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The joint effect of direct and hydrodynamic interactions on the dynamic structure S (k,t) of a solution of rigid 
macromolecules is examined. The initial slope dS/dt and initial curvature d' S/dt' ofS(k,t) are obtained. The 
reference frame correction of Kirkwood et al. [J. Chern. Phys. 33, 1505 (1960)) is shown to be wave-vector 
dependent. Contrary to some previous results, we argue that the initial slope of S(k,t) is partly due to direct 
interparticle interactions rather than being due entirely to free-particle Brownian motion. 

I. INTRODUCTION 

The spectrum S(k, t) of light scattered by a solution of 
interacting Brownian macromolecules has been the sub­
ject of extensive theoretical investigation. Since the 
work of Altenberger and Deutch, 1 S(k, t) for such sys­
tems has been understood to reflect the interplay of 
direct and hydrodynamic interactions between the macro­
molecules. Early theoretical discussions of one of US2,3 

concluded that light scattering measures the mutual 
(pair) diffusion coefficient Dm rather than the tracer 
(single-particle) diffusion coefficient DT; Dm and DT are 
not equal in concentrated solutions. 4 A number of 
authors have calculated the concentration dependence 
of Dm and DT, often with speCial reference to effects 
visible to light scattering spectroscopy. 5-18 Most of 
these calculations are based on some form of the N­
particle Smoluchowski equation in which the important 
physical effects are the isolated-particle Brownian mo­
tion, the hydrodynamic coupling between particle dis­
placements, the direct (e. g., electrostatic) forces be­
tween the macromolecules, and the hydrodynamic drag 
on the moving macromolecules. 

In contrast to some of the aforementioned papers, 
Pusey19 has argued that the initial decay of S(k, t) is due 
entirely to single-particle Brownian motion, direct in­
teraction between diffusing macromolecules having no 
appreciable effect on dS(k, t)ldt at small t. USing dif­
ferent arguments, one of us20 has presented a demon­
station which appears to show that light scattering spec­
troscopy actually measures D T rather than Dm, while the 
other of US21 has argued that direct intermacromolecular 
interactions contribute to the drag coefficient f of a 
macromolecule, an effect which is not implicit in most 
other analyses of mutual diffusion in concentrated solu­
tion. 22 

Given the already voluminous literature on this prob­
lem, it is important to emphasize what Significant new 
results are obtained here. In particular, (i) A previous­
ly uncalculated wave vector dependence of the reference 
frame corrections (as discussed by Kirkwood et al. 23

) 
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is found. (ii) The second cumulant K2 = limt-o d2 InS(k, t)/ 
dt 2 of the spectrum is obtained, showing that the forces 
responsible for K2 cannot be correctly computed by ne­
glecting the initial motion of the macromolecules. (iii) 
It is shown that direct interactions do contribute to 
Dmk2, . and that light scattering does measure a pair 
rather than a single -particle diffusion coefficient. 

In Sec. II, a general power series expansion for 
S(k, t) is introduced. Terms corresponding to the direct 
interaction contribution to f are identified and will be 
analyzed in a separate paper. In Sec. III, the initial 
slope of S(k, t) is found; in Sec. IV, a calculation of the 
initial curvature K2 of S(k, t) is presented. Our results 
are discussed in Sec. V. 

II. TIME EXPANSION OF THE DYNAMIC STRUCTURE 
FACTOR 

The dynamic structure factor S(k, t) for a group of N 
particles is given in terms of the scattering vector k 
and the particle positions rj(t) by 

S(k,t)= ~(t1 eXP{ik'[rj(T+t)-r/rm)T' (2.1) 

where ( )T represents a time average. Applying the 
definition of the velocity 

rj(t)-rj(O)= fa' vj(s)ds, (2.2) 

assuming the equivalence of time and ensemble averag­
ing, and expanding the exponential as a power series in 
time gives 

N 

S(k,t)= 1( L exp[-ik·rJ(O)]exp[ik. rj(O)] 
j,J=l 

x ~ :! [tK . f Vj(S)dS]") • (2.3) 

We consider here systems whose volume is far larger 
than the volume over which particle positions or veloci­
ties are correlated. 

