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The electronic partition function for the hydrogen atom is derived by integration 
over the recently-available Coulomb propagator. This provides a resolution to an 
old paradox in statistical mechanics: the apparent divergence of the hydrogen par- 
tition function. Electronic excitation does not contribute significantly to the 
standard-state partition function until temperatures of the order of 5000 K. There- 
after, the continuum, with its immense density of states, makes the dominant con- 
tribution. From the discrete and continuum contributions to the partition function, a 
modification of the Saha-Boltzmann equation for the ionization equilibrium in 
atomic hydrogen is derived. 0 1995 American Institute of Physics. 

I. INTRODUCTION 

A long-troublesome paradox in statistical thermodynamics concerns the electronic contribu- 
tion to the canonical-ensemble partition function for a hydrogen atom. This has been the subject of 
an extensive literature, including contributions by some giants of Twentieth Century science.’ By 
a standard formula of statistical mechanics, 

q=c g,,e-fiEn, p=llkT. 
n 

If one naively puts in the hydrogenic energies E,= -Z2EH12n2 (EH=me4/h2= 1 hartree) and 
degeneracies (apart from spin) gn=n2 the electronic partition function is given by 

m 

qckc= e 
- pZ2E, I2 2 n2ePZ2EH/2n2,co 

9 (2) 
n=l 

a divergent sum, even without taking account of continuum states. The factor e-pz2EH’2 defines 
the energy zero as the n = 1 electronic ground state. Equation (2) notwithstanding, qelec= 1 for all 
practical purposes under terrestrial conditions. 

The source of the above paradox is fairly obvious. The molecular partition function depends 
on the temperature and volume. But the wave functions of the hydrogen atom extend, in principle, 
to infinity, overrunning any finite volume. Equation (2) comes from integrating every 1 1c1,12 over 
all space, hence implying an infinite volume. Gibbs2 warned against this difficulty for cases “in 
which the system . . . can be distributed in unlimited space” singling out, in fact, the attractive 
inverse-square law of force. 

We shall adopt as a defining ansatz of the canonical ensemble, very likely in accord with 
Gibbs’ original intention, that each member of the ensemble be enclosed by a nominal boundary 
not necessarily representing a physical barrier. This is, in fact, more explicit in the case of the 
grand canonical ensemble, in which molecules can freely enter or leave through the defined 
boundary of the system. The partition function is accordingly defined as the volume integral over 
the diagonal elements of the quantum-mechanical density matrix, viz., 
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q(T,V)= VK(r,r,P)d3r. 
I 

(3) 

where 

K(rl4-2 $I= C  cCl,trA$3r2)e-PEn. 

n 

This has the same form as the quantum-mechanical propagator” with p in place of it/h. We should 
emphasize that the complete set of eigenfunctions $n(r) pertain to the system in infinite space, 
notwithstanding the volume cutoff in Eq. (4). 

The partition function for a free particle works out easily from Eq. (3). The propagator is 

Ko(rl ,r2,P)=(m/2rrph2)3’2e-m(r~-r2)2’2~p. 6) 

Setting r2=r1 and integrating over volume then gives the well-known translational partition func- 
tion for a perfect gas: 

(6) 

Note that the eigenvalue spectrum remains continuous since no physical boundary is imposed on 
the system. The conventional derivation, leading to the same result, sums over discrete particle- 
in-a box eigenstates, which do vanish at the boundary. The volume V in this case represents an 
actual container, which, as it becomes very large, leads to a quasicontinuum. 

For the hydrogen atom, taking explicit account of discrete and continuum contributions: 

K(r,r,P)= c I(CSl,l,m(r)12e822EH’2n2+ c ~~~~~,i,m(r)~2e-~6~2’2m dk. (7) 
n9l.m 1.m 

An analytic representation for the Coulomb propagator was derived by the author a couple of 
years ago,4 so that the partition function can now be evaluated, in principle, by integration over a 
volume V. 

