Discrete set selection of Saffman-Taylor fingers
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A study of the linear stability of the discrete set of steady-state Saffman—Taylor finger solutions
at finite surface tension is presented. It is shown by explicit computation that members of the
set aside from the lowest width finger are linearly unstable. This completes the demonstration
that finite surface tension effects determine uniquely the allowed interfacial pattern in the

steady-state regime.

I. INTRODUCTION

The problem of finger width determination for a multi-
phase interface in a Hele-Shaw cell has recently received
renewed attention.' In particular, the continuous family of
solutions found by Saffman and Taylor? has been shown® to
break down to a discrete set upon introduction of a pressure
drop due to surface tension at the fluid-fluid interface. This
breakdown has been traced* to the presence of essentially
singular terms which destroy interface smoothness at all but
certain allowed widths {4, }. This idea, coined “microscopic
solvability,” has given rise’ to analytic derivations of the
scaling (A — 1) ~y*/* (where  is the dimensionless surface
tension defined below), as well as a new understanding as to
why fingers remain stable up to large capillary numbers.*

The purpose of this article is to formulate a new compu-
tational approach to the linear stability of the finite surface
tension steady-state solution. This new method makes use of
the exact numerically determined finger shape and hence
represents an improvement over some recent treatments.*’
The major result we wish to present is that we can unequivo-
cally demonstrate the existence of discrete mode instabilities
for certain elements of the allowed set aside from the small-
est width finger. These results agree completely with the
conjectures made by us in our earlier, approximate treat-
ment.* This result then strongly suggests that only the nar-
rowest finger can be linearly stable; this in turn means that
only fingers with this width can be observed in either nu-
merical simulations or laboratory experiments. The predic-
tion made in this manner agrees with the simulations® and
can be made to agree with the experiments upon taking into
account effects of wetting films on the plates.®

The outline of this work is as follows. First, in Sec. I we
derive the linear operator governing perturbations around
the steady-state solution. Next, in Sec. III we describe our
numerical procedure for studying this operator. Finally, in
Sec. IV we present our results and introduce a conjecture as
to the stability of the infinite discrete family of steady-state
interfaces found originally by Vanden-Broeck.?

Il. LINEAR STABILITY OPERATOR

The evolution equation for the interface in a Hele-Shaw
cell is easy to derive. We start the usual formulation of a zero
viscosity fluid displacing a viscous one: V?p =0, (dp/dy)
(y= +1)=0, and p(x~ )~ —x, together with the
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Stefan condition — Vp-rn=v, and the pressure jump
Pii = — Vi, where y= (T /12uv_)(b*/a*) for surface
tension 7, viscosity ¢, channel width 2a, and gap thickness b,
and where v is the asymptotic flow. Our coordinate system
is given in Fig. 1. We can then eliminate the pressure field by
using a Green’s function for Laplace’s equation in a channel
geometry. This leads to

Jfz’-V’G(x,x’,y,y’);fk(s')ds' = f G(xx"yy v, (s')ds',
(1)

where
G= —10(x —x")|x —x'| — (1/4m)log(1 + e~ 27~

—2cosm(y —y)e "Xy, (2)

where ds’ is a unit of arc length, 7 is the curve normal, and we
have assumed a symmetric profile. The singularity at x = x’
in the first term is regularized by approaching the interface
from the nonviscous fluid side.

Equation (1) can be used to recover the results of Van-
den-Broeck? for the emergence of a discrete set. Specifically,
we choose a value of ¥ and solve for a shape that uniformly
translates with velocity 1/4. It is easy to show that this shape
must asymptotically approach y = + A; we solve the flow
equation in the gap between the wall and the finger by as-
suming

Vit = A— ebx, ¢(x’y) =a Ccos bye”".