Equation (2.3) gives S(k, t) as an impliCit function of 
time. S(k, t) may be obtained as an explicit function of 
time by using the power series expansion 
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.. 
S(k,t)= LA,t'/ql , (2.4) 

q=O 

with 

(2.5a) 

(2.5b) 

In Eq. (2.3), four effects modify VI (s): 

(a) stress fluctuations in the solvent create a random 
velocity field in the solvent, which moves the suspended 
solute particles'. 

(b) stress fluctuations at the surface of each solute 
particle cause the solute molecules to move with respect 
to the surrounding solvent, 24 a motion distinct from the 
Brownian motion terms described in (a). 

(c) Mechanical forces between pairs of solute mole­
cules cause the solute molecules to move with velocities 
Fu ~, where Fu is the force on particle i due to I and 
tl is the mobility of i. 

(d) Ignoring inertia, the total force ~,FIl on each sol­
ute molecule is exactly balanced by the hydrodynamic 
friction it = - ~, Fu. The forces it set up velocity fields 
v'" =T ",I • it in the surrounding solution, where T 1111 is a 
hydrodynamic interaction tensor. 

Effects (a) and (b) are responsible for the Brownian 
velocity VBI(!), while effects (c) and (d) create the inter­
active velocity 

which combine as 

(2.6) 

(2.7) 

I 

Some care must be taken in interpreting the limit t- O. 
If one simply substitutes t= 0, the right hand side of 
Eq. (2.10) vanishes; namely, in the ensemble average 
the velocity distribution function of each particle is in­
dependent of the positions of the other particles, and has 
the spherically symmetric Maxwell-Boltzmann form, so 
that an average of k • [VII (0) +VBI(O)] vanishes. The exact 
form of the term quadratic in VBI includes inertial ef­
fects, so for small t it is of order t 1 and also vanishes 
if t becomes identically equal to zero. However, we re­
quire that t» TB; t"k' VBI(t) is then equally likely to be 
positive or negative for each orientation of VBt. so in 
Eq. (2.10) the term in (ik' VBI(t)) vanishes. The final 
term in Eq. (2.10), involving k • VBI (s) k • VII (t), corre­
sponds to a contribution of direct interactions to the 

as suggested by Pusey. 19 In Eq. (2.6), the first sum 
includes the motion of particle i due to direct forces on 
it as well as the flow fields set up at particle i by the 
force which particle i exerts on other particles. The 
second sum includes the flow fields occurring at particle 
i due to direct forces between the other particles in the 
solution. Fil is a function of the interparticle separa­
tion r u , while ~,TIl, and VBI depend on the complete 
configuration {rV} of all the solute molecules. 

Substituting Eqs. (2.6) and (2.7) into Eq. (2.3), we 
define 

1 ( N 
J",n= N L exp[-t"k·rJ(O)]exp[t"k·rl(O)] 

I, J=1 

X m~nl [t"k' f VII (s)dSr [ik' f VBI(S)dS]"). 

(2.8) 
We assume that the Brownian relaxation time Ts is much 
less than other times of interest, in particular that 
T B « t. We also take t« (Dok 2r1

, so that the positions 
of the particles at time t are well approximated by their 
positions at t = O. The generalized Einstein re lation2o 

gives 

f ds1 (vSI(Sl)VBI(t)=DI . (2.9) 

In considering the contribution of J "'n to A" three pos­
sibilities arise: 

(i) Some terms of d'Jmn/dt' contain factors of 
t"k· f~v(s )ds without compensating factors of v(t). These 
terms vanish as t- O. 

(ii) In other terms, the time derivatives cancel the 
integrals, leading to expressions like [t"k • VII (!)]'" 
x (-k' DI .k)n/2. 

