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Propagation of Bragg-Reflected Neutrons in Bounded Mosaic Crystals
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The analysis of the multiple Bragg reflection of a neutron beam of finite size in a semi-infinite mosaic
crystal given in a recent paper by Werner and Arrott is generalized to include bounded crystals. The coupled
differential equations describing secondary extinction given by Hamilton are solved in general, and a method

of piecewise solution, or solution by regions, is given.

A discussion is given of experiments on the spatial distribution of the diffracted current from slab-shaped
crystals. Various methods for measuring the probability for Bragg scattering per unit path are compared and
found not to agree. It is felt that the discrepancies are basic to the mosaic structure of crystals in general.

I. INTRODUCTION

N a recent paper! the muitiple Bragg-scattering
problem in a semi-infinite mosaic crystal was dis-
cussed in considerable detail. The starting point of the
analysis was a pair of coupled, integral equations
describing the incident and diffracted current densities.
In this paper the coupled, differential equations given
by Hamilton? are solved in general, and a method of
piecewise solution, or solution by regions, is given for
crystals of finite size.

A thermal neutron beam may penetrate quite deeply
into a mosaic crystal before it is diffracted and subse-
quently multiply diffracted; consequently, the results
of a neutron diffraction experiment represent a sampling
of the bulk material in contrast to x-ray and electron
diffraction experiments where surface preparation is of
prime importance due to absorption in the first case
and the strength of the interaction in the latter. It is
felt that full advantage of this fact has not been taken
particularly by metallurgists studying dislocations and
mosaic structure. However, in order to use neutron
diffraction as a tool in studying single-crystal growth
and mosaic structure, a reasonably complete under-
standing of the multiple-Bragg reflection (or secondary
extinction) of neutrons in crystals of finite size is
necessary. It is essential that the problems treated are
realistic in the sense that both the incident beam and
the crystal are of finite size.

In addition to the motivation for this study provided
by the above discussion and the historic interest in
being able to correct for secondary extinction in the
determination of crystallographic structures, we have
been interested in the theory of monochromation of
neutrons in an effort to make better use of the thermal
neutron beams available atlow-to-medium-flux reactors.
Consequently, the problems treated in Sec. II are the
diffraction of neutrons in slab crystals oriented in the

1S. A. Werner and A. Arrott, Phys. Rev. 140, A675 (1965). This
paper will be referred to as BRI
¢ W. C. Hamilton, Acta Cryst. 10, 629 (1957).

Bragg and Laue positions? It is pointed out that rec-
tangular-shaped crystals provide no additional diffi-
culty. A brief discussion of some rather extensive experi-
ments on the multiple-Bragg reflection of neutrons and
mosaic structure is given in Sec. II1.

II. MULTIPLE REFLECTION IN A CRYSTAL
OF THICKNESS T

A. Bragg Case

This section is devoted to finding the incident and
diffracted current densities, denoted by Ji{x,s) and
Jp(x,s), respectively, in and on the boundaries of a
mosaic crystal cut in the form of a slab of thickness 7'
(x,s) is a point in the nonorthogonal coordinate system
shown in Fig. 1. The reciprocal lattice vector of interest
makes an angle 8 with the normal to the crystal
surface such that the reflecting planes are not neces-
sarily parallel to the surface. We let the beam incident
on the crystal be finite in width and constant between
¥o=0 and yo=W, (and zero elsewhere), where vy, is a
coordinate orthogonal to the incident wave vector k as

\DlFFRACTION OIRECTION
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Fi1a. 1. Coordinate systems used in the analysis. x and s are direc-
tions of the incident and diffracted beams, respectively. yo is
perpendicular to x, y is perpendicular to s.

3 See, for example, W. H. Zachariasen, X-Ray Diffraction in
Crystals (John Wiley & Sons, Inc., New York 1944), p. 120.
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shown in Fig. 1. This “plane source” assumption is, of
course, not necessary, but the calculation closely
approximates real experimental situations for neutrons
of a given k emerging from a rectangular collimator. The
results of this paper can be integrated (numerically)
over k to include the angular and momentum divergence
of the incident beam.

