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Influence of Rotational Levels on Slow-Neutron Scattering by Linear Gases* 
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Calculations of slow-neutron partial differential scattering cross sections are reported for molecules 
with linear symmetry in w.hich the quantum-mechanical nature of the rotational levels is taken explicitly 
into account. The method used is an extension of Griffing's results to nonspherical molecules. The calcula­
tions for HF, HCI, N2, and HCN gases are compared to calculations based on the Krieger-Nelikn approx­
imation, and the failure of the latter method to account correctly for rotational-energy transfers is pointed 
out. 

INTRODUCTION 

SLOW-neutron scattering by molecular gases has 
proved to be a useful tool in the study of molecular 

dynamics. In this context, theoretical calculations of 
the cross section for the scattering of neutrons by 
rotating molecules have become important. Exact cal­
culations are not yet tractable, even with present 
digital computers, except in special cases. The early 
Sachs-Teller mass tensor conceptl provided an ap­
proximation of the total cross section for rotating 
molecules. Krieger and Nelkin2 applied this same idea 
within the exact Zemach and Glauber formalism3 and 
made a further approximation involving an average 
over orientations of the molecules. Although it has 
been well understood that both these treatments are 
approximations which do not take into account the 
details of the rotational motion (Le., the discrete nature 
of the energy levels), their simplicity and their sur­
prising success, even in regions where agreement is 
not expected, have led many authors4 to utilize these 
approximations in order to compare with experiment. 

Improved measurements of the partial differentiai 
cross sections demonstrated the need for a better 
theory and a better understanding of when the Krieger­
N elkin (hereafter KN) and mass tensor theories can 
be applied. An essentially exact theory has become 
available which considers the quantum-mechanical 
nature of rotations.5 •6 Unfortunately, calculations based 
on this theory are practical only for a limited number 
of molecules, those with spherical symmetry and those 
with linear symmetry. Since the exact theory is re­
stricted to so few molecules, there has been a great 
deal of interest in recent years7- 9 in trying to under-
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stand and possibly improve the approximate theories 
as far as possible. 

Using the quantum-mechanical theory, numerical 
calculations of the partial differential cross section for 
spherically symmetric molecules were first reported by 
Griffing,lo His calculations were for methane and ex­
cellent agreement was found with experiment. Calcu­
lations of the cross section for the second class of 
molecules, those with linear symmetry, are reported 
here,u 

ANALYTICAL EXPRESSION FOR THE CROSS 
SECTION 

It is desired to obtain an expression for the partial 
differential scattering cross section for slow neutrons 
scattering from a gas of rigid linear molecules under­
going translation of the center of mass and free rota­
tion. The problem is as follows: A neutron of momentum 
k i undergoes a collision with a molecule which is in 
the initial state 'lri having a total molecular energy E i • 

In the Fermi pseudopotential approximation, the ex­
pression for the partial differential cross section for 
scattering with momentum gain ~ to the neutron and 
energy gain E while the molecule undergoes a transi­
tion from initial s tate 'lr i to final s tate 'lr, has been 
given by Zemach and Glauber' asl2 

a2fJ k, 1 f"" 
-- = - - dt exp ( - iEt) L (xv>' )T, 
aEan k. 211'N -co .. I 

(1) 

where k i and k, are the initial and final wave vectors 
of the neutron, and N is the number of molecules in 
the system. The intermediate scattering function is 
summed over all final states and the thermal average 
is taken over all initial states. Thus 

(x .. ' )T= LPia .. , ('lr i I exp(iHt) exp(i~·r.) I 'lr,) 
"i 

X ('lr, I exp(-iHt) exp( -i~·r.,) l'lri ), (2) 

with a .. , = A.A.,+Il .. ,C.C." and where H is the Hamil-

10 G. W. Griffing, Inelastic Scattering Neutrons Solids Liquids, 
Proc. Symp. Chalk River, Can. 1962, I, 435 (1963). 

11 Calculations for the special cases of hydrogen and deuterium 
have been reported by J. A. Young and J. U. Koppel, Phys. 
Rev. 135, A603 (1964). 