(iii) For q > 1, there arise terms proportional to 
dVI(t)/dt which do not vanish in the limit t-O. 

ds k' VBI (s)k 'VBI (t) - 2 Iat 
ds k 'VBI (s)k • VII (t) J). 

(2.10) 

friction factor J. This term is dealt with elsewhere~5; 
in the following we neglect all terms of this form. One 
notes that the lack of correlation between VBI(t) and 
VSI(O) does not preclude equal-time correlations between 
the Brownian velocities of different particles, corre­
sponding to hydrodynamic interactions between the par­
ticles. The extent of these correlations is described by 
a two-particle relation analogous to Eq. (2.9). Equation 
(2.10) now becomes 

~ ¥~ 1t (a.,,(O)a,,(t)) 

~Blt«l 

= ~ (a.Ilo t elk-riO (t"k • VII - k 'D I • k)) 
1.1 

(2.11) 
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Several curiosities in the transition from Eq. (2.10) 
to Eq. (2.11) merit comment. First, at t=O the canon­
ical distribution function indicates that particle veloci­
ties have a spherically symmetric probability density. 
Since vIi(O) [Eq. (2.6)] is nonvanishing, VBI must also 
have a nonzero vector value at t=O, even though 
(k 'VBj(TlI» =0. This discrepancy was resolved by 
Batchelor, 11 who observed that for t < TB Brownian par­
ticles remember the direction to their location at t = O. 
If direct forces are present, the N-particle spatial dis­
tribution function is dependent on particle position, 
particles being more likely to be found in energetically 
favorable locations. At t = 0, VBI is correlated with the 
density of macroparticles, not because the fluid currents 
which drive VBI have an average vector value, but be­
cause currents out of particle-rich regions move more 
particles than currents out of particle-poor regions. 
The particles' Brownian motions cause them to drift 
randomly away from their preferred positions, while 
the direct forces tend to drive them systematically back 
into those favored locations. The statement that VBI 
and VIi cancel on the average at t=O is equivalent to the 
better-known statement that the equilibrium N-particle 
spatial distribution functions are steady -state solutions 
to the N-particle Smoluchowski (diffusion) equation. 

Equation (2.11) may also be written 

Ai = ~ la.1<fj f d{N} i; eit'rl(O) {ik . [2:(tl -Til)' FII 
'\ 41<fj 1.1 I 

where 

exp(-M)= f d{N}exp(-~W) (2.13) 

is a normalizing factor, and W is the total potential 
energy of the solute. kl<fjd{N} denotes integration over 
the hypersurface of configuration space for which 

t; exp[ik'rl(O)]=ak(O), (2.14) 

and ()4 indicates an average over possible values of 
all(O), ("! d{N}a,,) being taken .over the isothermal­
isobaric ensemble. 

III. CONTRIBUTION OF DIRECT AND 
HYDRODYNAMIC FORCES TO dS(k,t)1 dt 

The constrained integral of Eq. (2.12) is here eval­
uated by replacing it with an unconstrained integral 

A _I ( f- fd{N} '8(W'A) ~ al!ge'lt'rjO n'I'IO 
1 - N a'kO L.J e exp L.J (I 12) e 

1=1 Fl a" 

whose integrand imposes the constraint. This is done 
by means of the approximation 

(3.1) 

where (Ial<fj) denotes the contrained average over all 
states with a fixed value of al<fj and 

(la,,12)=2: fd{N}e'8(W'A)exp[ik' (rl-rJ)]. (3.2) 
I, j 

The substitution (3.1) is not altogether standard. In 
justification, we note that by definition 

i d{N}e'8(W'A)(t elt .rl)n = a~ • (3.3) 
al<fj 1=1 

The substitution (3.1) satisfies requirement (3.3) as 
long as the volume of the system is much greater than 
the volume within which particle positions are corre,­
lated. Furthermore, for q '" nk, n an integer, the ap­
prOximation indicates 

N 

[I<fj d{N}e'8(W'A)(~ elq'l'l) =0 , (3.4a) 

