an addi- 
tional condition is needed to complete the determination of 
the amplitudes, and this can be found only through a so- 
lution of a quite complicated local problem that provides 
flow details in a region close to the jump. In a related 
example, Hocking’ has given solutions for the reflection of 
a capillary-gravity wave moving obliquely toward a rigid 
vertical boundary, in which case the reflection depends on 
the behavior of the contact angle. 

Surface wave problems with different boundary condi- 
tions on semi-infinite half-spaces have been studied previ- 
ously. The two-dimensional dock problem (gravity waves 
encountering an inextensible surface) was first solved by 
Friedrichs and Lewy6 using an integral representation. The 
three-dimensional dock problem (oblique waves) was 
solved by Heins using a Wiener-Hopf method and by 
Stoker’ using methods similar to those of Friedrichs and 
Le~y.~ In the following we adopt the method of Friedrichs 
and Lewy6 and of Stoker’ and introduce an integral repre- 
sentation for the velocity potential. The solution is recog- 
nized as having a “local” part that disappears at large 
distances and a part consisting of plane traveling waves. 
An energy balance then leads to relationships among the 
amplitudes of these waves. 

II. ANALYSIS 

A. Integral representation 

The flow is incompressible and inviscid, and so the 
potential function 4 satisfies Laplace’s equation. We seek 
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solutions periodic in time with a single frequency that in 
dimensionless form is considered unity (along with the 
fluid density and gravitational acceleration). The two re- 
gions x < 0 and x > 0 have different dimensionless surface 
tension coefficients T- and T+, respectively. The linear- 
ized free surface boundary conditions are determined in the 
usual way to give 

qSlr+~y+ T*&,y=O for ~20, y=O. (1) 

Here y points upward from the undisturbed free surface. 
The z axis separates the two regions with different surface 
tension. In addition we require that V+-+O as y- - CQ and 
at x= + CO there is an outgoing wave only. 

As in the dock problem, we consider linear combina- 
tions of solutions having the form 

FWfCv)3 ,f~~~z~::)j I’ (2) 

which satisfy the Laplace equation. Here m is the wave- 
number component in the z direction and the wave is sta- 
tionary in x; an oblique traveling wave can be constructed 
from two linearly independent solutions of the form (2). 
The Laplace equation becomes a Helmholtz equation for 
the complex amplitude f(x,y), which is 

f&f,,-m2f =O. (3) 

Following Stoker,’ we write the function f(x,y) in the 
integral form 

f(x,y) =& fpF(S)exp( b+$ w*)G (4) 

Here w=x+&, the asterisk (*) indicates a complex con- 
jugate, and 5‘ is a dummy variable of integration. The ra- 
diation conditions at x= f CO are replaced by finiteness 
conditions because the waves in (2) are stationary in x. 
The exponential term in (4) represents waves with varying 
wave number and satisfies the Helmholtz equation (as 
found by separation of variables). The complete solution is 
a linear combination of all these waves, with the amplitude 
F chosen to satisfy the boundary conditions. As in 
Friedrichs and Lewy,6 the path of integration P runs from 
0 to -ice . The surface boundary condition ( 1) at y=O 
becomes 

Re{f(x,O) -&,(x,0) - T*f,,y,,(x,O))=O for x20. 
(5) 

Substituting (4) into (5) gives 

Im ilT’u3Q3---uK) --ilFK)exp( @+$x)&Y] 

=0 for x;PO, (6) 

where 

To achieve the proper behavior as x+ f CQ, we choose F 
such that ( Tfu3--u-i)F(<) is analytic in the lower half- 
plane to the left of P and ( T-u3-v-i)F(c) is analytic in 

‘-.. ‘-.. ‘i ‘1 

FIG. 1. Roots of T+u’-u-i=O. 

the lower half-plane to the right of P. Then we can swing 
the path of integration P in the { plane to the positive real 
axis when x < 0 and to the negative real axis when x > 0, 
because the integrand is analytic in c in the appropriate 
regions. Since the path of integration is now along the real 
axis, a real integrand will satisfy (6). Hence, we require 

Im{(T*u3-u-i)F(<))=O for [SO. (8) 

