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A theorem for the boundedness and asymptotic stability of a point reactor with an arbitrary feedback 
is stated and proved. The criteria obtained are shown to be essentially the same as those given by 
Akcasu and Dolfes. The theorem is applied to a reactor with an arbitrary linear feedback and to a xenon­
controlled reactor with a flux reactivity coefficient whose feedback mechanism involves quadratic non­
linearity. It is also compared to a criterion obtained by Corduneanu in the case when delayed neutrons 
are ignored and the feedback mechanism is linear. 

I. INTRODUCTION 

Point kinetic equations for a nuclear reactor with 
an arbitrary feedback can be written as 

6 

Z = (1 + z)bKf[z, t] - 2 ab - Zi), (1) 
i=X 

Z; = hb - Zi), i = 1,2, ... , 6, t ~ 0, (2) 

where t denotes time and the dot indicates the first 
derivative of the dependent variables z(t) and Zi(t) 
with respect to t. The functions z(t) and z;(t) represent 
the incremental reactor power and delayed neutron 
precursor densities, respectively. X The parameters ai 
and hi are positive numbers, with the ai satisfying the 
relation 

(3) 

The symbol bKf[z, t] denotes a functional of the 
function z(t) involving values of the latter in the 
interval (- 00, t). We shall always assume that 
bKf[z, t] can be represented as 

bK,[z, t] 

= foo duG1(t - u)z(u) 

+ foodufoodVG2(t - u, t - v)z(u)z(v) + "', (4) 

where Gx(u), G2(u, v), etc., are linear, quadratic, etc., 
feedback kernels. These kernels are defined only for 
positive arguments, but it turns out to be convenient 

1 The usual point reactor kinetic equations! can be reduced to the 
form of Eqs. (I) and (2) by choosing z(t) = [P(t) - Pol/Po, 
z.(t) = [C.(t) - C.ol/C.o, and by letting ->- {Jt/l, a. = (Jd{J, and 
hi = IAi/P, Po and Cto denote equilibrium values of reactor power 
and delayed neutron precursor densities, respectively, and I, A. i , Pi' 
P have their conventional meanings in the field of reactor engineering. 
Po and C iO are determined by Ko + K,(Po) = 0 and C,o =a,Po/A" 
where Ko and K,(Po) are external and equilibrium feedback reactivi­
ties .. The incremental feedback reactivity functional oK,[z, tl 
appearing in Eq. (I) is then defined as oK,[z, tl == K,[P, II - K,(Po), 
where K,[P, tJ is the total feedback reactivity functional. We will 
assume that the algebraic equation relating Ko and K,(Po) has a 
unique solution. We also note that (I + z) and (I + Zi) are non­
negative, since Po and C,o can never be negative. 

S A. F. Henry. Nuc\. Sci. Eng. 3, 52 (1958). 

to define them to be identically zero for negative 
arguments. 

Physically, bKf[z, t] denotes the feedback reactivity 
at t due to the power generation in the reactor prior 
to t. From the physical nature of the feedback 
mechanism we require bK,[z, t] to be a bounded 
function of time whenever z(t) is bounded (stability 
of the feedback). Mathematically this condition is 
satisfied if we assume that the kernels G n(ux, U2, ••• , 

un) are absolute integrable, i.e., 

Yn = 1'1) dux" .100 

dUn IGn(Ul, U2"", un)l, (5) 

and that the power series 2:-1 Y nMn is convergent 
for all finite values of M where M is the bound of z(t). 

Equations (1) and (2) describe the temporal 
behavior of z(t), Zi(t) only for positive t. Since the 
feedback mechanism depends on the values of z(t) 
in the interval (- 00,0) as well as in (0, t), a unique 
solution of this set of equations requires a specifica­
tion not only of the initial value z(O) and Zi(O) but 
also of the values of z(t) prior to t = O. We shall refer 
to z(t) for t ::;; 0 as an initial curve. It is clear from the 
form of Eqs. (1) and (2) and the definition of bK,[z, t] 
that z(t) = Zi(t) == 0, t > 0, is a solution of Eqs. (1) 
and (2) corresponding to the initial curve z(t) == 0 
for t::;; O. We shall refer to this solution as the 
equilibrium state.3 A nonzero initial curve, which 
is the response of the reactor to external reactivity 
changes and external sources for t::;; 0, can be 
regarded as a perturbation on this equilibrium state. 