N 

1. d{N}e'8(W'A) 2: exp[iq .(rl _rj)]=(laqI2) , 
al<fj I, J= 1 

(3.1b) 
as required by the independence of fluctuations in air 
and aq. The prescription (3.1) does not, however, 
correctly mirror effects due to mode-mode coupling 
terms, since it erroneously predicts 

I d{N}elq·TI·(,,+q)·Tj =0 . 
<>I<fj 

(3.5) 

Our previous results differed from Eq. (3.1) in two 
ways: (0 The product form of Ref. 21, i.e., 
n[l +al<fjexp(-ik 'rl)] has been replaced by an exponen­
tial. (ii) The new normalizing factor (Iak 12)"1 appears 
in each term. The use of (0 gives Eq. (3.3) for n >1; 
the product form previously used by one of US

21 does not 
supply the self-terms (e.g., exp[-k'(r1 +r1)]) needed 
for n> 1. The normalizing factor ( la" 12)"1 has a physical 
interpretation: a,,(O) may be increased either by chang­
ing the relative positions of distant particles or by dis­
torting the most likely positions of the particles within 
clusters. The smaller ( la" 12) is, the harder it is to 
distort a cluster; as (Ia k l2 ) becomes smaller, a given 
value of ak(O) corresponds more and more to the reloca­
tion of noninteracting particles: 

x{t'k.[2:(tl-Tu)·FII+ I: Tlm'Fml]-k'DI'k}\ . 
I <I,m)"1 /.I<fj 

(3.6) 

Batchelorll has shown that the general form for DI of a pair of spheres, with radius a, is 

DI =KB Ttl' (3.7a) 

'I = (67T17tZ)"1 [1_ 1: (~y rr+o(r'6
)] , (3.7b) 
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r being the unit vector along the line of centers. The trailing terms in ~ represent modifications of the fluid flow 
around a sphere due to the other sphere; the mobilities parallel and perpendicular to r are not equal. BatChelor 
summarizes calculations for these terms for stick boundary conditions, i~cluding series expansions in inverse 
powers of the center-to-center separation r of the spheres. Felderhof has extended these series to higher powers 
of l/r and generalized them to arbitrary stick-slip boundary conditions. 12 To order (a/r)4 the pair approximation 
for 'i in an infinite suspension of spheres is 

'i =-6
1 [1- L 14

5 (~)4 riJrij] . (3.8) 
1T T/tl Jf<i ri J 

At low concentrations at which only pairs of spheres interact, the final term of Eq. (2.12) is 

(~ (a_1IO ~ eik'''i (0)( -k • Dil • k) 14/) )4¥! = -DokZ{S(k) -47TCo J ~ drg(r) [- 2 + (kd] s~~i) +2krcos(kr) 1: (-;J} , (3.9) 

where Do=KB T/61TT/tl, g(r) is the radial distribution function, and Co the number concentration. 

The first part of Eq. (3.6) may also be reduced. Assuming that a given particle only interacts with one of its 
neighbors at a time, and that W is a sum of pair potentials Wij, 

N 

Ii;;; ~ (la_¥! L eik'''i(O)[ik' VIi (0)] I ») 
N '\ i=l .¥! 

N 

= - ~ L Jd{N} 13- 1 V • [eik'rijik . (, - Tij)](e-a(W-A) - C) , (3.10) 
N i,J=l 

where C is a constant of integration, to be chosen for convenience. For an incompressible solution, one is tempted 
to write1 Vi' Tij =0. However, unless the solute macroparticles displace no solvent, as assumed in Ref. 1, the 
volume C1lrrent of solute J I into a closed volume must cancel the volume current of solvent J. flowing into the same 
volume. As shown in the Appendix, this leads to 

N 

L 1 dri[k • b:J ' kelk'riJ -cf>JH(k)] =0 , 
1=1 V 

(3.11) 

where b:J is the true hydrodynamic interaction tensor for a closed volume, cf> J is the volume fraction of particle j 
in the system, and H(k) is the spatial Fourier transform of the particle shape. 

