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family of integrable equations.
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1. INTRODUCTION

The initial analysis of the Korteveg~de Vries (KdV)
equation by Gardner, Green, Kruskal, Miura, and Zabusky,
which later developed into a theory of the so-called “integra-
ble systems”, appears now to be a combination of some in-
genicus tricks {which have only been applied in the case of
the KdV equation) and the general concept of “inverse scat-
tering”’. While the general developments of the theory of
inverse scattering are fairly well known (see, e.g., Refs. 14},
the applicability of the ingenious tricks has not been exam-
ined in general; it is the goal of this note to discuss the degree
of generality of the particular trick that has been called the
*“Gardner transformation” (see the historical remarks in
Ref. 5, p. 422), which led to the discovery of an infinite num-
ber of conservation laws for the KdV equation.

2. THE GARDNER TRANSFORMATION FOR THE KdV
EQUATION

We recall briefly the actual derivation, which is taken
from Ref. 5. If v satisfies the modified KdV (MKdV)
equation

v, = 6020, ~ Ve (1)
then

u=v4u, (2)
satisfies the KdV equation

u, =6uu, —u,,,. (3)
Equation (2] is called the “Miura transformation” (a general

interpretation of it can be found in Ref. 6). Now (3) admits

Galilean symmetry
[ t,

x' = x + 6ct, u=u+c {4)

while {1} does not. Then a suitable combination of (2) and (4)
shows that
u=w+ ew, + €uw’, (5)
the Gardner transformation, is a solution of (3} if w is a solu-
tion of
w, = 6ww, —w,,, + 6eww,
= 93w’ — w,, + 2w, 0=d /dx, (6)

which can be considered as a deformation of Eq. (3). More-
over, Eq. (6) also possesses an infinite number of conserva-
tion laws [because it becomes equivalent to (1) after a change
of variables]. So we have an integrable deformation. Since
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such deformations are only very rarely integrable, the situa-
tion is quite intriguing. And even if all that were not enough,
formula (5) tells us that Egs. (3) and (6) are in fact equivalent
as evolution fields [in other words, using (5) we can express w
as a formal power series in € with coefficients that are polyn-
ominals in u,u,, w=u — eu, + €(u,, — u*)+ -+ Since
w, = d(3w* — w,, + 2€*w’) we obtain an infinite number of
conservation laws for (3) by inverting (5); half of them are
nontrivial and this completes the “classical” story of the
Gardner transformation’].

3. INTERPRETATION

The Galilean invariance of the KdV equation which
was used in an essential way in the construction of the defor-
mation (5}, is no longer available for the higher KdV equa-
tions which correspond to the Lax representation

L, =[PL], (7)

with L = — & + u. Therefore, if any deformation exists for
the higher KdV equations it must be based on something
other than Galilean invariance. We shall examine this in
what follows.

First, we recall that one of the most important proper-
ties of the Miura map (2} is the fact that this mapis a “canoni-
cal transformation”” from the natural Hamiltonian structure
a6 /év),

v, = J(6H /bv), (8)
of Eq. (1), namely,
v, = GUZUX — Uy = 3(5/60)(%,)4 + %Ui)s (1;)

into the second Hamiltonian structure
B, ={(—3"+20u + 2ud)(6/6u),

u, =(— & + 2ud + 23u)(5h /u) 9)
of the KdV equation, namely
u, = 6uu, —u,, ={—3 + 2ud 4 20u)(8/5u)iu’. (31

The word canonical means that the corresponding Poisson
brackets are compatible with the Miura map (2). Technical-
ly, this statement is equivalent to the equality

0+ )32 — ) = — & + 2ud + 20u, (10)

where 2v + 3 = Du/Duv is the corresponding Fréchet deriva-
tiveand 20 — 3 = (2v + )™ is its adjoint operator {for de-
tails see Ref. 2 or 6).

Keeping this in mind it is natural to assume that the
map (5) is also a canonical map from the natural Hamilton-
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ian structure d (6 /6w) of Eq. (6).

w, = 6ww, — W, + 6w,

XXX

= J8/Sw)w* + w/2 + €w'/2), (1

into some other Hamiltonian structure, which must be noth-
ing else but [(Du/Dw)d(Du/Dw)*16/65u. We have

(Du/Dw) 8(Du/Dw)”* = (1 + €3 + 26*w)d(1 — €d + 2€°w)
=39 — € + 26w + ew, + €w)d + dw + ew,

+ €'w?)] = 3 + € — 3 + 2ud + 23u). Therefore the map
{5) is indeed canonical into the Hamiltonian structure B:

B =[d+ €~ & + 2ud + 20u))(6/6u), (12)

which is just the first Hamiltonian structure B, = 3(6/8u) of
the KdV equation,

u, = buu, — u,,, =a(6/8ulu’+ sul)
plus € times the second Hamiltonian structure B, of the
KdV equation: B = B, + €B,.