The question of stability involves the behavior of 
z(t) and z;(t) for t > 0, and in particular when 
t -+ 00. Since these functions depend on the nature 
of the initial curves as well as the initial values, one 

• z(t) = z,(t) == -I for all t also represents an equilibrium state. 
Physically, this corresponds to a reactor in which there are no 
neutrons and delayed neutron precursors. In the course of a deriva­
tion we shall exclude this eqUilibrium state from discussion because 
it will be shown that, when conditions for boundedness as stated 
in the theorem in the next section are satisfied, z(t) and z,(t) can 
never approach -lIef. Eqs. (l4a) and (l4b)1 once the reactor is 
perturbed. 
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must first specify a certain class of initial curves in 
order to state conditions for stability. This class must 
be sufficiently broad to include all the possible 
perturbations that may arise intentionally or acci­
dentally during the operation of the reactor. On 
physical grounds we choose this class of initial curves, 
henceforth called physically admissible initial curves, 
to satisfy the following properties: 

(i) z(t) == 0 for t ~ -to, to > 0; 
(ii) z(t) > -1, -/0 ~ I ~ 0; 

(iii) z(/) is piecewise continuous and bounded, and 
its first derivative exists and is bounded at all times, 
from b~th left- and right-hand side, in the interval 
(-/0 ,0). 

Condition (i) implies that perturbations are confined 
to a finite time interval. Condition (ii) follows from 
the positivity of reactor power during reactor opera­
tion. The boundedness and piecewise continuity of z(t) 
and the boundedness of its first derivative are indicated 
by the fact that an initial curve is the response of a 
reactor to an external disturbance either in the 
reactivity or in the source for 1 ~ O. Jump discon­
tinuities are permitted to allow for the presence of a 
possible pulse source in the time interval (- 10 , O). 

We shall not reproduce here the various precise 
definitions of stability.'1 We shall be mainly concerned 
with asymptotic stability in the large which we define, 
for any physically admissible initial curve and for 
finite z(O) and Zi(O), as 

lim z(t) = o. (6) 
t-+ 00 

A criterion for the asymptotic stability of the 
reactors described by Eqs. (I) and (2) was derived 
by Akcasu and Dalfes5 with an heuristic approach. 
The derivation was largely based on intuitive reasoning 
and the results were justified on the basis of energy 
considerations. In the present work a rigorous 
analysis is carried out and the results are stated in 
the form of a theorem. It is found that in addition to 
the criterion in Ref. 5 certain additional restrictions 
have to be imposed on the feedback functional 
()K,[z, t] to guarantee asymptotic stability. These 
restrictions, however, turn out to be not very stringent 
and seem to be quite compatible with physically 
realizable reactor systems. This will be demonstrated 
for reactors with linear feedback and for a xenon­
controlled reactor with flux reactivity coefficient 

'N. N. Krasovskii, Stability of Motion (Stanford University 
Press, Stanford, California, 1963). 

• A. Z. Akcasu and A. Dalfes, Nucl. Sci. Eng. 8, 89 (1960). 

where the feedback functional is nonlinear.6 ,? In 
the course of the derivation of the stability criterion, 
it is also observed that the restrictions on ()Kf[z, t] 
are connected with conditions imposed on initial 
curves. The choice of an unrealistically broad class 
of initial curves for the sake of mathematical general­
ity will yield sufficient conditions for asymptotic 
stability which may turn out to be too restrictive to 
be of any practical interest for reactor applications. 
This necessitates the restriction of the initial perturba­
tions to physically admissible initial curves as defined 
above. 

II. STABILITY THEOREMS 

Theorem 1 (Boundedness): The response of a nuclear 
reactor, described by Eqs. (1) and (2), is always 
bounded for any physically admissible initial curve if: 

(i) z(O), zlO) are bounded and greater than -I; 
(ii) S:oo r5Kf [y, t']y(/') dt' ~ 0, I > 0, for all test 

functions {y(t)} which belong to the class of physically 
admissible initial curves for t ~ 0 and are arbitrary 
for t 2 0. 8 

Theorem 2 (Asymptolic Slability): The response z(/) 
is asymptotically stable in the large if, in addition to 
Theorem I, the feedback functional satisfies the 
following conditions: 

(i) r5K/[v, t] is uniformly continuous for sufficiently 
large t for all test functions {v(t)} which belong to 
the class of physically admissible initial curves for 
t ~ 0, and are continuous, bounded, and have 
bounded first derivatives for 1 2 O. 