Previous approaches to the Coulomb partition-function paradox’ have typically involved its 
modification or redefinition, for example, by assuming a finite atomic volume or by truncating the 
infinite sum. Alternatively, a shielded Coulomb potential or many-particle effects have been in- 
troduced. The so-called Planck-Larkin partition function for a hydrogenic plasma5 

q= 5 n2(e-PEn- 1 +PE,) 
n=l 

(8) 

is convergent, but evidently undercounts the number of contributing states.” In our approach to the 
resolution of this paradox, we preserve the original definition of the canonical partition function 
and explicitly evaluate the sum over states by making use of the Coulomb propagator. 

In the remainder of this paper we shall employ atomic units h = m  = lel = 1 and assume 
infinite nuclear mass. Lengths are expressed in bohrs, ao=h2/me2, and energies in hartrees, 
EH=me4/fi2=e2/ao. We also redefine /I as a dimensionless parameter, whereby 

/3=E,lkT=315774/T, (9) 

with T in Kelvins. 
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II. ONE-DIMENSIONAL HYDROGEN ATOM 

Before considering the hydrogen atom itself, a preliminary etude is instructive. A one- 
dimensional attractive deltafunction potential V(x) = -Z&x) is somewhat analogous to a Cou- 
lomb potential. It allows but one bound state r++,(~)=Z~‘~e-~l~l with energy .I?,= -Z2/2, remi- 
niscent of a hydrogenic 1 s orbital. All other solutions are continuum eigenstates with E> 0. We 
have derived the following propagator for the “deltahydrogen” atom:’ 

Z 
K(x,x’,P) = &(x,x’,/?) + 2 e-x2’2pe J erfc u, 

X’IXlflX’I, u-(x-zp)l&j?, 

where Kc is the one-dimensional free-particle propagator 

KO(X,X’,P)=(2rrp)-‘/2e-(X-X’)*/28, (11) 
and erfc, the complementary error function 

erfcu=l-erfu=- ; (12) 

The partition function is readily derived from Eq. (10) by integration over a length L to give 

q=(2?Ip)-“‘L+$[~812ize~c( - $Z)-1] 

apart from terms which vanish as L-+m. The bound-state contribution to the partition function, 
equal to a single term eP22’2, is partially cancelled by the continuum contribution. At the same 
time, the continuum splits out a free-particle function. As we shall see, an analogous thing happens 
in the hydrogen-atom partition function. 

Ill. COULOMB PARTITION FUNCTION 

To make this paper self-contained, we shall refer to parts of our derivation of the Coulomb 
propagator.4 See Ref. 4 for more complete details. 

The Green’s function for a quantum-mechanical system is defined by the following spectral 
representation in terms of the complete set of eigenstates: 

G+(r17r2,E)=C 
&(r~)GYr2> 

E-E +ie 
n n 

(14) 

the sum being understood to run over both discrete and continuum states, as appropriate. The 
superscript “+” refers to the retarded Green’s function and is obtained with an infinitessimal 
positive imaginary ie added to the parameter E. The nonrelativistic Coulomb Green’s function 
was first derived in closed form by Hostler’ in 1963. It can be expressed as follows:9 

1 
G+(r, ,r2 ,E)= G+(w,k) = - rr(~ 

where 
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g+(x,y,k)=(ik)-‘r(l--iv)M,,(-iky)W,,(-ikx) 06) 

the latter function representing a pseudo-one-dimensional Coulomb system. The coordinate vari- 
ables x and y are defined by 

X”r,+r2+r~2, y=r,+r2-rL2. 

The energy is related to the wave number k by 

E=h2k2/2m=k2/2. 

Also, 

(17) 

(18) 

v=Zlk. (19) 

M  and W  are Whittaker functions as defined by Buchholz.” For brevity, we write Mi, and Wi, in 
place of Mi,,,1/2 and WiV,112, respectively. 

The corresponding Coulomb propagator has a spectral representation such as Eq. (4) and is 
thus a Fourier transform of the Green’s function. Specifically,*’ 

. cc 
K=I 2~ 

I 
-_(G+-G-)e-iE’ dE. 