It is apparent from the work reported in BRI' that
the diffracted current density on the entrant surface of
the crystal will consist of two parts, and can be found
from the solution of the problem of a semi-infinite
incident beam. The solution for a finite beam is the
difference of the solution for a semi-infinite beam with
origin at yo=0 and the solution for the semi-infinite
beam with origin displaced by the fraction 8./8; of the
width of the incident finite beam. Thus, if Jp(y) is the
diffracted current density along the surface for the
finite beam, and Np(y) is the solution for the semi-
infinite beam, then

Jo(¥)=Np(y)— Nply— (82/81)Wo]
Xua[y— Bo/B)Wo]. (1)

Np(y) is the diffracted current density on the surface
expressed as a distribution function in the coordinate
y measured perpendicular to the diffracted wave vector
resulting from a semi-infinite incident beam (i.e.,
Wo—), and #_, is the unit step function. 8; and B,
are the sines of the two angles (6p+3) and (85—38),
respectively, where g is the Bragg angle. We therefore
solve the problem in which a semi-infinite beam im-
pinges on the crystal as shown in Fig. 2. The solution
for the diffracted current density on the surface as a
result of an incident beam of finite width is found by
subtracting two displaced Np(y) curves according to
Eq. (1).

The balance relations for the conservation of neutrons
entering and leaving the infinitesimal parallelogram
shown in Fig. 3 are!

i/ dx=~ZJ+ZJp (2)
and
dJp/ds=—2Jp+2.J., 3)
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Fic. 2. Geometry of a semi-infinite beam impinging on a crystal
of finite thickness 7. The planes dividing regions I, II, III, etc.
are loci of points where the current densities have at least one
discontinuous derivative. The coordinate system for each region
is indicated by the vectors x, and s,.

* These equations were given by Hamilton (1957).
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where Z,(k) is defined to be the probability per unit
path, for small paths, that a neutron having wave
vector k will be Bragg reflected.” Similarly =,(k) is
defined to be the probability per unit path for small
paths that a neutron having wave vector k suffers any
interaction which changes its course (including absorp-
tion). We assume as a first-order approximation that
T, and I, are spatially invariant. Combining Eqgs. (2)
and (3) vields the following elliptical equation:

2T p/0xds+2,0Jp/0x+2:0]p/ds
+EE2—ZHIp=0. @)

A similar equation holds for J;(x,s). For the present
problem of a semi-infinite incident beam, J;(x,s) and
Jpn(x,s) in the above equations are replaced by N;(x,s)
and Np(x,s). The boundary conditions are

N, (entrant surface)=1 for =0 (5)
and

Np (back surface)=0. (6)

The solution to this problem does not have continuous
derivatives throughout the entire crystal. The discon-
tinuity in the beam incident on the crystal along the
line s:=0, coupled with the discontinuities in Z, and =,
at the two surfaces of the crystal, give rise to discon-
tinuities in the derivatives of Np(x,s) and N;(x,s) along
certain lines. In this section we demonstrate that
separate solutions with continuous derivatives exist
in each of the regions labelled I, 11, III, etc. in Fig. 2.
The method of solution consists of solving the prob-
lem for each region separately. The solution in the
(r—1)th region will be used as a boundary condition
for the solution in the nth region. The current densities
in the nth region are labeled Np™(%n,s,) and N;"(xn,s,),
where the coordinates (x,,5,) are shown in Fig. 2.

DIFFRACTED

INCIDENT BEAM

BEAM \%\\\\\

F16. 3. Parallelogram, of sides dx and ds, on which the balance
relations (2) and (3) are based.