(ii) lim 15Kf [w, I] = 0, as t ---+ 00, implies lim w(t) = 
0, as t ---+ 00, for all test functions {W(/)}9 which belong 
to the class of physically admissible initial curves for 
t ~ '0 and, for 120, are continuous, bounded, and 
have uniformly continuous first derivatives which 
vanish as 1---+ 00. 

III. THE PROOF OF BOUNDEDNESS 

We consider a functional of z(/) defined as 

6 a Jt 
V[z, t] = F(z) + i~ ~ F(Zi) - -00 r5K,[z, t']z(t') dt', 

t 2 0, (7) 

• J. Chernick, G. Lellouche, and W. Wollman, Nucl. Sci. Eng .. 
10, 120 (1960). 

7 A. Z. Akcasu and P. Akhtar, J. Nucl. Energy 21,341 (1967). 
8 It should be noted that there is no restriction on the bound of 

the test functions {y(t)} for t ~ 0, and they may diverge as t --+ 00. 

Clearly {y(t)} contains all possible solutions of Eqs. (J) and (2) as a 
subset. 

• It may be noted that the test functions {w(t)} form a subset of 
the functions {v(t)}, which in turn are a subset of test functions 
{y(t)}. 
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in which F(u), u = Z, ZI'···' Z6, is defined as 

i" x 
F(u) == u -In (1 + u) == -- dx, u>-1. 

o 1 + x 

Variations of F(u) with u are shown in Fig. 1. It is a 
positive definite function possessing the following 
properties: 

(i) F(u) is real and positive in (-1, (0) except for 
u = 0; 

(ii) F(O) = 0; 
(iii) F(u) is continuous in ( -1, 00). 

The first two terms of VIz, t] in Eq. (7) are thus non­
negative, since ai' hi are known to be positive con­
stants. The last term is also nonnegative if condition 
(ii) for boundedness is imposed for all test functions 
{yet)} and thus necessarily for any possible trajectory 
z(t) corresponding to a given physically admissible 
initial curve. Hence, 

VIz, t] ~ O. (8) 

The initial value V(O) is given by 

V(O) = F(zo) + it~: F(ziO) - J~}Kt[Z' t']z(t') dt'. 

(9) 

It will be seen that V(O) is finite since initial values 
Zo and ZiO are finite (condition (i» and the finiteness of 
the last term, 

f}K,[Z, t']z(t') dt', 

is guaranteed by the finiteness of the physically 
admissible initial curves and feedback stability. 
Moreover, by differentiating VIz, t] with respect to t 
and using Eqs. (1) and (2), we obtain the derivative 

F(u) 

/ 

/ 
v/ 

~'/ 
«.~ 
/ 

V(o) / 
_._-- -------------/---------

/ 
/ 

/ 
/ 

FIG. I. 

/ 
/ 

/ 

of VIz, t] along a trajectory as 

6 )2 
• [] '" Gi ( Z - Zi V Z, t = - k ' 

i=1(1 + z)(1 + Zi) 
t > 0, (10) 

which is continuous whenever .z(t) ¥= -1 and z;(t) ¥= 
-1 inasmuch as z(t) and Zi(t) are continuous in t by 
virtue of Eqs. (1) and (2). Furthermore, since (1 + z) 
and (1 + Zi) are nonnegative by definition,! 

VIz, t] ~O, t > 0; (11) 

the equality occurs when Z = Zi. 

It is thus concluded that VIz, t] is a nonnegative, 
monotonically decreasing function of time along a 
trajectory. In particular, we obtain 

VIz, t] ~ V(O) , (12) 

which indicates that VIz, t] is finite for all t ~ 0 if 
V(O) is finite. We observe that VIz, t] is a sum of three 
nonnegative terms (cf. Eq. 7). Therefore, each term 
in Eq. (7) is smaller than V(O) for all t ~ 0: 

F(z) ~ V(O) , 

F(zi) ~ V(O) (hdaJ, 

I foobKAZ, t']z(t') dt' I ~ YeO). 

(13a) 

(13b) 

(13c) 

The inequalities (13a) and (13b), with the help of 
Fig. 1, imply that 

-1 < -Zm ~ z(t) ~ ZM, (14a) 

-1 < -zm
i 
~ z;(t) ~ ZM

i
, (14b) 

where Zm, ZM, Zm., and Z}\.I. are positive numbers such , , 
that 

and 

The inequalities (14a) and (14b) establish the bounded­
ness of the reactor response to any physically admis­
sible initial curve. Furthermore, they also prove that 
both z(t) and Zi(t) are bounded away from -1 for 
t > 0, and hence the power can never approach the 
shutdown equilibrium state (cf. Ref. 3). 