Thus we have arrived at the combination (12) of two
Hamiltonian structures for the higher KdV equations. This
means that the Hamiltonians for these equations, if they ex-
ist, are formed in some way from the regular Hamiltonians
H, of the KAV equations. Recall that the sequence H, of
Hamiltonians is such that the equation

u, = By(H,)=B\H,, ) (13)
is the higher KdV equation number # (see, e.g., Ref. 2), and
all the Hamiltonians A, commute in both the Hamiltonian
structures B, and B,.

Because the natural initial term H, = u is such that

B\(H,) = 0, wesee that Eq. (13) can be written in terms of our
mixed Hamiltonian structure (12) as

u(=B,H,)=B(H,), (14)
where
H=¢7? kgo( — € Y)H, _,. 15

Notice that H, = H, {€) is asingular function of €. For exam-
ple, the KdV equation could be written as

u[ = 6uux - uXXX
8 (1 u 1 u
= [0+ € — 3+ 2ud + 20u ——-(————— ——~>,
[ ( " Sule? 2 €2
and if we consider the linear combination of the KdV fields
which corresponds to H =2 ¢, H,,

u, = By(H ), (16)

then the same Eq. (16) in our mixed Hamiltonian structure B
has the Hamiltonian

Hch,.e~2 2 (— e )H,_,. (17)

k=0

4. DEFORMATION

The next step is to make sure that every deformed equa-
tion

w, = J8/8w\H *, (18)
where A *(w) = H (u)atu = w + €w* + ew, and H is taken
from (17), is indeed a deformation of the “unperturbed” Eq.
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(16) in exactly the same manner as (6) is a deformation of (3).
Of course, B|._, = B, but there is a potential source of
difficulties in the singular dependence of H upon € in (17).

Theorem. Ther.h.s. of the modified Eq. (18) is a polyno-
mial in ¢ for H taken from (17).

Proof: It suffices to check the claim for H = H, from
(15). In this case the r.h.s. of (18] is clearly a finite polynomial
in € and €~ '; we wish to show that this polynomial contains
no terms which involve negative powers of €. This follows
from the regular invertibility of the deformation (5): We can
write w = u + 27_, €P,, P, being finite polynomial in
u,u,,..., and therefore w, = d,(u + X €*P,)
= F 4+ 3 € (3P, /8u")3F, where F is the r.h.s. of {16) and
4" = d*u/dx’. Substituting ¥ = w + €*w* + €w, in the last
expression we find w, as a formal series in non-negative pow-
ers of € only. Q.E.D.

Example: The next KdV equation after (3) is

u, = (=8 + 2ud + 20u)8/5u) (u* +13/2)
= 3[u® — 10uu® — Su"? +104°)

= A(6/6u)(572u* + Suu'" + Lu*?). (19)

Corresponding H = € 2(u* + u2/2)
— € Yu?/2) + € %u/2); this gives a deformation of Eq. (19)
in the form

w, = 3(8/8w)| w* + Sww'"? + Jw™”
+ 5w + 3wt] + e'wth (20)
Note that the (usual) modified equation associated with {19)
via the Miura map (2) is

v, = 3(6/80){v° + SvR''? + w2} (21)

5. RELATIONS BETWEEN THE GARDNER AND MIURA
TRANSFORMATIONS

In Secs. 3 and 4 we showed that the deformation {3) is
indeed valid for the whole KdV hierarchy. We now wish to
understand its relation with the Miura map (2).

The map (2} is canonical between the Hamiltonian
structures @ (8 /8v) and B, and therefore it is canonical for the
Hamiltonian structures €23 (6 /8v) and €°B,. If we now make
the translation & = u + ce 7, then the map

i=ce 4uv, +1° {2)

is canonical between €°d (6 /5v) and

€1 —9%+ 2 —ce Y9 + 20(u — ce™)16/8u

= [ — 3 + 240 + 23i) — 4cd}(6/61), which is exactly
B (i) when ¢ = — }. To eliminate €* in €23 (8 /bv) we set

v = €v; then (2') becomes

= —e A+ e +eb,, 27

which is a canonical map between @ (§ /65) and B (#). To
convert (2”) into a regular map we observe that the Hamil-
tonian structure @ (8 /80) has constant coefficients and hence
is invariant under translations of 5. So if we let § = w + b,
(2") will become

—32

d= —e /4 + etw? + 26%wb + €b* + ew, . 2"
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Now the regularity condition for (2"},

€b? = 1/4¢€%, (22)
yields
b= 1/2¢ (23)

and (2") becomes (5).