Assuming a structure for K analogous to (15), 

K(x,y,t) = - ~ k(w,f) 

we have 

(20) 

(21) 

(22) 

Carrying out the integration in the complex plane, the result is 

. m  

k(x,y,P)= 5 Z,M,(Z,X)M,(Z,y)ePz:‘2+ k 
I 

g+(X,y,k)e-k2p’2k dk, (23) _ 
m  

n=l 

with two parts corresponding to the discrete spectrum and the continuum. We have introduced the 
abbreviation Z,= Zln. 

To carry out the integration in Eq. (23), we represent g+(X,y,k) in a Mittag-Leffler or 
rational fractional expansion’2 as follows: 

g+(X,y,k)=-ig (k-iZ,)-‘M,(-ikX)M,(-iky) 
?I=1 

m  
=go+(-wk)+ 2 

Z,M,( - ikX)M,( - iky) 

n=l 
k(k-iZ,) . (24) 

J. Math. Phys., Vol. 36, No. 3, March 1995 



1212 S. M. Blinder: Hydrogen atom partition function 

This is also known as the Sturmian expansion of the Green’s function’3 since it contains hydro- 
genie functions with arguments independent of quantum number n, in contrast to Coulomb eigen- 
functions, which involve n in both index and argument. For Z=O, Eq. (24) reduces to Watson’s 
formula14 for the free-particle Green’s function 

m  

go’(x,y,k)=(ik)-‘Mo(-iky)Wo(-ikx)=(ik)-’x M,(-ikx)M,(-iky). (25) 
?l=l 

Substituting (24) in (23) results in 

m  
Kw,P)= c Z,M,(z,x)M,(z,y)ePz~‘2+ ko(x,y,P> 

n=l 

. m  

+&x I 
m  

n=l 
--m 

ZnMnt -;!;;A - zb) ,-gk2,2 dk. 

n 
(26) 

At this point, we transform to the three-dimensional propagator, using Eq. (21). Specifically, 
we need the diagonal elements of the propagator, with rl =r2=r, corresponding to x = y = 2r. This 
involves the following limit: 

x ;m2.( - & ($- $W.W~GY)) 
.- 

with the analog for the Sturmian functions having - ik in place of Z, . Thus, 

co 

K(r,r,P)= c Z~&n(2Z,r)epZ~‘2+Ko(r,r,p) 
n=l 

. m  
+$z I 

m  (-ik)2G,.&,(-2ikr) ,-pk2,2 dk 

II=’ -02 k-iZ, (28) 

The partition function is the integral over volume, which we can take as a sphere of radius R: 

K(r,r,/3)4w2 dr. (29) 

We identify the discrete and continuum contributions to the electronic partition function as 
follows: 

As defined here, the discrete part qD is based on the n = 1 ground state as the energy zero, while 
qc takes its energy zero at the onset of the continuum. 

If we were to evaluate the integral (29) over all space (with R = co), the normalization of the 
discrete functions would imply 
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FIG. 1. Solid curve: radial distribution function for n= 100. Dashed curve: universal reduced form for D,(r) as n-+m. 
See Ref. 15. 

I .a 3 

I 

m  
Z,,6%~(2Z,r)4m2 dr= D,(r)dr=n2, 

0 0 

consistent with the n2 orbital degeneracy of hydrogenic levels. We require instead 

m  
qD= c ,Pv~-~2v2 

I 
R D,( r)dr. 

n=l 0 
(32) 

The generalized radial distribution functions D,(r) have been shown*5 to approach a universal 
reduced form as n --+m, apart from small oscillations, as illustrated in Fig. 1 for the case n = 100. 
The integrals can be approximated by 

I R 
D,(r)drwn2eean2, CY= 1.23073lZR. (33) 

0 

Thus 

m  

wl+C 
n2,-an2ep(Z~-z2)/2 

n=2 

~l+e~pz2’2[(~+~)e~izmerfc(2&Y-~ $)+c.c.]. (34) 

Next we evaluate the continuum part qc . In analogy with (32), the normalization integral over 
Sturmian functions reads 

I mA5’,,( - 2ikr)4 w2 dr=n21( -ik)3. 
0 

(35) 
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Again, the integral over all space would give a divergent partition function. Even Watson’s for- 
mula (25) for the free-particle Green’s function would lead to 

m  

qo=; c nz=lxJ. 
n=l 

(36) 

