The dynamics of free, straight dislocation pairs. li. Edge dislocations
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We present a detailed analysis of the relative motion of a pair of edge dislocations with paraliel
line directions due to their mutual interactions in the overdamped limit. In particular, we
derive analytic expressions for the trajectories in the three cases of parallel, antiparaliel, and
perpendicular Burgers vectors for both zero climb and finite climb. In each of these cases, we
find attracting (stable) or repelling (unstable) equilibria, and this allows a simple
characterization of the motion. For all other orientations, no such equilibria exist, and the two
dislocations either come together or escape o infinity. In addition, we give the equations of
motion for the trajectories in the presence of an external siress.

i INTRODUCTION

In a previous paper’ (hereafter referred to as I), the
present authors have analyzed the motion of a pair of inter-
acting, straight screw dislocations. The trajectories of both
parallel and antiparaliel pairs of screw dislocations were de-
termined as & function of the applied stress, the damping
factor (e.g., due to phonon radiation ), the effective mass of
the dislocations, and the elastic constants of the material.
These resuits were than employed in a simple statistical anal-
ysis of systems with many dislocations. The present paper
extends the results of I to the more interesting {and more
complex) case of pairs of edge dislocations.

QOur overall interest in dislocation dynamics is in de-
scribing the plastic properties of the dynamics of the inter-
acting defects which carry the deformation. Although this
cbjective is indeed ambiticus, we view the present study as a
first step in that direction. The next jump to be made is the
extension of the present two-dislocation analysis to an analy-
sis of the dynamics of a large number of interesting disloca-
tions. However, the complexity of accounting for more than
two dislocations is formidable, and numerical analyses/sim-
ulations will be required. Some preliminary results from
both celiular-automaton® and molecular-dynamics simula-
tions of systems containing many disiocations are avail-
able.>* Unfortunately, these simulations are usually unable
to use the experimental values of both the disiocation densi-
ties and the time scales. This problem can be alleviated, in
part, by the incorporation of a knowledge of the trajectories
of pairs of dislocations. These trajectories can be used to
avoid the extremely small time steps which are necessary to
account for the motion of dislocations that are very close
together.

In the present paper, we derive analytic expressions for
the motion of pairs of edge dislocations in two spatial dimen-
sions {Le., straight dislocations with parallel line direc-
tions). We assume that the system is infinite in extent, and
we neglect any Peierls stress. The generai equations of mo-
tion for pairs of edge dislocations are discussed in Sec. II.
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Section III describes a “center-of-mass” coordinate system.
Pairs of dislocations with parailel, antiparaliel, and perpen-
dicular Burgers vectors are considered in Secs. IV, V, and
V1, respectively. Finally, the case of dislocations with arbi-
trary Burgers vectors is discussed. In general, the edge-dislo-
cation results are less complete than for pairs of screw dislo-
cations (see I) due to the added complexity of their
anisotropic interactions and mobilities. Nevertheless, a
number of interesting and useful resuits are obtained.

. EQUATIONS OF MOTION

We consider two parallel edge dislocations with effec-
tive mass m* (Ref. 5} and Burgers vectors b, and b, of equal
magnitude b in the presence of an external stress o. We
choose a coordinate system with its z axis paralle! to the line
direction of the dislocations and its x axis along b, we let o
denote the angle between the Burgers vectors (choosing our
labeling so that 0<a <), and we denote the positions of the
dislocations by vectors ¥, and r, in the xy plane, with
r = r; — F, dencting their relative separation. For conven-
ience, we also consider a £7 coordinate system rotated by a,
50 that the £ axis is along b, (see Fig. 1),

The interaction potential between these two disloca-
tions is®

R, 3‘}

Vip) = —
() 2m(1 — v}

I (b]'rz (ber) }

/
E(bl-bz) {n

F 2/

2
S Kln R _ l\i €08
2m{l — v} ¥ 27
+cos€cos(9‘—a)}, (H

where 4 is the shear modulus, v is the Poisson ratio, 8 is the
polar angle of r, and R, is the outer cutoff distance. Differen-
tiation of Eq. (1) with respect to the dislocation coordinates
yields the forces on dislocation 1 due to dislocation 2 (f))
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F1G. 1. IHustration of the coordinate systems employed. For the xp system,
the x axis is placed along the Burgers vector b, and for ihe £ system, the £
axis is placed along the Burgers vector b,. Since we will be dealing mainly
with the relative motion r =, -- r,, disiocation 2 has been placed at the
origin.

and on disiccation 2 due to dislocation 1 {f,):

2
1:=——=~”—l}————=—«={ﬁ cos 28 cos(6 — a) + §isin(8 — &)
2a(l —v)r
+ sin 26 cos(8 — a) 1}, (2)
b2 W
f= ——~t— {Ecos @ 2(6 —
A PR {€ cos G cos a)
+qlsin & + cos 8 sin 2(6 — a) 1}, (3)

where a caret () indicates z unit vector. In addition, an
externally applied stress creates forces on the dislocations
which may be determined through the Peach-Koehler for-
mula’

F=(bo) X2 (4)
leading to the forces (letting ¥, = bo ;)
F,=2%F, —§F,, (5}
F,= § [Fw cos 2a + (F,, — F,, )sin a cos a
— §(F,, sin 20 + F,, cos” o + F,, sin’ ). (6)

Since all of these calculations are performed within the
framework of linear elasticity, the interaction forces {Egs.
(2) and (3)] and those due to the applied stress [Egs. (5)
and (6)] may simply be added.