Substitution into the equation of motion leads to the condi-
tion yb 2tan(b1) = 1 for the approach rate 5. We then can
parametrize the shape in any convenient manner and solve
for the resulting unknowns by iteration. In general, such a
solution of Eq. (1) has a cusp at the origin. The discrete set

y=1
Interface

FIG. 1. Top view of Hele-Shaw geometry.
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{4} is selected by imposing the auxiliary condition of vanish-
ing cusp magnitude. The details of the implementation of
this approach have been given elsewhere.'® The resuits of our
method agree with those found by the conformal mapping
technique of Vanden-Broeck.> We prefer our methodology
because it is immediately generalizable to systems that obey
more complicated field equations for which conformal map-
ping is of no avail.

Once a steady-state solution has been found, we set
. x(s) =X, + t/AX + A6(1,s) and linearizein §. We then have
to compute a variety of expressions, determining how the
various geometrical constructs in Eq. (1) change to first
order in §. Clearly, the Green’s function must now be evalu-
ated at the perturbed interface:

Gxx'yy') =G() + [8(s)AV + 8(s"HAV'IG(), (3)

where G(-) is the Green’s function at the unperturbed inter-
face. Similarly, the curvature must be modified via

K=Ky — 8" (s) — Kki8(s).
There are analogous expressions for the velocity
v, = (1/A)cos 6 + & + (1/A)sin 68,

where @ is the angle made by the normal vector to the propa-
gation direction, the normal vector, and the arc length mea-
sure. A simple calculation leads to the linear equation

j AN [8(s)AV 4+ 8(s)AV'IG( ) yro(s')ds'
+ j 8 (')t 'V'G(-)yk2 (s')ds'

— f A V'G(-)ys" (s')ds'

=f [8()AV + S(HAV'1G()ds' As')- %

+fmo@wwlf®wrwwwﬂw,(m

where 7 is the tangent vector and «, is the curvature of the
steady-state interface.

We now wish to study modes at a single complex fre-
quency . Schematically, Eq. (4) is of the form
AWS = A9!"1{5]), where 4 ¥ and 4 © are linear integro-
differential operators and v!"' [§] = w8 — t-%8'/A + KB for
the mode at fixed frequency. It is important to note that 4 ©
is singular. The easiest way to see that this must be true is to
recognize that the zero-mode problem for this operator is
isomorphic to finding the charge distribution on a conductor
of electrostatic potential ¢ = 0. This just means that the
velocity is not uniquely determined until we impose an addi-
tional constraint of the form

st' 85 ] =0,

which is just the condition that the perturbation not be al-
lowed to change the flux asymptotically far downstream.
The above equation gives rise to both continuous and
discrete modes of oscillation around the initial finger. The
continuum corresponds to perturbations which asymptoti-
cally approach growing plane waves on the planar interface
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in the tail region of the finger. If we substitute the form
8 = e*into Eq. (4), we find*

o= —k/A—vyk?tan(kd).

Because the above form gives negative growth rates for
imaginary wave vectors, it is possible to show that the con-
tinuum is always stable.*”'" The physical interpretation of
this stability is that interface normal velocity goes to zero
down the tail and therefore the perturbation amplitude is
damped at large distances. This result can be explicitly veri-
fied using the numerical algorithm to be discussed below, but
this is not our concern here.

The more interesting part of the spectrum is that of the
discrete eigenvalues. These modes all decay exponentially
away from the tip, as can be seen by noting that such modes
are possible only if the contributions from the integral opera-
tors in (4) are not dominated by the contribution from far
distances (see Ref. 4 for an explicit derivation). Because of
this, these modes avoid the previous arguments for stability
and may give rise to tip-region instabilities. The remainder of
this work will focus on a numerical study of this type of
mode.

lll. NUMERICAL METHOD

We wish to study the spectrum of the operator implicitly
defined by the linear equation derived in Sec. I, We start by
defining a mesh variable u, = iu,,, /NPTS, in terms of
which the independent wvariable y is given by
¥; = (24 /m)tan™ ! sinh u,. (NPTS is the number of points
in the numerical discretization.) Similarly, we denote
x;=xy(y;). The unknown function is then determined by
the finite number of unknowns 8§; = 8(s,(y; )), where the arc
length function s, is directly determined from the initial
steady-state solution. By its construction, u is proportional
to the arc length at large distances and our mesh becomes
one of equal spacing in the arc length. We explicitly require
the eigenvectors to vanish for distances larger than the spa-
tial cutoff u,,,,, . This introduces some inaccuracy in the con-
tinuum modes (see below), but, as we shall explicitly check
later, does not affect any discrete modes corresponding to
possible tip-region instabilities.