The conditions of Theorem 1, apart from the 
boundedness of z(t) and z;(t), also lead to the following 
conclusions which will be useful in proving asymp­
totic stability: 

(i) i(t) is bounded for all t ~ 0; this follows from 
Eq. (1) and stability of the feedback; that is, 

li(t)1 ~ (1 + ZM)W + 2zM , (16) 

where Z M is assumed to represent the largest value of 
the upperbounds ZM, ZM,,···, zM. and Wis the 
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upper bound of bK,[z, t] corresponding to the given 
physically admissible initial curve. Hence z(t) is not 
only bounded but also uniformly continuous. 

(ii) Zi(t) is also uniformly continuous, since 

(17) 
(cf. Eq. (2)]. 

(iii) V(/) is continuous for all t ~ 0 because 
(1 + z) and (1 + Zi) are never zero by virtue of Eqs. 
(14a) and (14b) (cf. Eq. (10)]. Moreover, 

/ V(t)/ ~ 4z~J(1 - zm)2 (18a) 
and 

I V(t)1 S 4zM (1 + ZM) 

(1 - zm)3 

X((l +ZM)W+2ZM (1 +i~aihi))' (18b) 

where Zm is taken to be the least value of the lower 
bounds Zm, zml"" , zms' Hence Vet) is bounded 
and uniformly continuous for all t ~ O. 

IV. THE PROOF OF ASYMPTOTIC STABILITY 

In proving the theorem for asymptotic stability we 
make use of a lemma by Barbalat10 which is repro­
duced here for convenience. 

Lemma: Let get) be a real function of a real 
variable t, defined for t > a > O. If 

(i) limg(t) = goo' as I ~ 00, (goo is finite), and 
(ii) get) is uniformly continuous for t > a, then 

lim g(t) = 0, as I ~ 00. 

We start with the observation that 

lim Vet) = Voo ~ 0 
t-+ 00 

(19) 

because V[z, t] is nonnegative and monotomically 
decreasing. Also, Vet) is uniformly continuous (cf. 
Eqs. I8a, 18b). The lemma is thus applicable for 
get) = Vet) and we have 

lim Vet) = 0 (20) 
t-+ 00 

along a trajectory. Combining Eqs. (10) and (20) we 
conclude that 

lim [z(t) - Zi(t)] = 0, i = 1,2, ... ,6, (21) 
t ... 00 

which, by virtue of Eq. (2), leads to 

lim ti(t) = O. 
t-+ 00 

(22) 

We next note that i(t) [cf. Eq. (1)] is uniformly 
continuous for large t since bK,[v, t] is uniformly 
continuous for all test functions {vet)} [cf. condition 

(i) of the Theorem 2] and thus necessarily for any 
trajectory z(t). It may be noted that limiting the 
requirement of uniform continuity of bK,[v, t] to only 
bounded and continuous test functions having 
bounded derivatives, instead of the set of test func­
tions {y, (t)} (which are quite arbitrary and un­
bounded), is made possible because we already have 
established the boundedness of z(t) and i(t). More­
over, ii(t) is uniformly continuous by virtue of Eq. 
(2) and the fact that z(t) and Zi(t) are uniformly 
continuous as shown above [cf. Eqs. (16), (17)]. 

The conditions of the lemma are thus satisfied for 
the function g == [z(t) - Zi(t)] with goo = 0 and 
hence limg = [i - ii] = 0, as t~ 00. 

The latter together with Eq. (22) leads to 

lim t(t) = 0, (23) 

which, in view of Eqs. (1) and (21), and the fact that 
z(t) cannot approach -1, leads to 

lim bKAz, t] = 0. (24) 
t ... 00 

Condition (ii) can now be applied since we have shown 
that z(t) is continuous, bounded, and has a uniformly 
continuous derivative which vanishes as t ~ 00 and 
thus belongs to the subset {wet)}. Hence 

lim z(t) = 0 
t-+ 00 

and the equilibrium state z(t) == 0 is asymptotically 
stable. 