From the above constructions, F(c) can have simple 
poles in the lower half-plane which are roots of 
T’v3-v-i=O. We take --rr <arg c<a. The six roots of 
T+u3--u-i&O in the c plane are denoted by ak and are 
shown in Fig. 1. The roots of T-u3--u--i=0 are similar 
and are denoted by fik We note that or, a2, &, and fi2 are 
on the negative imaginary axis and are the only poles of 
F(c) in the lower half-plane. Here a, and a2 correspond to 
the solution of v(c) =[-- ( m2/41J) = -iZ+ with I+ the real 
wave number at x= + CO which satisfies the dispersion re- 
lation T+ ( Zf)3 +I+ - 1 =O. Similarly, & and & corre- 
spond to a wave number I-. The other roots can be found 
by factoring v+il* from the corresponding equations. The 
roots can be shown to have the following important prop- 
erties: 

ala2=a3a4=a5a6= -m2/4, (9) 

as= -af and ah= -a%. (10) 

The roots flk satisfy similar relations. The integral path P is 
chosen so that a, and a2 lie to the left of P and pr and fi2 
lie to the right of P, as shown in Fig. 2. These poles are 
required for the oblique traveling waves at infinity. 

B. Determination of the amplitude function 

Given the imaginary part of an analytic function on 
the real axis, we can use Cauchy’s formula to determine the 
complete function. The imaginary part of the logarithm of 
an analytic function is the phase, or argument, of the func- 
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FIG. 2. Path of integration P. 

tion. Since (8) gives the phase of F on the real axis, we can 
introduce a suitable logarithm and then use Cauchy’s for- 
mula. 

If we further assume F(c) #O on the positive and neg- 
ative parts of the real axis, then the terms 
(T*v3-u-i)F(LJ do not change sign for 550, respec- 
tively. Without loss of generality we can assume that 
(T-u3-~---i)F([)>0 for [>O. Now for 5~0, we can 
ensure c”( T+v3--u--i)F(c) > 0 by choosing an appropri- 
ate (even or odd) integer II. As will be seen later, the factor 
5” also allows additional solutions which differ in their 
behavior at the origin. Then we have 

r(T*v3--v-i)F(lJ >O for 650. (11) 
Introducing a new complex function, 

~(~)=log[~(T-v3-~--i)(T+~3-u-~)F(~)], 
(12) 

results in an analytic u (c> in the lower half-plane. We will 
solve for u and recover F from the above equation. After 
applying the boundary conditions ( 11) we find the imagi- 
nary part of u ([) on the real axis as 

ui(lJ =Im{log(T*u3--v+i)) 

=hlog( ~:~~~~~J for c?O. (13) 

The problem of solving the partial differential equation (3 ) 
with complex boundary conditions (5) is now converted 
into a simple boundary-value problem for an analytic func- 
tion u(c). 

Knowing ui(c) and hence its derivative u;(c) on the 
real axis, we can find u’(c) in the following way when 5 is 
in the lower half-plane. Cauchy’s integral formula gives 

(14) 

where the path of integration Q consists of the real axis and 
a semicircle of large radius in the lower half-plane. If we 
assume u’(c) -0 as I<] -) 03 and let the radius of the semi- 
circle be infinitely large, Eq. (14) becomes 

(15) 

The left-hand side of ( 15) becomes zero if we change { to 
5” which is outside of the integration contour. Taking the 
complex conjugate, we lind 

i s @J uj(rl) 
-dq= 

-m u:(q) 
--m v-s J - drl, 

--0) r-S 
(16) 

where U, is the real part of u(c). The result can also be 
obtained by considering solutions of the Laplace equation 
with boundary values prescribed along the axis. Substitut- 
ing (16) into (15) we finally obtain 

s Co u;(q) 
- dr]. 

-lx rl-L!- 
(17) 

Substituting the derivative of ui in ( 13) into this for- 
mula and integrating by parts results in 

u’(S) =u;cg, +u;g>, (18) 

where 

1 61 i- -- 
c-L% log~+~-fip~~ ’ 

) 
(19) 

and additional terms denoted by u; are needed since u is 
analytic in the lower half-plane and the branches of the 
logarithms must be chosen for consistency with ( 13). Since 
( 19) is real when < > 0, it follows from ( 13) that 

(20) 

for c> 0. Noting that u; = u’ - 14; must be analytic in the 
lower half-plane, we find, using ( 19) and (20), 

6 1 
u;= c -- 

kc3 g-ak 
(21) 

With arg {= --P for 5 < 0, it can be verified that the sum of 
(19) and (21) is also consistent with (13) on the negative 
real axis. It is easy to see that u’(c) =O( l/c) as c- CO, so 
that the assumption for Eq. (15) is satisfied. With u’(c) 
determined in this way, we can find F(c) as 

1 1 
F(5) =5-” T+u3-U-i T-u3-u-.i 

p(S) 
’ (22) 

where 

s 

P 
’ u(S) = u;(v>dr+uzW +log C, (23) 

0 
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%(g) =a 
((--ad (C-4 (C-ad K-4 

(g-af)(c-a:) -' (24) 

and C is a positive constant which will be chosen later. 
This F(c) satisfies all the assumptions. We can fix the 
lower limit of the above integral because this results in only 
a difference in C. 