12 Note that t is in units of reciprocal energy so that n=1. 
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tonian of the system. A, is the bound coherent scatter­
ing length and C. is the bound incoherent length of 
the pth atom whose position is r., and Pi is the Boltz­
mann statistical weighting factor applied to the initial 
states. By removing the scattering length from the 
expectation value we have also ignored the effects of 
spin. 

The intermediate scattering function can include 
effects of neutron interaction with all possible degrees 
of freedom of the molecular system. Here we choose 
to allow only two possible motions in the system, 
translation of the center of mass and free rotation. 
Furthermore, in a dilute gas these motions are inde­
pendent and can be separated, and H=HT+HR . We 
also make the separation r. = R + b., where R is the 
position of the center of mass and bv is the displace­
ment of the pth nucleus from the center of mass. As 
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FIG. 1. Partial differential cross section for HF gas at 0.030 eV 
(348°K) as a function of final neutron energy. Dashed curve is 
the Krieger-Nelkin calculation (labeled KN), the smooth curve 
(labeled QM) is the quantum-mechanical calculation, and the 
curve labeled INT is the quantum calculation with interference 
included. (a) Incident energy 0.010 eV and scattering 20°; (b) 
incident neutron energy 0.010 eV and scattering angle 45°; (c) 
incident neutron energy 0.025 eV and scattering angle 90°. The 
small arrow indicates the incident energy. 

a result of the commutability of all the operators, the 
scattering function can be written as a product 

( ) -a ( ) tran8( ) rot XIII" T - "11' XJlJI' T Xv,.., T • (3) 

The thermal average of the expectation value of the 
translational mode has been evaluated by Zemach and 
Glauber, with the following result: 

where M is the mass of the molecule, kB is Boltzmann's 
constant, and T is the gas temperature. Note that 
the thermal average for the translation mode if> inde­
pendent of nuclear subscript. This is a result of neglect­
ing the so-called "outer" scattering, or interference 
scattering between different molecules. 

Let us now consider the rotational factor. It is 
necessary to perform the sum over final states and 
average over initial states. For this case, it is more 
convenient to perform the average first over initial 
states, and put off the summation over final states 
until later. The method used here follows the treatment 
of Yip.6 

Since we are interested in linear molecules, we can 
make use of the Hamiltonian and wavefunctions for the 
linear rigid rotator with its center of mass fixed in 
space. Let L denote the rotator's angular momentum, 
and I the moment of inertia. Then 

(5) 

The wavefunctions are simply the spherical harmonics, 
and the corresponding energy eigenvalues are EJ = 
BJ (1+1), where B is the rotational constant, B= 

1/ (21). The degeneracy for this system with only 
two degrees of freedom is 21+1. The appropriate 
thermal average to be evaluated is then 

(X.V' )Trot = "LP JM "Lrexp[it( EJ - EJ ,) ] 
JM J'M' 

X (IM I exp(iKo b v) I I'M') 

X (I'M' I exp( -iKo bv') 11M), (6) 

where 

Note that K is measured in the space-fixed system of 
axes, whereas b is most conveniently expressed in terms 
of the molecular coordinates. 

The above matrix elements are evaluated by a some­
what involved but otherwise straightforward calcula­
tion similar to that of Ref. 5, which is merely outlined 
here. The plane waves exp(iKo bv) are expanded in 
spherical harmonics. Assuming the direction of K along 
the space Z axis, and introducing the rotation matrices, 
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Do.,,', of RoselS which are functions of molecular orientation angles 

00 I 

exp(ik o bp ) = L: L: iZ[4?r(21+1) ]ijZ(Kbp) Vl*(b') DO.kl. (7) 
Z=Ok~1 

The wavefunctions are expressed in terms of the D's, and the resulting integral is a product of three rotation 
matrices which can be evaluated making use of the symmetry and orthogonality relations of the rotation matrices.13 