51t is apparent that =,(k) =2,(k+27G), where G is the re-
ciprocal lattice vector of interest. Commonly used expressions for
2, are given in Ref. 1.
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Region I

The boundary conditions for the current densities in
region I are

N x1,(B1/B2)x1]=1 (entrant surface), x>0 (7)

and
N Hx,0) = exp(—Z 1), 8)
We look for a solution of Eq. (4) of the form
Npl(ay,s)= exp[—zt(x1+81)]fDI(xl,31)~ 9)
Substitution of this expression into (4) gives
[0%fp(x1,51)/0x185: | —Z 2 fp  (x1,51)=0.  (10)

The general solution of this equation is
1
fDI(xl,sl)=/AI(K) exp,:KE,,xl—l—-[EZssl:ldK, (11)

where the contour of integration in the K plane is not
specified at this point. The function 41(K) is to be
determined by the boundary conditions. Since ¥ 5! and
N & satisfy differential equations of the same form, we
must also have,

N xys)=exp[ —Z(x1+51)]
1
X /BI (K) exp<KEsx1+—IEEss1)dK. (12)

Using Eq. (3) we find that
BYK)=AY(K)/K. (13)

Writing fp! as
Sl (xy,s1)= /AI(K)

Xexp {Es (xlsl)*l:KC;—i) %+—;<—E> 7] } dK, (14)

and using the expansion

oyt V/n)l= & Wy, (1)

(where I, is a modified Bessel function of the first kind
of order #) we have

w X, nf2
ot (wy,s1)= _Z anl(‘_) I[22,(xs1)¥], (16)
. = $1
where
aim / KA (K)dK. 7
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From Eq. (13), the solution for f; is then
J=exp[Z,(w1+s1) IV i(o1,51)

© 1 n/2
= Z aw—ll<f"> In[_zzs(xﬁl)}]. (18&)

n=—wu S1

Applying the boundary conditions [Egs. (7) and (8)]
we find,

ey = for n>0
{a“lzl . (18b)
a_nt= (Bs/B1) "V /2[60n—1+ C 0——n+1]
co=c1+(c2—1)3,

1= % (Et/zs)[(ﬂl/ﬁz))%“'" (‘32/:31)%]

Since I,=1_,, we write Np! as

where

and

Np(x1,51) = exp[—Z¢(x1+51) ] [ <~s—1> 2I 22, (ws)?]

X1

w /B (D2 s\ "
-+ Z <—> (Cﬂ"*1+60“"+1)(—‘> 1 ,,[223(90151)%]}-

=2 Bl X1

(18¢c)

When this solution is evaluated along the surface of the
crystal, we have the same result as given by Egs. (39a)
and (39b) of BRI. That is, the solution in region I is
the same as for the semi-infinite crystal.

Region 1T

In order to solve the problem in region IT the % coordi-
nate is shifted by an amount 7/8, as shown in Fig. 2.
The differential equation (4) applies also to Np™ with
a similar equation for NI, Thus, the solution must
again be of the same form as equation (9), that is

Np"(w2,52) = exp[ — 2 1(x3+ 52—~ T/B1) ] fp' (%2,52)
and (19)
N (w2,80) = exp[ —Zo(wa+ 52— T/B1) ] (2,52),

where the constant exp(Z,7/8,) is factored out of f!
and fp'! so that the boundary conditions can be applied
more easily on the interface between regions I and II.
The equations for fp!' and f/T are of the form of
Eq. (10), so

1
fDII(x2,52) = /AII (K) exp(KEsxz—l-EEgsz)dK (20)

1
fiH(xZ,Sz): [AH(K)/K exp(KEsxz—i-EESsz)dK. (21)

The boundary conditions on these solutions are

fo™ (back surface)=0, (22)
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while on the interface between regions I and I

fp'(interface)= fpU(interface),
and (23)
f&(interface) = f;I (interface).

Defining

ail= f AN (KKK, (24)

and applying the above boundary conditions, we get

» (Z7/8)"
a'= 3 [————l—anm_;I for I>1
m=0 m!

(25)

GQII=O
aM=—(81/82)'a* for I>1.