The usual Oseen tensor form TOS for b: J may be corrected for the nonzero extent of each particle, but neglects 
solvent backflow by assuming that the solution has no boundaries. For intermediate particle separations riJ' the 
numerical difference between TOs and btJ is very small; however, integrals over TOs or b:J such as those in Eq. 
(3.11) are very different. 17 Solvent backflow corresponds microscopically to the reference frame corrections of 
Kirkwood et al. 24 For small (r/a), b:J is approximated by its open volume form 

[ 
3a A A ) 1 (a )3 A A ] 

blJ = 4ri/l+riJrlJ +"2 riJ (1-3riJ r iJ) , (3.12) 

where TiJ = (61TT/tlt1 biJ • Integration by parts of Eq. (3.10), use of the approximate form (3.12), restriction to terms 
of lowest order in concentration, and addition of 0 [in the form of Eq. (3.11)] show 

Ii =Dok2 [SD(k) + cf>H(k) -41TCo f ~ dr(4krcos(kr) (k~~t)2 -4] sin(kr) 

x ~(!!:.)4 () [ ( )_11{3a [(kd-1]sin(kr)+krcos(kr) fE:..)3 [(kd-3]sin(kr)+3krCOS(kr)})] 
4 r g r + g r 2r (kr )3 - rr (kr)3 , (3.13) 

where 

SD(k) = J dre 1t
'
r [g(r)_1]. (3.14) 

From Eqs. (3.9) and (3.13), 

Ai = -Dok2 (1-cf>H(k)+41TCO 1· dr~ {g(r) ;5 (;y (X co~ -sinX) 

+[g(r) -1][( ~~) ~ -l)S?,+XCOSX _ (~r (X2 -3)Si~+3XCOSX ] }) (3.15) 

where X=kr. In the limit k- 0, 

Ai = -Do~ (1- cf> + 41TCo L" dr~ {-25 (~y g(r) + ~ [g(r) -1] } ) , (3.16) 

and if detailed hydrodynamiC interactions between the partides are ignored, 
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IV. SECOND TIME CUMULANT OF S(k.tl 

We obtain the second time cumulant of the spectrum 

K2 = lim ~ {In[S(k, t)]} 
t..o I1r 

(3.17) 

(4.1) 

from tfS(k, t)/df. The arguments which led to Eq. (2.11) give 

1. d
2 

< () () . 1 ( ~ I&:' { dVlI(t) [ ()12 it [ dV(t)] N l!~ ~ a_k 0 ak t = lt1]l N a_/IO f:1 e riO ik' --;u-- - k' VII t J - 0 ds k' vl(s)k' -;u-
TBlt «1 

-i f ds[k' v(s)][k 'V(t)]2 + ~ s: it dS 1 ds 2[k' VI (sl)k' VI (s2)k 'vl(t)k 'VI(t)] } ), (4.2) 

where only nonvanishing terms, not dependent on the interactive contribution to the friction, have been retained. 

The second, fourth, and fifth terms of Eq. (4.2) are products of terms encountered in Sec. III. Under the inter­
acting pair apprOximation, these terms are 

Ii = ~ (t jd{N}elt.rIJ{ - [k' ('I - TIJ) • FIJ)2 -Uk' ('I - TIJ ) • FIJ(k . DI • k)+ (k' DI • k)2}e-$(W-Al) , (4.3) 
I, J=1 

the limit t- 0 being taken. Evaluation of these terms in 
the presence of detailed hydrodynamic interactions is 
tedious. In the absence of such forces, comparison 
with Sec. III shows 

Ii = (Dok2 )2 {SD(k) - k-2 Co f drg(r) el1•r e-$W(k • r)2 if:;li 
-2[SD(k)+¢H(k)]+S(k) } , (4.4) 

which is comparable term by term with Eq. (4.3). 