V. APPLICATIONS 

In this section we apply the stability theorem to 
investigate the asymptotic stability of a reactor with 
an arbitrary linear feedback, and ofaxenon-con­
trolled reactor with a flux reactivity coefficient 
whose feedback mechanism involves quadratic non­
linearity.6,7,l1 

A. Linear Feedback 

The incremental feedback functional in this case 
reduces to 

bKf[Z, t] = fro G(t -. u)z(u) duo (25) 

The stability of the feedback mechanism requires the 
feedback kernel to be absolutely integrable,12 i.e., 

loo/G(U)/ du < 00. (26) 

101. Barbalat, Rev. Math. Pures App\. 4, 267 (1959). 
11 G. S. Lellouche, J. Nuc\. Energy 21,519 (1967). 
.. The condition (26) is necessary and sufficient13 for the linear 

functional (JK,[z, tl in Eq. (25) to be bound for all t and for all 
bounded functions z(t) in (- CX), + CX). 

13 A. Papoulis, Probability, Random Variables, and Stochastic 
Processes (McGraw-Hili Book Co., New York, 1965). 
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It can be further proved6 that condition (ii) of Theorem implies that 
1, which in this case reduces to lim wet) = A (3Ib) 

ft ft. 
-00 dt' -00 dt"G(t' - t")y(t')y(t") ::;; 0, 

is satisfied for all test functions {yet)} if 

Re[G(iw)] ::;; ° 

(27) 

(28) 

holds7 for all w in (0, 00); G(iw) is the Laplace trans­
form of G(t) with iw as the Laplace variable. Hence 
the reactor response is bounded if the initial perturba­
tion is a physically admissible initial curve, z(O) and 
Zi(O) are bounded, and relations (26) and (28) hold. 

For asymptotic stability we first show the uniform 
continuity of 6Kf [v, t] for large t and for all the 
functions {vet)} which are continuous, bounded, and 
have bounded first derivatives for t ;;;:: O. 

For t ::;; 0, vet) is a physically admissible initial curve 
and thus has bounded left and right derivatives, 
though it might contain jump discontinuities. Let 
these discontinuities occur at - TI , - T2 , - Ta, •.• , 
- TN with bl , .•. , b N as respective jumps. Then, by 
differentiating M'f[V, t] with respect to t, it can be 
shown that 

16KAv, t]1 ::;; M Loo'G(t)' dt + i~llbiIIG(t + T;)I, 

(29) 

where M is the maximum of vet) for t in the entire 
domain (- to, + 00). The first term in the right-hand 
side of relation (29) is bounded by virtue of relation 
(26). The second term vanishes as t -- 00 as required 
by relation (26). Hence, 16K>[v, t]1 is bounded and 
6VAv, t] is uniformly continuous for sufficiently large 
times. We note that the continuity of G(t) is not 
assumed in these discussions; it may have jump dis­
continuities and it may even contain delta functions 
in finite time intervals. 

Next we have to find conditions that will ensure that 

t .... 00 

if: 
(i) G(t) is absolute integrable in (- 00, + (0) and 

its Fourier transform G(iw) does not vanish anywhere; 
(ii) wet) is bounded and has a derivative which 

remains greater than a negative constant. 

The theorem is applicable since Eq. (30a) can be 
written in the form of Eq. (31a) [G(u) = 0 for u ~ 0] 
and any test function of the subset {wet)} is bounded 
and has bounded first derivatives. We thus obtain 
the following criterion from Eqs. (30) and (31). If, in 
addition to relations (26) and (28), z(O) and Zj(O) are 
bounded and we can demonstrate that 

G(iw) ;I: 0, - 00 < w < + 00, (32) 

then a reactor with linear feedback is asymptotically 
stable for all physically admissible initial curves. It 
is clear that Eqs. (28) and (32) will always be satisfied 
if we require that Re[G(iw)] and Im[G(iw)] do not 
vanish at the same frequency. We also note that if 
the equality sign in Eq. (28) is removed, then G(iw) 
cannot vanish at any frequency and Eq. (32) is always 
satisfied. Hence the condition 

Re[G(iw)] < 0 

'is sufficient for asymptotic stability. This is the well­
known criterion of Welton. 