The derivative terms are discretized by simple three-
point expressions. After accounting for delta function pieces
which can be trivially integrated, all the integrals entering
into 4 'V are nonsingular at s = s’ and simple trapezoidal rule
discretization is accurate to O(1/NPTS?). The integrand
comprising 4 ¥ is logarithmically singular and must be han-
dled more carefully. We use

favwmwwn=jcvnwwan1—MWMnn

+08)] [60)
and then replace
f G(-)y=A4 j AV'G( )y (s')ds'
via the steady-state equation. This method is again accurate

to O(1/NPTS?).
Once the matrices 4 " and 4 ¥’ are computed, we define
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TABLE 1. Typical data set, fit by @ = 0.0015 + 96.75(u,,,, /NPTS)?, for
U 5.

TABLE II. Raw data for the unstable mode on the second solution branch;
the extrapolated eigenvalue occurs at w = 2.11.

. NPTS MPTS w(X1072)
40 200 100 4.238
5.0 200 100 6.197
7.5 300 150 6.185
5.0 300 150 2.839
5.0 400 200 1.666
5.0 300 100 2.839
5.0 300 200 2.839

Uy NPTS MPTS @
4.0 200 100 2.183
5.0 200 100 2223
7.5 300 150 2.223
5.0 300 150 2.160
5.0 400 200 2.138
5.0 300 100 2.160
5.0 300 200 2.160

an operator L = (4 ") 7'4 'Y, As already mentioned, 4 " is
singular and the inversion must be done via the imposition of
the flux constraint. It is easy to prove that 4 "' is orthogonal
to the zero mode and hence no ambiguity arises in this proce-
dure. Finally, we define

L[] =L[8] + 138 — k5

as the linear stability operator.

In order to minimize boundary effects, we truncate to a
MPTS X MPTS submatrix of L. In practice, we usually take
MPTS = INPTS, but larger fractions (up to 75%) are
equally effective. This submatrix truncation effectively
amounts to including contributions to the integrals in (4)
from distant regions (large s') without having to explicitly
parametrize the eigenvector in that domain. One can show
that without this additional contribution, there can be large
power-law corrections [O(1/u,, )] to some of the eigen-
values and that for fixed MPTS, increasing NPTS improves
the convergence. (In any event, none of our conclusions de-
pend in any way on the details of this procedure.) Finally,
then, any specific calculation is characterized by the triple
(MPTS, NPTS, and u,,,, ) and the physical numbers must
be found by extrapolation to infinite values of these cutoff
parameters.

We know a priori that there must be at least one discrete
mode occurring at exactly w = 0 due to translation invar-
iance. One major test of our method is its ability to reproduce
this @ = 0 mode; this mode is not decoupled from the re-
mainder of the matrix'? and its value will accurately reflect
numerical errors in our cutoff procedure. To do this, we first
generated a 150-point solution of the steady-state equation
corresponding to

y=>5724x1077 A =0.523754+5x10"">.

Then we computed the spectrum by using the Eispack'?
nonsymmetric matrix routine with various values of the cut-
off parameters. A typical data set is presented in Table I. Our
procedure was to choose u,,, large enough such that its
variation did not affect the desired eigenvalue more than
0.25%. This can always be done for any mode whose corre-
sponding eigenvector decays rapidly away from the tip.
Then, we increase the spatial resolution u,,, /NPTS and
check that the data agree with the quadratic convergence
expected of our algorithm. This then allows us to present the
final extrapolated value for the discrete eigenvalue. Finally
we check that this eigenvalue is independent of the ratio
MPTS/NPTS.
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Using the above procedure, the numerical value of the
zero mode was extrapolated to be w, = 1.5x 107, a factor
of 5% 10* smaller than any other mode. This then is a mea-
sure of the accuracy of our method.