Now we can find f(x,y) from (4) with F(c) given by 
(22). To see the properties of this solution more clearly, 
we swing the path P onto the real axis. When x < 0, we can 
change the path P to the positive real axis c > 0 by crossing 
poles at /3t = - is, and pZ = - isz. Then, including contribu- 
tions proportional to the residues of k at these poles, and 
noting that fir&= -rn2/4, we obtain 

f(w) =; J-am FOw( Cw+$ w*)& 
+i exp[ --i(s+~--+w*) lRes{F({))g=~, 

+iexp[ -i(~~w--s~w*)]Res{F([)}~=~~. 

(25) 
It will be clear later that the integration along the real axis 
gives a local solution which decays to zero as the distance 
from the discontinuity at x=0 increases to infinity, while 
the second and the third terms give plane waves that satisfy 
the radiation boundary conditions. A result analogous to 
(25) is obtained for x> 0. 

C. Local solution 

We denote the first term (the local solution) in (25) 
by i,Z(x~). It is easier to observe the symmetry and con- 
vergence of the local solution in another form by first split- 
ting 1, into two parts, where for x < 0, 

I Id2 F(Qexp( Sw+$ w*)dg 
0 

1 m 

+G m/2 s 
F(g)exp( &+$ y*)dC. (26) 

We will show that 

(27) 

where g=m2/(4c*), which allows us to combine these two 
integrations into one. Writing f=reiO in polar coordinates 
gives ZJ= Feie, where F= m2/( 4r). We have 

Ul(&P 
s 

7 
u;(seie>ds, (28) 

0 

or, setting F=m2/(4s), and renaming the integration vari- 
able, 

s 
r 

q(g) = --de 
. m2 

m 
u; (5~‘~) G ds. 

But from (9), (lo), and (19) it can be shown, after some 
algebra, that 

u~(~)m2/(4~*2)=-~u~(~)l*. 

Then substitution in (29) gives u1 ( CO ) =0 and 

“&A=@(g). 

Applying 

(30) 

(31) 

e”z(6) T+u3(<) -v(lJ -i 

-=T+k2(5)+(l+)21 5 (32) . 

and u(c)=-u*(c), we obtain 

p*(E) ea) * 

-=- 5 * s (3 
(33) 

Finally, with the help of (3 1)) Eq. (27) is proved. Defining 

G(C) =&‘~‘F~5)exp( tw+$ w*), (34) 

changing variables as in (29), and then using (22), we can 
combine the two integrations in (26) in the form 

(35) 

for x ~0. From (22), it is clear that F(c) has no singular- 
ity in (m/2, CO ) which means that i,(x,y) +O as x--r - CL). 
[While this could have been seen directly from (26), the 
new form (35) is needed below to show a symmetry prop- 
erty of I,.] By a similar analysis it can be shown that for 
x > 0, In again has a form similar to (35) and also that 
1,-O as x--t + CO. Thus 1, is the local solution and the 
traveling waves at infinity come from the second and third 
terms in (25). 

D. Far field solution 

To find the relationship between the second and the 
third terms in (25), we note that a=$‘,. If we write 
eU(pl)/fll in its polar form 

e”(fil)/~l ,a-@-, (36) 

and remembering (27), we find 

eU(F2)/&= -a-e--ie-. (37) 

Evaluation of a- requires identifying the real part of u. 
From the expressions (19) and (21) for u; and u& with 
properties of ok and fik as given by (9) and ( 10) and Fig. 
1, after considerable algebra it is found that when f is on 
the negative imaginary axis, 

Re(u) =i ki3 log] (5-k) (5‘-Pk) 1 

-5 kjil W CC-a$) (C-b3 I, (38) 

where the summations can be shown to be real, and finally 
that 
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when n= - 1, we have 
(39) 

Here cs= (3 TZ 2+ 1)/2 is the nondimensional group veloc- 
ity and I is the wave number. From (22), we see 

Re(J-*)=e’-Y (Z-)2-(3m2/4) 
el-k- 

cos(k-x+8-) 

as x+--m. (46) 
Similar results are obtained for x--r + 00, with all super- 
scripts changed from - to +. 