It may be noted that Wiener's theorem does not 
make explicit use of the fact that in our case lim wet), 

,as t -- 00, approaches O. By exploiting this property, 
we can replace the condition (32) by a different 
condition which may be more easily applicable in 
certain specific cases of the feedback kernel G(t). 
We first observe that, since wet) is bounded, 

lim iooG(ll)W(t - u) = 0 
t ..... 00 0 

implies that 

(30a) I L: G(t - u)[w(u) - wet)] du I ::;; 2M i:TIG(U)1 du, 

(33) 
lim wet) = 0 
t ..... 00 

for all test functions {wet)} [cf. condition 
Theorem 2]. These conditions immediately 

(30b) where T is finite and M is the maximum of wet) in 

(ii) of (-to, T). The right side of relation (33) vanishes as 
foIl ow t -- 00 since G(u) is absolutely integrable. Hence, 

from Wiener's theorem (Pitts form),14 which states 
that 

tl~~ L+oooo G(t - u)w(u) du = A J~oooo G(t) dt (31a) 

U D. V. Widder, The Lap/ace Transform (Princeton University 
Press, Princeton, N.J., 1946). 

tl~~ L: G(t - u)[w(u) - w(t)] du = O. (34) 

Moreover, by expanding w(t) as wet) = w(u) + 
(I - u)w[u + (j(u)] , whereu :::;; (j(u) :::;; t,andchoosing 
T(e)' for a given e > 0, no matter how small, such 
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that w(u) < E for u > T(E), we have 

I f;G(t - u)[w(u) - wet)] du I 
~ E J:IG(t - u)llt - ul du 

~ E L""G(U)' u duo (35) 

Therefore, if we impose the condition that 

f"'G(U)' u du < 00, (36) 

then it is observed that 

lim stG(t - u)[w(u) - wet)] du = O. (37) 
t-+ "" T 

Relations (34) and (37) are sufficient to show that 

lim [1 00 

G(u)w(t - u) du - W(t)l"" G(u) duJ = O. 
t-+oo 0 0 

(38) 

It can thus be concluded that, if the condition (36) is 
assumed to hold, then 

LX) G(u)w(t - u) du 

behaves as wet) for large values of t and, therefore, 
by virtue of Eq. (30a) , 

lim wet) = O. 
t-+ 00 

The condition (36) may be observed to be very 
relaxed. It is, for example, always satisfied when 
G(t) can be expressed as a sum of exponential terms 
with negative exponents, such as in the case when the 
feedback can be described by a set of coupled linear 
differential equations. 

B. Nonlinear Feedback 

In order to illustrate the application of stability 
theorems to reactors with nonlinear feedback, we 
consider a xenon-controlled reactor with flux reac­
tivity coefficient for which bK,[z, t] is quadratic and 
has the form? 

ClK t[z, t] 

= foo duGlt - u)z(u) 

where 

and 

+ foo dUl f"" dU2G2( t - u 1, t - U2)Z( ul)Z( U2), 

(39a) 

Gl(t) = Alb(t) + K(t), 
K(t) = A2e-Axt + Aae-.<t + A4e-'<lt, 

(39b) 

(39c) 

(39d) 

AI, A2,'" , As are constants (defined in Ref. 7) 
depending upon various reactor parameters, and Ax, 
AI, A are decay constants of 135Xe, lasl, and one group 
delayed neutron precursor concentration, respectively. 
Gl(t) and G2(tl , t2) may be noted to be absolutely 
integrable. The reactor response z(t) to any initial 
perturbation belonging to the class of physically 
admissible initial curves and for finite z(O) and zlO) 
is bounded if 

f}KAY, t']y(t') dt' ~ 0 (40) 

[condition (ii) of Theorem IJ, for all continuous test 
functions belonging to the set {y, (t)}. The condition 
(40), which was derived on the basis of energy con­
siderations in Ref. 5 as a sufficient condition for 
asymptotic stability, was investigated for combined 
xenon and temperature feedback [cf. Eq. (39)] in 
Refs. 7 and 11, and was shown to lead to the following 
criterion: if the condition 

Re[KUw)] + Al - (As/Ax)Po ~ 0, (41) 

where K(iw) is the Fourier transform of K(t) [cf. 
Eq. (39c)] and Po is the equilibrium power level 
(cf. footnote 1), is satisfied for all real w, then the 
reactor is asymptotically stable. We now demonstrate 
that conditions(i) and (ii) of Theorem 2 are satisfied 
without any additional restrictions upon feedback 
functional. By substituting (39b) and (39d) in (39a) 
and replacing z(t) by the test function vet), we get 

ClKf[v, t] = Alv(t) 

+ f""dUV(U)(A 2e-.<.Ct-U) 