Since all @, are known and are given by Eqgs. (18b), we
can calculate all ¢,*. Thus the solutions in region II are
now known:

N (xg,52) = exp[ —Z¢ (w2 52— T/81) ]

@ o n/2
X Z dn_ln<ic—> In[228(x232)§] (26)

n=—0 Sy

NpH (xz,sz) = exp[—zt(x2+32'— T/Bl)]

© 9 n/2
%> ann@) LL25. st (20)

S2

We proceed in the same manner to obtain the solution
in region IIT from the solution in region II, and finally
the solution in the nth region in terms of the coefficients
in the (n—1)th region. The equations for calculating
all ¢, are given in the Appendix. Using these regions we
can obtain numerical values for N; and Np at all
points in the crystal. The general solutions for the nth
region are

Odd regions: n=2]-+1

Nin(xmsﬂ)
[2(—}— n—1T n—11>]f< )
=exp| ~—2| XntSp———————— ] |fi"(%n,5n
2 61 2 B
(28)
NDN(:XI”,S”,)
n—1T n—1

==exp[—2¢(xn+sn— 5 E-T—BZ)]fDn(xmsn).
1 2

Even regions: n=2I

]Vi" (xﬂysn)

T
= BXP[’—Et<-/x’u"{--§“n'_f -__KL i)]ff" (xms")
28 28,

Np™(%n,$n)

nT n
= exp[—zg(x,.—l—s,.—— ——— g]fD"(xmsﬂ):
28 28,

(29)
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where
© X, mf2
[ (@nsn)= 2 amﬁl"(—> T[22 (%a50)t]
m==-00 Sn

(30)
© X m[2
For ()= 3 am"(——> 22, (o))

Sn

[ The actual functional dependence of A1(K), 4™(K),
etc. on K can be established if the contour of integration
is taken as a circle about the origin in the K plane.
Expanding 47(K) in a Laurent series about the origin,

An(K) = Z banl)

=
one obtains
1 A"(K)
b—ln=—'—" - )
271 K1

according to Laurent’s theorem. But

fK‘HA "(K)YdK=a_,_,",

1 =
A"(K):-——- Z al—anl’

211 1=
where all ¢; 1" are known. ]

These solutions for the problem of the slab of finite
thickness give results which are of the same general
form as for the infinitely thick slab. The diffracted beam
leaving the crystal surface in region I is identical to
that for the infinitely thick slab. A deviation begins
with a discontinuity in the derivatives of Np(y) on
passing from region I to region III (see Fig. 4). For
large distances from the origin (where the incoming
beam starts), Np(y) reaches the asymptotic value for
the finite crystal. For the symmetric case (8:/82=1)
and no absorption (2,/Z,=1), the asymptotic value
(found by applying the same total current equations
of BRI) depends on crystal thickness according to

Np(asymptotic)=[1+4(8:/Z,T) T (31)

This is plotted as the upper curve in Fig. 5. This result
may be compared with the intensity at the end of the
first region.

A
Ny (y)

Semi - infinite crystal

— F16. 4. Compari-

Pt son of Np(y) for a

finite crystal finite crystal with

\ Np(y) for a semi-
1 Infinite crystal.

-]
-1
[

0
Region1 a Region II {Reqionl
Zgy/sin 28y
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F1c. 5. Comparison of Np(y) at the end of the first region and its
asymptotic value as a function of crystal thickness.

We note that, for very thin crystals, Np (end of
region I) is very near the asymptotic value. At thick-
nesses corresponding to =,7/8:~8.0 the difference
reaches a maximum of about 109, of the asymptotic
value. As the thickness I" increases still further, the
difference between the diffracted current density at the
end of the first region and its asymptotic value slowly
falls off, ultimately to zero when the crystal becomes
infinitely thick. Consequently, if one calculates the
asymptotic value of Np(y) and uses Figs. 11(a)-11(e)
of BRI (which apply for the semi-infinite crystal), the
part of the curve for Np(y) corresponding to regions
III, V, etc. on the surface of the crystal can be
sketched in easily (Fig. 4). As a result, the exact solu-
tions, Egs. (28), (29), and (30), need be used only if very
accurate plots of Np(y) are required, e.g., to obtain
the tails on the Jp(y) vs y curves.