E. Wave reflection and transmission 

=-& in-Y-” (40) 

(41) 

with & = --is1 (sl is real). A similar expression is found 
for the residue at c=&. The constant C has been chosen 
for convenience as 

Given the incoming wave, a transmitted traveling wave 

we assume that the energy is balanced such that the energy 

is uniquely constructed if there are only two linearly inde- 
pendent stationary solutions. But now we have three lin- 
early independent solutions for II= - l,O,l. We need one 

flux into the region from x= - CO equals the energy flux 

more constraint at x=y=O. This difficulty arises because 
we have allowed singular behavior at x =y =0 in the form 
of an energy sink or source. To make the solution unique, 

and k- = sz - s1 = ,/m is the x component of the 
out of the region to x= f CO. If we express the traveling 
waves at infinity in the form 

wave number; also I- =s,+st. 

in Eq. (25) by J,(x,y), where 
We denote the sum of the second and the third terms 

and 

+=Ap?y cos(k+x+tl++mz--t) as x--t + CO (47) 

+&&y cos(k-x+&+mz--t) +A,e’-J’ 

Xcos(k-x+0--mz+t) as x-+--co, (48) 

(42) then the energy balance requires 

for x < 0, and an analogous representation is obtained for 
x > 0. The possible values for the integer n are not deter- 

c,-(A;--A;)k- =c,+A;k+. (49) 

mined yet. From (35) it can be shown that Two conditions are needed for determination of the 
amnlitude ratios AR/A, and ATlAp The energy balance 

0 
!f qRe(1q+2)=- 

(46) provides one of these conditions, and the-second is 

ReU2-q>. (43) obtained from the local solution. From (2), the solutions 
for 4 have the form 

Hence (m/2 ) n--2 Re( I,) is antisymmetric about n = 2, and 
the same is found to be true for (m/2)“-2 Re(J,J. Thus 
we only need to consider solutions with n < 2. We also note 
that, at x=0, G(<)=G(gA5) as <- 00, from (22) and 
(38). From this property we know that at the point x=y 
=0, if n=l, i,(xty) has finite third derivatives; if n=O, 
Zc(x,y) has finite second derivatives; and if n = - 1, 
Z,-,(x,y) has finite first derivatives. For n < - 1, the eleva- 
tion 7, proportional to Re(f,>, is singular at x=y=O. If 
we require the elevation 7~ to be finite, our only solutions 
are those for II=~, 0, and -1. 

When n= 1, 

-Z+ly(xy)sin(mz-t), (50) 
where the constant factors are included for convenience. 
The representations (47) and (48) show that rj ’ and 4 ’ 
are proportional, respectively, to cos (k*x + 6’ ) and 
sin(k*x+f3*) as x+ rt TX). From (47) and (48), along 
with (44)-(46) and the energy balance (49), it is found 
that $ ’ is proportional to the function f with n=O, while 
$ ’ is a linear combination of the solutions f for n= - 1 
and p1= 1: 

ti “=Wf(x,y)n=OLl (51) 

Re(Jt) = -eel-J’ cos(zc-x+8-) as x+--~; and 

when n =0, 

(44) 
L 

3m2 
V=Re fk~L-~-ff(x,~).=~ , 4 I 

(52) 

where a convenient normalization has been used, and that 

Re(Ja) =ef-J’& sin(k-x+8-) as x+ - co; AT 2 &(Z-Z+k-) 
g -= 

(45) 4 J c;[(Z-)2k++(Z+)2k-] ’ 
(53) 
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and 

AR (1->2k+ -(I+ )2k- 
-= 
AI (Z-)Zk++(Z+)2k- ’ (54) 

The phase shift 0+ - 13~ could also, in principle, be found 
from the local solution, but the calculation is more difficult 
and is not needed here. 