+ Aae- W - u ) A
4
e-'<lCt-U» 

+ Asfooduv2(u)e-.<.(t-U). (42) 

Also, by differentiating bKf[v, t] with respect to t, we 
obtain 

ClK,[v, t] = AIV(t) + V(t)[A2 + Aa + A4 + Asv(t)] 

- I~oo duv(u)(A2A.",e-.<·Ct-u) 

+ AaAe- W - u ) + A4Ale-'<lCt-U» 

- AsA", I~oo duv2(u)e-.<·(t-u), t > 0, 

~ JAIl Ml + 21A2 + Aa + A41 M2 

+ 21Asl Mi, t > 0, (43) 

where M l , M2 are upper bounds of vet) and vet). 
Hence, bK/[v, t] is bounded, and bK/[v, t] is uniformly 
continuous for t > O. 
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For condition (ii) of Theorem 2, we note that 

i"'dUW(t - u)Aje-au
, j = 2,3,4, IX = Ax' A, AI, 

and 

So 00 duo}( t - u )A5e-).xu 

behave as (Aj/oc)w(t) and (A5/Ax)w2(t)as t ---+ 00. This 
can be shown by following a similar procedure as that 
used in the relations (33)-(38). Hence, 

lim bKAw, t] = 0 
t-+ 00 

implies that 

hm wet) Al + - + - + - + - wet) = o. . ( A2 Aa A4 A5 ) 
t -+ '" Ax A Al Ax 

(44) 

From Eq. (44) it is obvious that as t ---+ 00, wet) either 
approaches 0 or 

-- 1+-+-+-' Ax (A A2 A~ A4) 
As Ax A Al 

(45) 

Substitution of the values of AI' ... , A5 and AI, A, Ax 
(cf. Ref. 7) in Eq. (45) gives a constant which is always 
less than -1. But this value is not permissible by 
definition (cf. Footnote 1). Hence, 

lim bKAw, t] = 0 
t-+ '" 

implies that 

lim wet) = o. 
t-+ '" 

VI. DISCUSSION 

In this analysis, sufficient criteria for the asymptotic 
stability of a reactor with arbitrary feedback have 
been obtained. The approach that is followed is 
similar to Liapunov's technique. However, since we 
are dealing with functiona1s instead of functions, 
just finding a positive definite Liapunov function with 
a negative first derivative is not enough, as was pointed 
out by Krasovskii. 4 We note that the most important 
condition on the feedback functional is condition (ii) 
of Theorem 1. This condition was obtained as a 
sufficient criterion for asymptotic stability in Ref. 5 
on the basis of considerations of energy dissipation 
in passive networks. The other conditions in Theorems 
1 and 2 are quite mild in nature and are expected to 
be satisfied in actual physical systems, as was demon­
strated in applications of Theorems 1 and 2 in the case 
of a xenon-controlled reactor with flux reactivity 
coefficient. 15 

15 Pasquantonia and Kappel have recently shown16 that the 
condition in Ref. 5 is sufficient for asymptotic stability using Hale's 
theorem." 

16 F. Di Pasquantonia and F. Kappel, Energia Nucl. (Milan) 15, 
761 (1968). 

17 J. K. Hale, J. Differential Equations 1,452 (1965). 

It is instructive to consider the conditions obtained 
in Theorems I and 2 when delayed neutrons are 
ignored, i.e., ai and hi are identically zero. From the 
proof of Theorem 2 we observe that we cannot assert 
asymptotic stability of the reactor when ai = hi == 0 
because condition (ii) of Theorem 1 guarantees only 
the boundedness of the solutions. It is also interesting 
to compare Theorem I with a criterion obtained by 
CorduneanulB which reads as follows: 

The integral equation 

aCt) = f(t) + fl(t - z)tp[a(z)] dz (46) 

has at least one solution aCt), defined for t ~ 0, 
which satisfies 

lim aCt) = 0, 
t-+ '" 

if let), let), and tp( a) are real functions satisfying the 
conditions: 

(i) l(t) is defined for t ~ 0 andj(t),J(t) E L1(0, (0); 
(ii) 

let) = jet) - p, (47) 

where p > 0, and jet) is defined for t ~ 0 and 

j(t), ~ j E LI(O, (0) n L 2(0, (0); 
dt 

(iii) tp( a) is continuous for all real a and satisfies 

atp(a) > ° (a ¥: 0); (48) 