To take account of finite volume, we introduce a form factor f( r) into the integrals (35) to provide 
an appropriate cutoff for rkR. To calibrate this cutoff in the Sturmian functions, we construct a 
convergent analog of the free-particle summation, as follows: 

1 m  &-Yk - 
I 2 0 

n2e- yn2 dn. 
n=l 

This implies 

Consistent with (37), the cut-off normalization integrals are given by 

I md&n( - 2ikr)f(r)4 n-r2 dr=n2e-y”2/(-ik)-3. 
0 

To complete the derivation, we do the integral in Eq. (28) using 

I 

m  e - pk*/2 

--m k(k- Z,) 
dk=~[ePz:‘2erfc( gZn)-l]. 

Thus, finally, 

1 m  
qc=qo- y C n emyn n=l 2 ‘[e8z~izerfc( $Zn)-11. 

(37) 

(38) 

(39) 

(40) 

(41) 

For sufficiently high temperatures, 

4P40 1+ 5 1 (2P) ,Jr ‘%A “CZ /3- 
7Ppz2 

4qr3 I . (42) 

In Fig. 2 we plot the discrete and continuum contributions to the standard-state electronic 
partition function q$& [cf. Eq. (30)] between lo3 and IO8 K. The standard state volume is given by 
the 

~=NAkTlpe=5.5375X1026T bohr?, (43) 

with pe= 1 bar. For TS4000 K, q= 1, as expected, since for hydrogen (E,-E,)Ik= 1.15 X lo5 
K. However, the continuum, once it becomes active, totally overwhelms the discrete contribution, 
a consequence of the immensely larger density of states in the continuum. Moreover, qc is very 
well approximated at high temperature by q. , since the sum in Eq. (4 1) goes to zero as p-0. 
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FIG. 2. Discrete (D) and continuum (C) contributions to the standard hydrogen partition function: q$ and qzeePEH”, 
respectively. The discrete contribution is well approximated here by q. 0 - 1 + (J;;/4a3/=)e-f9EH’=. 

IV. SAHA-BOLTZMANN EQUATION 

Throughout this paper we have assumed perfect-gas behavior of hydrogen atoms, protons, and 
electrons. Consistent with this picture, electronic wave functions of high quantum number should 
penetrate neighboring atoms with no ill effect. In the atmospheres of typical stars, the particle 
density is sufficiently low so that the perfect-gas equation of state is approximately valid-at least 
for neutral atoms. The actual physical situation for charged particles is more complicated, involv- 
ing Debye screening, radiation, hydrodynamic effects, and possibly deviations from thermody- 
namic equilibrium. 

It is not our purpose to treat astrophysical or other applications in any realistic detail. How- 
ever, to give our results a more concrete perspective, we refer to the equilibrium between bound 
and ionized hydrogen atoms, in a hypothetical perfect-gas stellar atmosphere: 

H+H++e. 

By the Saha-Boltzmann equation:16 

K =(PH+JP’)(P~~~‘) [qe(H'>/NA1[qe(e)/NA1 ,-BEH,2 
P (PdPT = [8+-WW 

e-4 

We can identify q(H) with qtrans(H)XqD and q(e) with qc. The hydrogen ion factor q(H+) is just 
a free-particle partition function, which effectively cancels the translational factor in q(H). The 
electron spin degeneracy (factor 2) in q(H) and q(e) also cancels. Assuming local thermodynamic 
equilibrium and perfect-gas behavior, the Sahi-Boltzmann equation for hydrogen thus reduces to 

(45) 

Putting in the component partition functions as computed in Fig. 2, we plot the equilibrium 
constant as a function of temperature in Fig. 3. We note that in the Sun, only about 10% of the 
electron density comes from hydrogen atoms, the remainder being contributed by ionization of 
heavier elements. Such details would have to be taken in account in astrophysical applications of 
the Saha-Boltzmann theory, which we leave to other workers. 
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FIG. 3. Saha-Boltzmann equilibrium constant for ionization of atomic hydrogen. 
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