6. DISCUSSION

For each higher KdV Eq. (13) we constructed its defor-
mation (18) which has the following properties:

(1) There exists the reduction map (5) of the deformed
equation into the undeformed one. Therefore the deformed

system is also integrable (meaning: has an infinity of inte-
grals), because all conservation laws (c.1.’s) of the unde-
formed equation become c.1.’s of the deformed equation after
pull back;

{ii} The deformed equation (18) is Hamiltonian; it has
now only one Hamiltonian structure, {8 /6w). In this struc-
ture, all integrals of the deformed equations commute, since
they are preimages of the c.1.’s which were in involution al-
ready, and the reduction map is canonical. Note that there is
no such thing as “Lenard relations” (13} for the deformed
equations.

It will be important to understand whether there exists
any general “integrable deformations” pattern in the theory
of integrable systems. The answer is undoubtedly yes and
will be dealt with elsewhere. Here I shall make brief
remarks.?

A) If one begins with the arbitrary scalar Lax equation
(7) with

L=3"""%+ 3 ud (24)
=0

then one can construct the deformation theory, and general-
izations of both properties (i) and (ii) from the above discus-
sion remain true.

B) When an integrable equation is not bi-Hamiltonian,
Hamiltonian formalism is of little help either to find a defor-
mation or to interpret it.

Examples:

nIf

P =6p,C(1 +€C) —p,,, +26Vp5, (25)
where

C = [sh2evp)/(2ev) + (ch2evp — 1)/(2€%), (26)
then

W=C+vp, (27)
satisfies (6). Thus (25) represents the second deformation of
the KdV equation (3).

(2} If

9, = 9[2¢’ — q.. + 6€°9q2/(1 + 4€°¢%)], (28)
then

w=[(1+4€¢})"/? - 11/26* + q,.(1 + 4€°g})~ " (29)
satisfies (6},
v=q+€q.(1 +4€’q’)" ' (30)
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satisfies (1), and we have the commutative diagram
{2)4{30) = (5)4{27). Thus {28) is the deformation of the MKdV
equation (1), {30) is the reduction map, and (29) is the defor-
mation of the Miura map. This suggests that not only inte-
grable systems but also their relationships are objects of
deformations.

(3) Deformations phenomenon is not the privilege of
only the Lax equations. Consider, e.g., the Benney equations
for long waves on a two-dimensional surface®

a,, =a, .\, +Nna,_ dy,, n=0,12,.. (31)
for the sequence of functions a,, {x,f ). This system has an in-

finity of integrals 4, €a,, + Z{ay,...,.a, _, ] (see Ref. 2).
Proposition 32: Let

An,t =An+ 1,x + nAn —_ IAO,x + G[AOAn,x + (n + l)AnAO,x
+nd,_ (A, — Aoy, /)2, n =012 (33)

Denote by H,€4, + Q[A4o,....4, _ ] the integral #n for
{33). Then the map

a,=A4, +0le, (34)
such that
h,=H, +€¢H,, ,, (35)

maps solutions of {33} into solutions of {31).

C) Evidently conservation laws survive deformations,
1.e., remain nontrivial under deformations. Therefore it 1s
important to know which integrals of the undeformed equa-
tions were nontrivial in the first place.

Let us consider, as an example, the well-known case of
the KdV hierarchy (13). Then the r.h.s. of (18) shows that for
the deformed equation w is the c.l. Therefore inverting the
Gardner transformation (5)

W= 2 h e {36)

one gets an infinity of c.1.’s 4, € where &/ is the ring of
polynomials in u,u, ,--,. If f,g,€7, let us write f~g is
f{1,0,0,+) = g(u,0,-+), and f~0Q if f = Ig.
Proposition 37: h,, ,  ~0,h,, £0.
Proof: 1) Write w = w™* + w™ where
w* =2 hy, ", w™ =2 h,, . """ and substitute this
into (5). Then the part which is odd in € yields
wT —ewS —2e®wtw” =0, 0r
w” = —(2¢)7'dIn(l — 2€’w™). 2) From (5) one gets
u=w+ €w?, so
w=(26%) 71~ (1 - 46'u)?) = 2=, &u"+ ', alle,’s
are different from zero. Thus 4,, ~c,u" * '. Note now that if
f~0 then f~0. Q.E.D.
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