The first and third terms of Eq. (4.2) require slightl) 
more careful treatment. Since TB« t, averages over 
dVB/dt vanish. The same is not true of the interactive 
velocity; with our usual apprOximations 

d;t =(VI·VI+VJ'VJ)'(~) (4.5) 

so the first and third terms of Eq. (4.2) become 

As previously discussed by Ackerson7 and Phillies,26 the 
second cumulant of S(k, t) gives extra information about 
the details of the intermacromolecular interactions. 

V. DISCUSSION 

The total effect of direct and hydrodynamiC forces on 
the initial decay of S(k, t) is given for k - 0 by Eqs. 
(2.10) and (3.16): 

Kl = Dok
2 (1 - ¢ + 41TCo r y2 dr{~[g(r) -1] - ~(~rg(r)}) 

-2lim(a_ lIl"t elt.rloljt dSk'VBI(S)k'VI1(t). (5.1) 
t·o 1.1 0 

The final term is discussed elsewhere. 25 

I 
12 = (Dok

2
)2 Co f drg(r)e lt ' r 

(4.6) 

Combining Ii and 12, 

~i~ d;t(~' t) = (Do k2
)2 {I -2¢H(k) 

+co f drg(r)elt'rk' ;(3F(r). V[{3F(r)]k-3 
} • (4.7) 

From Sec. III, the first time cumulant of S(k, t) is 

K =_ r dlnS(k,t) = Dok
2
[1-pH(k)] (4.8) 

+ 1 - F1J dt + S(k) 

Neglecting terms in the square of the concentration, so 
that [S(k))2-1=2SD(k)and ¢SD(k)~O, the second time 
cumulant is A 2 /S(k) - [K1 ]2 or 

(4.9) 

The term - ¢ is a reference frame correction, re­
flecting the difference between diffusion relative to the 
solvent and diffusion relative to the fixed volume of the 
sample. From Eq. (3.15) and the Appendix, the refer­
ence frame correction depends on H(k), whose presence 
has a simple physical interpretation. S(k, t) decays be­
cause scatterers move across the planes perpendicular 
to k; as the scatterers move, they displace solvent, 
which flows backwards across the same planes, dragging 
other scatterers with it. If the scatterers are pOintlike, 
the solvent backflow appears uniform to them. However, 
for a given fluctuation alt(O), the current of scatterers 
has on the average a spatial dependence like exp(ik' r), 
i. e., the direction of the solvenfbackflow reverses sign 
every half-wavelength along k. If a scatterer is of finite 
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extent, different parts of it will experience different 
solvent backflow velocities. A rigid particle responds 
to the average backflow velocity, the average being giv­
en by H(k). The presence of the reference frame cor­
rection thus depends on the size ro of the particle. For 
pointlike particles (kro« 0, as have usually been exam­
ined in the past, H(k) == 1. However, if one were to study 
the diffusion of a concentrated (cp > O. 01) suspension of 
large (~500 A) particles, the reference frame correc­
tion to Dm might deviate substantially from its long­
wavelength (k- 0) form. 

The decay of concentration fluctuations is known to be 
approximately exponential. From its initial slope, the 
decay constant of the exponential must be approximately 

r Do k;~!)- p) + (hydrodynamic corrections). (5.2) 

Pusey19 argues that in the absence of hydrodynamic 
forces r is determined solely by single-particle Brown­
ian motion, i. e., that in the absence of hydrodynamic 
forces there exists a time scale between t» 'T and the 
earliest time at which VII appreciably affects the decay 
of a,,(tL Our conclusion here is that this time scale 
does not exist, in that VII has a major effect on a .. (t) as 
soom as t» 'TB • The argument of Pusey is based on the 
definition of the diffusion coefficient 

2D== J dt(v,(t)v,(t+T) (5.3) 

and Eq. (2.9) for the velocity. In combining Eqs. (5.3) 
and (2.9), Ref. 19 neglects cross terms between VB' 
and VII' Since (VB,)2 on the average is much larger than 

Noting that u(r) = Wl/r) is only a function of I r I, 
(k' V)u=k·r(au/&r). The integral in Eq. (5.5) is very 
similar, not to Eq. (4.9), but to Eq. (4.4), suggesting 
that the computation in Ref. 6, like that leading to Eq. 
(4.4), neglects terms in &vII/at. 