The dispersion relation TZ3 +I= 1 shows that the wave 
number Z increases as the nondimensional surface tension 
coefficient T decreases, and that the group velocity 
cg= ( 3TZ2+ 1)/2 decreases as Z increases. (In the present 
notation, I= 1 for pure gravity waves, Z= l/2 at the mini- 
mum wave speed, and I=0 for pure capillary waves.) If the 
surface is clean for x < 0 and contaminated for x > 0, as in 
the numerical example discussed below, then T+ < T- and 
I+ >I-. Since m has the same value for both x ~0 and 
x > 0, the wave-number vector is, of course, turned toward 
the x axis if I+ > I- (or k+ > k- ) and away from the x axis 
if If < I- (or k+ < k-). While the energy flux of the trans- 
mitted wave is necessarily smaller than that of the incident 
wave, it follows from (53) that the amplitude of the trans- 
mitted wave can be larger than that of the incident wave 
when T+ < T-, for certain ranges of the parameters. For 
example, at normal incidence it is found that AT/A,> 1 if 
k+(l--2k+/3)/(1+2k+) <k-. 

The solutions also show rather curious behavior for the 
amplitude and phase of the reflected wave as the angle of 
incidence is changed. For normal incidence m is equal to 0 
and the amplitude of the reflected wave is always smaller 
than that of the incident wave, but the phase is the same 
when Tf > T- and opposite when T+ < T-. If m is in- 
creased with T+ and T- unchanged, the magnitude of the 
ratio A,/A, decreases, and passes through zero when 
m=Z+Z-[(Z+)2+ (Z-)2]- . 1’2 For still larger m, there is a 
180” phase change from that at smaller m. The magnitude 
of the reflection coefficient approaches one as m ap- 
proaches the smaller of If and I-, i.e., as the wave-number 
vector becomes more nearly parallel to the discontinuity on 
one side or the other. 

For numerical examples illustrating the reflection of 
incoming wave energy from the discontinuity in surface 
tension coefficient, we take the density p = lo3 kg/m3, with 
the surface tension coefficient 72 dyn/cm in clean water 
and 62, 52, 42, and 32 dyn/cm in the contaminated region. 
The calculations were made for the case when the wave 
front is parallel to the z axis, i.e., when m=O. Using these 
parameters, we can find the relationship between the en- 
ergy reflection coefficient R= (AR/Ar)2 and the wave- 
length il of the incident wave. These results in Fig. 3 show 
that the energy reflection is very weak. To see from the 
analysis why this is true, we can consider the behavior for 
small values of the jump AT= T+ - T- in the dimension- 
less surface tension coefficient, and therefore small values 
of the jump Ak= k--k+ in wave number. In this case R 
is proportional to [Ak/(2k)12, and Ak/k is proportional to 
AT/T with a small numerical coefficient. The reflected 
energy in fact remains small even when AT/T is not small, 
and approaches zero as capillary effects decrease, i.e., when 

0.000 

0 2 4 6 8 
wavelength (cm) 

RIG. 3. Reflection coefficient R versus wavelength for normal incidence. 
Surface tension coefficient T- is 72 dyn/cm in clean water for x < 0 and 
Tt is -:62;- -:52;- - - - -:42;- - -:32 dyn/cm in contaminated water 
for x>O. 

d becomes large in comparison with the value of 1.7 cm for 
minimum wave speed. 

Using the same parameters-as in Fig. 3 with fixed in- 
cident wavelength of 0.5 cm, the relationship between R 
and the angle of incidence is shown in Fig. 4. The ratio 

angle(degrees) 

FIG. 4. Reflection coefficient R versus angle of incidence for incident 
wavelength 0.5 cm. Surface tension coefficient is 72 dyn/cm in clean water 
for x < 0 and -:62;- -:52;- - - - -:42;- - -:32 dyn/cm in contaminated 
water for x > 0. 
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10 20 

FIG. 5. Surface elevation corresponding to $ ‘(x,0):---: full solution; 
. . ‘: harmonic-wave solution valid for large 1 x I. Surface elevation corre- 
sponding to $ ‘(x,0) :- - -: full solution and harmonic-wave solution. For 
both functions T-/T+ =2.25, m=1+/4, wavelength in clean water for 
x < 0 is 1 cm, and the elevation is normalized as in (5 1) and (52) _ 

AR/A, is negative when the angle is zero and increases 
monotonically to one as the angle approaches 90”. There is 
an angle when the reflection is zero. The figure shows sim- 
ilar trends for different surface tension coefficients in the 
contaminated water. 