It should be noted that cutting the infinite lateral
slab off along a plane such as a—a’ (see Fig. 2) does not
alter the solutions obtained in this section. Cutting the
crystal off along the plane 5— 8’ (thereby forming a rec-
tangular crystal) would simply add an additional part
to the solution due to current entering the crystal
through the boundary plane 5—¥’. This part of the solu-
tion is easily obtained using the methods of this section.
Consequently, the secondary extinction coefficients for
rectangular crystals [as obtained by Hamilton by
numerical integration of Egs. (2) and (3)] can be
calculated.

B. Laue Case, Delta-Function Beam

We now inquire about the multiple reflection of a
pencil beam entering a slab crystal at a point A as
shown in Fig. 6. The equations to be solved are again

2347

(2) and (3). The boundary condition on 3Jp(x,s) are

+Jp(0,5)=Z, exp(—Zs) (32)
and
Jp(x,0)=2, exp(—Zw), (33)

where the subscript 8 refers to a delta-function beam.
For a solution of the form

8Jp(x,5)=exp[—~Z,(x+s)]

X/A (K) exp(KZ2+2,s/K)dK, (34)

23=/A (K) exp(KZ,s)dK, (35)
and
Zs=/A (K) exp(T,x/K)dK (36)
or :
2, for #=0
anE/K"A (K)dK={ } 37N
0 for %70

Consequently, after expansion of the integral in (34)
in a series of Bessel functions as done in Eq. (6),
sJp(x,s) assumes the simple form

oI p(%,8) =2 exp[ —Ze(w+3) J[2Z,(xs)?]. (38)

The current density 5J;(x,s) can be found in a similar
manner. It is

oJ i(x,5)=0(s) exp(—Zu)+exp[— . (a+s5)]
X2 (x/sPL[22,(xs)}]. (39)

The diffracted current density on the back surface of
the crystal between the points B and C is shown in
Fig. 7 for various crystal thicknesses 7" (for the special
case where 8;=8, and 2,=2,). These profiles are rela-
tively flat as is physically apparent from the fact that
the total path length (x+s) from the point A to any
point on the back surface between B and C is a constant.

C. Laue Case, Distributed Beam

We now consider the problem where a crystal is used
in the transmission position and the incident beam is

Reflecting
Planes
- 8
52 \
Fic. 6. Diffraction A -
of a delta-function .
beam in a mosaic
crystal placed in the
Laue position.
Incident Beam, \ Dig:‘;ﬁed
| Neutron per
sscond \
c
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F1c. 7. Curves showing the diffracted current density on the
surface BC of Fig. 6 for various values of the dimensionless param-
eter 2,7/p1. B1=PB2 and Z,=Z, for the curves plotted.

distributed over a width W, as shown in Fig. 8. The
solution for ;/p from the last paragraph could be used
as a Green’s function for this problem. However, the
solution can be more easily obtained by treating it as a
two-region, boundary-value problem.

The current densities are nonzero in the region
bounded by ABCDEA. The width W of the diffracted
beam can be considerably larger than the width of the
incident beam . The incident beam is again assumed to
be constant from point A to point E (and zero elsewhere).
The diffracted current density Jp on the back surface
of the crystal due to a beam of finite width can again

— REFLECTING PLANES

| >\\\

c
Q/
D
DIFFRACTED
BEAM

Frc. 8. Laue case: the incident beam is distributed over
the width W,. The angles are related by a1=#/2—8p—8, and
az=m/2—0p+p. Jp and J; are nonzero only in the region bounded
by ABCDEA.
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be calculated by subtracting two Np curves. That is,
JD=£VD(B)—ND (F) (40)

Np(B) is the same function as Np(F) displaced by an
amount BF. Np(B) is the diffracted current density
due to a semi-infinite incident beam which starts at
point A; and Np(F) is the diffracted current density
due to a semi-infinite beam which starts at point E.
Consequently, we need only solve the semi-infinite
beam problem. This problem consists of two regions
as shown in Figs. 9(a) and 9(b) due to the discontinuity
in the derivative of Np(x,s) along the line AC.