APPENDIX: HYDRODYNAMIC INTERACTION 
TENSOR FOR PARTICLES IN AN ENCLOSED 
FINITE VOLUME 

We here justify our assertion that on the average 

(AI) 

where V is the container volume, k denotes the unit 
vector of k, cP i is the volume fraction relative to the 
container of particle j (which is taken to drive the flow), 
and H(k) is the spatial Fourier transform of the hydro­
dynamic excluded volume of particle j. 

The physical basis of Eq. (Al) is the assumption that, 
for a finite volume of an incompressible fluid, the total 
volume flow (of solute plus solvent) across any plane 
must vanish. The assumption for closed containers 
may be stated mathematically as 

I 

(VD,)2, Ref. 19 concludes that (!vB,(t)vBI(t+'T)d'T) is 
much larger than (fVll(t)vlj(t+1')dT), so that Eq. (5.3) 
is dominated by the [VBj(t)]2 term. This conclusion does 
not appear to take into account the consideration that the 
correlation time 'TB of VB' is much less than that of VII' 
The integral in Eq. (5.3) is approximately a product of 
[v, (t)]2 and a correlation time 'TB or integration time t 
so the fact that (VSl)2» (VII )2 does not guarantee that 
(Vll,)2 TB» (VII )2t. Equations (3.9) and (3.13) shOw that 
the integrals over v 11 and v 1 actually contribute to the 
initial decay of S(k, t) to a Similar extent. 

In a previous paper, one of us20 suggested that light 
scattering spectroscopy actually measures the single­
particle diffusion rather than pair diffusion, since in the 
correlation function 

1 N 
G,(r,t)== N L:(Il(r+[r/O)-r,(o)]-[r,(t)-r j (o)]» (5.4) 

i=l 

the time dependent term is r, (t) - r, (0). The pOSition 
of each particle at time t is associated only with its 
own position at the previous time O. However, the 
right hand side of Eq. (5.4) also depends on ri(O), so 
G,(r,t) includes any correlations between the displace­
ment of particle i during (0, t) and the positions of other 
particles at t=O. In Sec. III, this correlation is shown 
to be significant; the presence of these correlations 
means that G,(r, t) is sensitive to mutual diffusion rather 
than to solute self-diffusion. 

The second cumulant of S(k, t) was previously'obtained 
by Ackerson6 as 

(5.5) 

where S is a plane across the container with normal 5, 
Ci(r,) is the cross section of particle j in S, and the sum 
on the rhs of Eq. (A3) is restricted to particles lying 
partially within S. A mOving particle j of ,VOlume VJ and 
location r i excites at the point r, in the fluid a flow VI: 

(A3) 

where Vi is the velocity of particle j and b: j is a function 
of the positions of all the particles. 

For it II a, exp(ik' r) is a constant within 8" so 

i dr,k'b~J'vie;t'(l'rrj)=-elt'(r'''1'j)CJ(r,)k'vi' (A4) 
s/ 

Since particle j may be of finite extent, j E 8, does not 
imply that r J itse if lies in S,. The final step is to inte­
grate over all planes SI: 

f. drjk'b:J'ke'k'PIJ(k'Yi)=-VJH(k)(k'YJ) ' (A5) 
v 

where rlJ=rj -rJ' On the lhs (neglecting points near 
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the walls), the only tensors available to form bfJ are I 
and rr, so by symmetry only the k component of v J con­
tributes to the integral. On the rhs, since CJ is im­
plicitly only a function of r lJ , we define 

1 drlelt'rIJCirlj)=VJH(k) , (A6) 
y 

where H(O):; 1. Defining cP J = V/V, since the rhs of 
Eq. (A5) is independent of rl and Eq. (A5) is true for 
arbitrary (k' VJ): 

1 drl[k 'b:J ' keltorlJ + cP JH(k)) =0 , 
y 

where rl is now an arbitrary constant vector. 
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