The surface elevation corresponding to the functions 
$ ‘(x,0) and $‘(x,O) is plotted in Fig. 5, in nondimen- 
sional form for m = <+/4 and for a wavelength of 1 cm and 
a surface tension coefficient of 32 dyn/cm in the contami- 
nated water, so that T-/T+ =2.25. For given values of z 
and t, the complete solution for the potential is a linear 
combination of these two functions. The numerical inte- 
gration requires calculation of the function f from (25) for 
n = - 1, 0, and 1. This was accomplished using (42) for J, 
and (35) for I,, in an alternate form with integration limits 
0 and m/2, along with the definitions (22) and (34) for F 
and G, where u is found from ( 19), (23), and (24). 

Also shown in Fig. 5 are the harmonic-wave approxi- 
mations to $ ’ and $ “, correct only for large 1 x 1 but plot- 
ted here all the way to x=(? in order to show more clearly 
the changes in + ‘and $ ’ across the interaction region. The 
local solution I, contains a factor C, which is linear in AT 
for small AT, so that I, approaches zero as AT approaches 
zero, whereas J, does not. Thus we can expect that the 
amplitude of the local solution is small compared to the 
amplitude of the harmonic waves. As x increases from 
- 00 to + CO, it is seen from (47), (48), and (50) that the 
magnitude of (k+/l+)$ ’ changes from A1+AR to A, and 

the magnitude of - I’$ ’ changes from AI- AR to AT. For 
the example in Fig. 5, the change in r/ ’ is so small as to be 
imperceptible, and the change in $ ’ is only a little larger 
than 10% of the amplitude. The local solution also is seen 
to have an appreciable value only within about one-half of 
a wavelength on either side of the discontinuity. 

Ill. CONCLUDING REMARKS 

Analytical solutions have been obtained, through a 
complex integral representation, to describe the reflection 
of a plane capillary-gravity wave encountering, at oblique 
incidence, an assumed discontinuity in surfactant concen- 
tration. At large distances from the discontinuity, the so- 
lution is given simply by incident, reflected, and transmit- 
ted plane waves. These waves alone, however, do not allow 
continuous surface elevation, and the integral representa- 
tion provides continuity through an added local solution. 

For a small jump in surface tension, the energy in the 
reflected wave is quadratic in the strength of the jump, 
with a small numerical coefficient. The reflection remains 
quite weak even for large changes in surface tension. The 
amplitude of the reflected wave is largest for a pure capil- 
lary wave and decreases toward zero as the wavelength 
increases. The solutions are derived for arbitrary angle of 
incidence and can be specialized to the case of normal 
incidence. 

It is recognized that the approximation of inviscid flow 
should be augmented by a boundary-layer calculation that 
also allows the presence of a current. An extension of this 
kind is currently under study. It is believed, nevertheless, 
that the present formulation includes the effects that are 
dominant, and that additional features will provide a re- 
finement without introducing large qualitative changes. 

ACKNOWLEDGMENTS 

This work was supported under the Program in Ship 
Hydrodynamics and the Program in Ocean Surface Pro- 
cesses and Remote Sensing at The University of Michigan, 
funded by The University Research Initiatives of the Office 
of Naval Research, Contracts No. NOOO184-86-K-0684 
and No. N00014-92-J-1650. 

‘0. Reynolds, “0~ the effect of oil on destroying waves on the surface of 
water,” Br. Assoc. Rep. Papers 1, 409 (1880). 

*R. D. Peltzer, J. H. Milgram, R. A. Skop, J. A. C. Kaiser, 0. M. Griffin, 
and W. R. Barger, “Hydrodynamics of ship wake surfactant films,” 
Proceedings of the 18th Symposium on NavaI Hydrodynamics (National 
Academy, Washington, DC, 1990). 

‘R. H. J. Sellin, “Existence of a surffce tension discontinuity at a liquid 
free surface,” Nature 217, 536 (1968). 

‘J. C. Scott, “Flow beneath a stagnant film on water: The Reynolds 
ridge,” J. Fluid Mach. 116, 283 (1982). 

‘L. M. Hocking, “Capillary-gravity waves with boundaries: Three- 
dimensional effects,” Wave Motion 10, 301 (1988). 

‘K. 0. Friedrichs and H. Lewy, “The dock problem,” Commun. Pure 
Appl. Math. 1, 135 (1948). 

‘A. E. Heins, “The scope and limitations of the method of Wiener and 
Hopf,” Commun. Pure Appl. Math. 9, 447 (1956). 

‘J. J. Stoker, Water Waves (Interscience, New York, 1957), Chap. 5.4. 

972 Phys. Fluids A, Vol. 5, No. 4, April 1993 Gou, Messiter, and Schultz 972 