(iv) There exists a q ~ 0 such that 

Re[(1 + iwq)L(iw)] ~ 0 (w ¥: 0), (49) 
where 

L(iw) =l"'j(t)e-iwt dt - -!- . 
o lW 

Equation (46) can be reduced to the point reactor 
kinetic equation without delayed neutrons and with 
a linear feedback functional [cf. Eq. (1)] 

i = (1 + z) foo G(t - u)z(u) du (50) 

by defining 

aCt) = In (1 + z), (51a) 

tp(a) = e" - 1, (51b) 

jet) = f~/UG(t - u)z(u), (SIc) 

dj 
dt = G(t), (51d) 

18 M. C. Corduneanu, C. R. Acad. Sci. (Paris) 256, 3564 (1963). 
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and 
/(0) = j(O) - P = O. 

Integrating Eq. (5Id) on (I, (0), we get 

f(t) = _I'"l G(u) duo 

The condition (49) thus reduces to19 

(5Ie) 

(52) 

R.[(I + iwq)G(iw)/iwl ~ O. (53) 

Hence, according to this theorem, a reactor with 
linear feedback is asymptotically stable in the absence 
of delayed neutrons if a q ~ 0 exists such that Eq. (53) 
holds and /(t) and j(t) satisfy conditions (i) and (ii) 
of Cordunean~'s criterion.The conditions of Theorem I, 
on the other hand, ensure only the boundedness of 
reactor response in the absence of delayed neutrons, 
although the feedback functional may be quite 
arbitrary and not specifically linear. If a q ~ 0 cannot 
be found such that Eq. (53) is satisfied, then Cordune-

18 The condition (ii) of Carduneanu's theorem requires p > 0, 
which by virtue of (5Ie) implies j(O) > o. The latter is the condition 
for the existence of a finite equilibrium power level. The condition 
(53) alone can not guarantee asymptotic stability. 

anu's theorem is noncommital. This happens to be 
the case for a circulating fuel reactor where G(iw) is 
given by20 

G(iw) = (rx'T}/w 20)(1 - iwO - cos wO + isin wO). 

(54) 

Here 0 is the fuel transit time in the core, rx is the 
temperature reactivitf coefficient, and 'T} is the heat 
capacity of the reactor. Application of the relation 
(53) reduces Eq. (54) to 

q(1 - cos x) + sin x/x ~ 1, x oF 0, (55) 

where we have used the fact that rx < 0 and substituted 
x for wO. Clearly Eq. (55) cannot be satisfied for all 
x> 0 for any choice of q. However, application of 
Theorem I [cf. Eq. (28)] reduces Eq. (54) to 

I - cos x ~ o. (56) 

Equation (56) ascertains the boundedness of circulating 
fuel reactor response to perturbations belonging to 
physically admissible class of initial curves. 

20 A. Z. Akcasu and L. M. Shotkin, Nucl. Sci. Eng. 28, 72 (1967). 
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A method of obtaining the highest weight polynomials of irreducible representations (,1.) of SPin 
occurring in a reduction of an irreducible representation (k) of U.n is described. The highest weight 
polynomials of equivalent representations (,1.) are labeled by means of parameters which occur naturally 
from the Littlewood's theorem to determine the branching rules for the representations of the unitary group 
with respect to the symplectic subgroup, when supplemented by modification rules. The results are given 
explicitly for U. :;) Sp. and U. :;) Sp., the former being a canonical chain and the latter a noncanonical 
chain. 

INTRODUCTION 

The aim of this paper is to obtain a basis for any 
given irreducible representation (IR) of the unitary 
group U2n in 2n dimensions such that, with respect to 
that basis, the symplectic subgroup SP2n is explicitly 
reduced into blocks. It is enough to find the highest 
weight vectors of the various IR's of SP2n occurring in 
the reduction of a given IR of U2n since all the other 
basis vectors in an irreducible representation space of 
SP2n can be obtained by applying polynomials of the 

lowering generators of SP2n on the highest weight 
vector because linearly independent highest weight 
vectors give rise to linearly independent spaces. (By the 
reduction of an IR of U2n with respect to SP2n, we 
mean the reduction with respect to SP2n' of the 
representation of SP2n, obtained by considering the 
restriction to SP2n of the given IR of U2n .) We use a 
theorem of Littlewood1 and the modification rules of 

1 D. E. Littlewood, Theory of Group Characters (Clarendon 
Press, Oxford, 1950), p. 295. 