Region I. All points (x,5) along the line a¢’-¢ in
region I are equivalent; consequently, the current densi-

a!

|
[ CURRENT DENSITY IN THE
~a, i INCIDENT DIRECTION THAT
A ENTERS REGION T
1 i
";/\ /;f
2N
8 7
ak |
N
/ \\ |
INCIDENT / /il‘(x‘S) \
BEAM 2000
/ by~ i .
I: \ DIFFRACTED
! BEAM
a \
AR

(a)

Fic. 9. (a) Region I for the
Laue case; (b) region II for the
Laue case.

(b)

ties can be written as a function of one variable %
which is the distance from the entrant surface to the
line @’-a. This distance is

h=Bss+0B1x,

where B.=sinay,

(41)
B1=sina;.

A solution for the diffracted current density which
satisfies the boundary conditions Np!=0 and N, =1
along the entrant surface is
Np'(%,8)=[Zs/B2(D1—D>)]

X[exp(Dih)—exp(Dah)].  (42)

The incident current density can be calculated from
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Eq. (3) as
B2D1+-2,
Ni(x,5)=—————exp(Dik)
Bo(D1— D»)
B2Dy+-2,
B2(D1— Dy
where

Dlsz[—bﬂ: (b2—46)%]/2,
b=32,(1/8+1/81),
c=(Z2—20)/81Bs.

Region I1. In order to find Np!! and N, the con-
tinuity of the current in the incident direction across
the plane AC and the fact that the diffracted current
density on the plane AB is zero are used; that is,

NE0,5)=N1(0,s) (44)
and

NpH(x,0)=0. (45)

Knowing that the solution for N p must be of the form
of Eq. (34), we find by applying these boundary
conditions that

Np{(x,s)=exp[—Z.(x+5)]

0 ni2
XS zL,,H(f> LI (es)] (46)

n=1 X
and

N (x,s)=exp[—2:(x+s)]

© nf2
XY A_n_1H<f) I[2Z,(xs)Y], (47)

n=0 X
where
(B:D1+Z)™ (DoBetZ) v
A, = 4+ (48)
2B2(Di—Dy)  Z"Bo(Di— Do

Since the functions 7, are well tabulated, the diffracted
current density leaving the crystal due to a finite
incident beam can be easily calculated using Egs. (42)
and (46) and doing the subtraction indicated in Eq.
(40). The series in (46) will be found to converge very
rapidly when the thickness of the crystal T is of the
order of 1/3,.

1II. EXPERIMENTAL

We have performed experiments on the spatial dis-
tribution of the diffracted current from a variety of
single-crystal slabs including Zn, NaCl, Pb, Cu, and Si.
The results on the (000,2) reflection in a single Zn
crystal with faces parallel to the basal planes of the
hexagonal lattice are given here. The data obtained on
the other crystals are similar to, and consistent with,
the results on Zn.

In order to measure a spatial profile for a given value
of ¥,, k must be well defined since =, depends very

BOUNDED REAL CRYSTALS 2349
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Fic. 10. Rocking curve for the (000,2) reflection in a Zn crystal.
The incident beam is 0.12 ecm wide with an angular spread of
about 4 min of arc. The beam was monochromated with the Si
(111) reflection to give a nominal wavelength of A=2.095 A.

strongly on the orientation and magnitude of k. This
was accomplished by using the (111) reflection in a Si
single crystal to produce a “monoenergetic” beam
which was then collimated using two Cd slits with
aperture 0.12 cm spaced 125 cm apart to give an angular
resolution of about 4 min of arc.

A rocking curve for the Zn (000,2) reflection is shown
in Fig. 10, the angular width of which is primarily due
to the mosaic structure of the Zn crystal itself. Conse-
quently, with the crystal fixed in angle at the peak
counting rate, only those small-angle mosaic grains
which are very close to the center of the mosaic dis-
tribution W are contributing to the reflection, and the
value of 2, should be approximately®

2,=[1/(2r)*JQ (49)

under a Gaussian approximation to the mosaic distribu-
tion. ¢ is the mosaic spread parameter and Q is given by

Q= (2r)3| F|%/ V% sin26s, (50)

where F=structure factor and V'=volume of a unit cell.
A first-order estimate of n can be obtained from the
rocking curve by subtracting out the angular resolution
of the incident beam.