IV. TIP-REGION INSTABILITIES

Let us return to the same solution as we have just used
for our accuracy test. To go further, we apply the same pro-
cedure to the other discrete modes of the system. At this
steady-state solution, there is only one other discrete mode,
@ = — 4.55. With respect to these excitations, then, the fin-
ger is linearly stable. As stated above, all the continuum
modes for this solution are also stable. This finger is there-
fore linearly stable, at least with respect to symmetric pertur-
bations.

The case of (y,4) just considered corresponds to the
smallest allowed width at that value of . We now turn to
different allowed A values at constant 7. The next root occurs
at A = 0.5945. Again, there is a translation mode whose val-
ue even for the lowest precision runs never exceeds 10~ ' and
can be extrapolated to equal 10~ at infinite spatial resolu-
tion. The other discrete modes are now at o = + 2.11 and

— 3.78. Table II contains our raw data for the different
cutoffs that entered into determining the unstable mode
eigenvalue. Our data prove that there is a discrete mode in-
stability that prevents this width from ever being observed
experimentally! The eigenvalue again shows no u,,, de-
pendence (at fixed resolution) and as expected, the eigen-
vector decays exponentially away from the tip region. In

1.00
0.75L
0.50+
S A
& 0.25
L Translation Mode
0
—0.25L Tip-Region Instability
—0.50L___ . ) . . o
0 0.50 1.00 1.50 2.00 2.50

S

FIG. 2. Eigenvectors corresponding to translation mode (upper) and tip-
region instability (lower) versus arc length from the tip.
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Fig. 2 we have plotted this eigenvector as well as the transla-
tion mode eigenvector in the tip region.

The picture at all other values of ¥ which we studied to
date is identical. For example, we present results for
¥ = 0.003. The lowest root occurs at 4 = 0.5148 and has no
discrete modes other than the omnipresent translation
mode. The second solution now has width A = 0.5587 and
modes at 2.4, 0, and — 4.1. Again, the second solution has
one unstable mode.

What happens when we go to higher width solutions?
We have studied the third root at ¥ = 5.724 X 10~* which
occurs at 4 = 0.705. The qualitative features of the spectrum
remain unchanged and the discrete modes now occur at
» = {4.36, 1.77, 0, — 3.38}. Now there are two unstable dis-
crete modes. We have tested this at other values of 7 with the
same result. The sum of our numerical results provide what
we feel is strong evidence for the following scenario: As A is
increased for fixed y, we pass through a discrete set of al-
lowed values; each additional steady-state solution has one
additional unstable mode. As we reach A = 1, we go over to
the stability of a planar interface, as originally given by Saff-
man and Taylor.? Similarly, as y is decreased at fixed A, we
likewise go through a series of solutions and again each addi-
tional solution has one additional instability. As we reach
y =0, the discrete spectrum goes over to the ¥ = 0 spectrum
of McLean and Saffman.'* Clearly, however, only an analyt-
ic approach can ever actually prove that this is indeed what
happens.

Finally, we note that this sort of spectral flow theorem is
not restricted to the Saffman~Taylor finger. In a separate
work,'® we have shown that this exact scenario appears to be
valid for diffusion-controlled dendritic crystal growth. The
emergence of a discrete set in both of these systems, as well as
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some others such as Taylor bubbles and directional solidifi-
cation, has been understood by the working of “microscopic
solvability.” In a way in which we do not yet fully under-
stand, this type of mechanism for pattern selection also en-
sures that only one steady-state solution can be linearly sta-
ble and hence predicts a unigue pattern for the evolution of
the phase boundary.
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