One of the resulting matrix elements is 

(JM I exp(iKo bp ) I J'M')= ~iljZ(Kbp) [4?r(21~;: l~J+l) J (-l)M+M'Vr(b.,) CMllJ'CollJ'tSMM', (8) 

where the C's are the Clebsch-Gordan coefficients. Using Eq. (8) in (6), and applying the closure relation for 
the C's, we have for the thermal average of the intermediate scattering function for rotations, 

(x •• ' )Trot=[L:(2J+l) exp( _,BEJ)]-1L:(2J+l) exp( -,BEJ) L: exp[it(EJ- EJ,)] 
J J ~ 

where {3= l/kB T. Note that the I sum is restricted by the Clebsch-Gordan coefficients. 
We are now in a position to write down the cross section. For direct scattering, using Eqs. (1), (3), (4), and 

(9) with v=v', 

( 
(J2(j )direct k, (4?rER/{3)-l 

deem = ;;:app'7. k
i 
2:(2J+l) exp( -(3EJ) ~(2J+l) exp( -(3EJ) 
J 

x~ exp [- (e+E/~:~+ER)2{3] ~(21+1)H(Kb.) (CollJ')2, (10) 

where ER= K2/2M, and the sum over v is now over distinct types of atoms. The number fJ. is the ratio of the number 
of atoms of the type14 v in the system to the number of molecules (N) in the system; i.e., it is the number of 
v-type atoms in each molecule. 

The cross section for interference is easily obtained by considering the thermal average of the intermediate 
scattering function for v¢v' 

( 
(J2(j )int k, (4?rER/f3)-l [ (e+EJ'-EJ+ER)2{3] 

(JeaO = p~a.p'fJp" k
i 

2:(2J+l) exp(-,BEJ) ~(2J+l) exp(-{3EJ)~ exp - 4ER 
J 

x 2:(21+ 1) (b.' 0 b • .') 1z (Kb.)jz (Kb., ) (COllJ') 2, (11) 
I 

where '7 •• ' is the number of pairs of the type l1li' and the sum is over all possible types of pairs. 
The complete cross section is then 

CALCULATIONS 

Numerical calculations of the cross sections using 
the formulas above were made and compared with the 
corresponding calculations based on the Krieger­
Nelkin method. Calculations of the cross section are 
given here for four molecules: HF, HCI, N2, and HCN. 

13 M. E. Rose, Elementary Theory of Angular Momentum 
(John Wiley & Sons, Inc., New York, 1957). 

14 Classified as to environment as well as nuclear species. 

(12) 

These example calculations illustrate the kinds of re­
sults one might expect to find. The calculations for HF 
and HCI at several choices of incident energy and 
scattering angle (Figs. 1 and 2) do not include the 
interference scattering except for HF at a scattering 
angle of 20°. As can be seen by this result [Fig. l(a)], 
the interference is quite small, as expected. Similar 
calculations for HCI indicate that the interference 
contributes only about 6%. Results for molecular 
nitrogen and hydrogen cyanide are given in Figs. 3 
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and 4. The cross sections shown here include inter­
ference. The direct part only is also shown for com­
parison. For triatomic or polyatomic linear molecules 
care must be taken to include the vibrations if the 
results are to be interpreted realistically. 

A few comments on the techniques of computation 
are appropriate. All calculations were performed on 
The University of Michigan IBM-7090. The parity 
Clebsch-Gordan coefficients were calculated according 
to the well-known formulas. 13 Spherical Bessel func­
tions were generated using a subroutine developed by 
Erickson,l5 and agreement with tabulated values was 
verified. The range of rotational quantum numbers 
used in the calculations was determined by inspecting 
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FIG. 2. Cross section for HCI gas at 0.030 eV (348°K). (a) 
Incident energy 0.010 eV, scattering angle 20°; (b) incident energy 
0.010 eV, scattering angle 45°; (c) incident energy 0.025 eV at 90°. 