In addition to the above method for calculating 2.,
it can be obtained directly from the total current ratio.®

Pp/Po={14(8/Z,T)] (51)

in the event that absorption and incoherent scattering
are small compared to Z; (as is the case for Zn).

6 See, for example, G. E. Bacon and R. D. Lowde, Acta Cryst.
1, 303 (1948).
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F1c. 11. Spatial distribution of the diffracted current density
from a Zn crystal cut in the form of a slab with the (000,2) planes
parallel to the surface. This distribution was taken with the crystal
oriented at the peak of the rocking curve (Fig. 10). The crystal
was rotated about the scattering vector to insure that there were
no competing reflections. The crystal was 0.3 cm thick.

By moving a very narrow Cd slit across the diffracted
beam when the crystal is fixed at its peak counting
rate, the spatial distribution shown in Fig. 11 was
obtained. The profile peaks at the “effective” right
edge of the collimator and falls off gradually with a long
“tail” as predicted in" BRI and in Sec. I of this paper.
The theoretical (solid) curve which fits the data reason-
ably well gives a value of Z,= 3.0 cm™. (The data
were not normalized to the incident beam intensity in
performing this fitting process.) Table I gives the values
of Z, obtained from the three “independent” methods
of measurement.

The discrepancy noted here between the various
methods of measurement on Zn was also observed for
the other crystals examined. The intensity of the
diffracted beam is always less than expected. This gives
the impression that there are certain orientation angles
in the mosaic distribution for which there are no mosaic
grains, hence neutrons of a particular k can pass un-
diminished. If there are, in fact, “holes” in the mosaic
structure, they must be closely spaced. Otherwise they
would be observed in double-crystal rocking curves
using identical crystals, and they are not.

[The quality of our beam from this Si monochro-
mator has been checked many times in several ways,

TABLE I. Values of 2, from three methods of measurement.

ZLem™]
(A) From Eq. (49) 4.2
(B) From Eq. (51) 0.702
(C) Spatial distribution 3.0
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and consequently normalization of the data to the
incident beam should have led to compatible results.
The contributions to the incident beam due to multiple
reflections of A, 3\, 2A, 1A, and the epicadmium parts
total less than 19, of the first-order “pure” A= 2.095-A
component. Scattering lengths obtained from various
powder and polycrystalline samples agree very well with
published cross-section data. ]

1IV. CONCLUSIONS

We feel that the discrepancies noted in Table I in
the measurement of 2, are real and are related to the
mosaic structures of crystals in general. There are many
factors and parameters which can be varied easily in
examining crystals by neutron diffraction in order to
obtain a better understanding of the imperfections
which occur naturally in all crystals. Varying the size
and angular spread of the beam, the region of the crystal
irradiated, and the incident energy are a few of these.
The analysis given in this paper should be viewed
simply as a starting point, providing certain guidelines
for further study and experiments in this area. We
emphasize again that the spatial distribution of the
diffracted current density is of prime importance in
this connection.

APPENDIX

Equations for calculating the coefficients a;* occurring
in the calculations of Sec. I1:

Even regions:

a0 =3 [ T/8)™/m Jam D, I>1 (A1)
m—0
PRCIS (A2)
B\ =
al(2n)=_(—> 2. LET/80™/ mTam @D, I1>1.
62 m=0
(A3)
Odd regions:
a0 =3 [(2,T/82)™/mJar_.tm, 1>0 (A4)
m=0
a_,@m =1 (AS)

a_ @ = (B5/B;) D12 (cgl14- L)

= Gu/) X [T/ m o mys®

1>2, (A6)

where
co=c1+(c’—1)} (A7)
a1=3(Z/Z)[(B1/B2) 1+ (Bo/BUY]. (A8)