15 J. D. Erickson (private communication). 
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FIG. 3. Cross section for N2 gas at 0.025 eV. (a) Incident energy 
0.010 eV, scattering angle 45°; (b) incident energy 0.010 eV, 
scattering angle 90°. 

the relative population of initial levels of the molecule 
at the given temperature. For most of these calculations 
they ranged from 0 to 20. The inner sum (on l), 
taken over limited combinations of initial and final 
quantum numbers, was truncated when the spherical 
Bessel function was sufficiently small. The molecular 
parameters used in the calculations are given in the 
Appendix. 

DISCUSSION 

Examination of the figures shows that inclusion of 
the discrete rotational levels gives a result that is 
distinctly different from that of the Krieger-Nelkin 
method, as expected. Furthermore, the difference be­
comes more pronounced as the incident neutron energy 
is reduced and the scattering angle decreases. This 
agrees qualitatively with Griffing's resultlO for spheri­
cally summetric molecules. Unfortunately, however, 
experimental data on linear molecules are not available 
at the present time. It is hoped that experimental data 
on gases with linear symmetry will become available 
so that comparison can be made. 

Of particular interest for HF and HCI is the bump 
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FIG. 4. Cross section for HCN gas at 0.025 eV and incident 
energy 0.010 eV. (a) Incident energy 0.010 eV, scattering angle 
20°; (b) incident energy 0.010 eV, scattering angle 45°. 

in the cross section due to energy gain of the neutron 
from rotational levels of the molecules. As first pointed 
out by GriffinglO in his work on methane, this is a 

composite of contributions of transitions from various 
initial to various lower final rotational states of the 
molecule. These are, of course, broadened by the 
translational motion and recoil of the molecule as a 
whole. One can also see that as the momentum trans­
fer is increased, the bump is gradually washed out 
by the broadened translation-rotation peak. Thus, 
the most interesting experiment from the standpoint 
of testing this theory of rotations would be a small­
angle scattering experiment at low incident energy. 

Also worth noting is the difference in amplitudes of 
the two calculations. No resolution effects were applied 
to either calculation, and both were performed with 
absolute normalization. 

The results for nitrogen illustrate a case for which 
the interference scattering is significant. This is to be 
expected since nitrogen is mostly a coherent scatterer. 
The Krieger-Nelkin calculation gives a fairly good 
representation of the direct scattering except near the 
elastic peak. HCN shows less significant interference 
effects and the KN result is very close to the direct 
scattering. 

In conclusion, we can say that these calculations 
demonstrate the feasibility of performing numerical 
calculations using the quantum-mechanical theory for 
the class of molecular gases which possess linear sym­
metry and which have many rotational levels populated. 
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APPENDIX 

The following parameters were used in the numerical calculations: 

HF HCI N2 HCN 

Bond length (1) 2b=1.10 2b= 1.2747 2b= 1.098 bH= 1.620 
bc =0.561 
bN=0.596 

Moment of inertia (g cm2XIQ-40) 1=1.92 1=2.64 1=14.09 1=19.05 

Rotational constant (eV) B=0.00181 B=0.00131 B=0.000246 B=0.OOOI82 

Bound coherent scattering AH=0.367 AH=0.367 AN=0.914 AH=0.367 
length (10-12 cm) AF=0.560 ACl=0.99 Ac=0.664 

AN=0.914 

Bound incoherent scattering CH =2.516 CH =2.516 CN =0.27 CH =2.516 
length (10-12 cm) CF=O CCl=O Cc=O 

CN =0.27 

Sachs-Teller effective masses (amu) M 8TH= 1.46 M STH=1.48 Ms?=16.8 MSTH=5.24 
MSTF= 19.30 MSTCI=35.8 MSTc =18.05 

MSTN = 17.30 