In order to relate the force on a dislocation to its subse-
guent motion, we need to consider how a dislocation moves
through a material. For motion through a crystalline iattice,
there is movement of both the atoms in the core region of the
dislocation and those far away. The faster the dislocation
moves, the more kinetic energy is imparted to these atoms.
Neglecting the refatively small contribution of the disloca-
tion core, this kinetic energy scales as the square of the disio-
cation velocity.”® Therefore, the dislocation has an effective
mass m*, which is given by™®

52 2. (R,
E,, r:—z—m*vz:——’uéo———%—ln< L\b (7
yJ 87 (1l —v) ¢ ro/
or
2 R
m*:_.—&i—-;ln< ) (8)
4l —v)e ¥,
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where ¢ is the sound velocity and r, is the inner cutoff dis-
tance. Since a moving dislocation has mass, it carries mo-
mentum, and, hence, should behave as a Newtonian particle:
m*% = F, where the dots indicate differentiation with re-
spect to time, and F is the force on the dislocation.

Since dislocations in metals exist on a lattice, instead of
in a tree continuum, a moving dislocation radiates phonons.
Therefore, the movement of the dislocation dissipates ener-
gy, and its motion is nonconservative, In addition to the
aforementioned phonon-emission dissipation mechanism, a
number of other dissipation mechanisms are known to ex-
ist.® In metals, the scattering of thermal phonons by the
moving dislocation is the dominant dissipation mechanism,
except at very low temperatures.® This dissipation modifies
the equation of motion for the distocation:

F = m* + yx, (%)
where®
v = ubg(T)/c, (10)

and where g( 7'} is a temperature-dependent numerical con-
stant of order 1072,

When the dislocation is chimbing (i.e., moving in the
direction normal to its slip plane), an additional source of
damping is present. This additional damping generally
dominates all other forms of damping and is related to the
diffusion necessary for climb. Thus, for dislocation motion
in the direction normal to the slip plane, we replace the
phonon-scattering damping ¥ with the diffusion-controlied
damping®

=D, Q/b%kT, (11

where D, is the self-diffusion coefficient, £} is an atomic vol-
ume, and &7 is the therma! energy. Since the damping is
different for dislocation glide and climb, the damping is an-
isotropic. In most cases, I' exceeds y by many orders of mag-
nitude, and, hence, glide is very much faster than climb.

Combining these resulis for the forces and the dynamics
finally vields the four equations of motion (two coordinates
for each dislocation ):

2

————El?—-———m—cos 26 cos(8 —a) + F,,, (12}
2a{l —v)r

pb’
27( —vyr
+sin2fcos(d—a)l —F,,

2

mEE, 4 yk, =

m*p + Ty, = [sin{6 — a)

(13)

m*§z+7/§2: pb cos Bcos 2(6 — a)

21—
+ F,, cosla
+ (F, — F,)sinacosq,
b

2ir(t —vyir
X{sin & 4 cos @sin 2(8 — )}
— F,

xy

(14)

m*ij, + iy =

sin 2o — F_, cos® @
(15)

Since the damping term usually dominates the inertial term,
we will be considering these equations primarily in the over-

—F,, sin” a.
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damped limit (;n*—0), in which case, the first term on the
left-hand side of each equation may be dropped.

it CENTER-OF-MASS MOTION

Because the interaction potential (1) depends only on
the relative coordinater = r, — r,, it is useful to change vari-
ables from the individual positions r; and r, to the relative
and center-of-mass coordinates r and B. However, due to the
anisotropic damping, unless the Burgers vectors are either
parallel (@ =10) or antiparallel (« = ), the equaticn of
motion for the center of mass R involves the relative coordi-
nate r, and, as a result, the center-of-mass motion is neither
simple nor particularly illuminating.

To itlustrate this poini, consider the overdamped limit
(m* -0} in the case of zero climb (i.e, I'— o0 ), and in the
absence of external stress (F; = 0}, in which case, the equa-
tions of motion become

;vxlz————-—’[ib:-———coswcos(é‘aa), (16)
2m{l —v)r
vE, = u—-——-——ﬁéi———wSQCos 2(8 —a), (1D
2a(l — v)r
=0 (18)
71, = G. {19}
Therefore, the center-of-mass coordinates,
X=4x;+x)=3x;+§cos0—,sina), {(20)
Y=y, +y) =y +§sina+ n;cosa), (z1

satisfy the equations of motion {after some simplifying alge-
bra},

-

yX': «———é’i—b-:-—-——-sin alsin @ + cos @sin 2{8 — a)],
(1l —v)r
(22)
: ub? .
yY = — ~——t———sin @ cos & cos 2(8 — a3}, (23}
4r{l — v)r

showing that, even with zero climb, with no inertia, and in
the absence of external stress, the center of mass undergoes a
complicated motion, unless either & = 0 or a = 7 (parallel
or antiparalle! Burgers vectors),

For parailel (€ = 1) or antiparallel {¢ = — 1} Burgers
vectors, the equations of motion (12)~(13) become

3

&ub -

m*%, + yk, = ——————cos fcos 260 + F,,, (24)
2a(1l —v)r

m*y, + Ty =—-=£’=L—£2:-——sin 8(1 4+ 2cos* 8) — F_,
27(1 — v)r 25)

mEX, + Yk, = — E{%‘)_r cos fcos 28 +eF ,, (26}

m*9, + Dy, = — zﬁg‘f’_ ‘“V)r sin 61 + 2 cos* 8) — €F...

(27
Thus, the center-of-mass coordinates satisfy the equations

m*X + v X = [(1 + €)/21F,,, (28)
m*Y +TY = — [(1 +e)/21F_, (29)
which yield the center-of-mass mation
X=X+ LtEF
& e "
+;’Z’;_(Vx0 _ 1 eny\§(1—=e‘7'/"‘ Y, (30)
14 2y 7
Y=¥,~+tE8F ¢
m* 1+¢ ) — Ttsm*
SN Fol(l—e Ty, (31
o ( o+ SEEFL ) ( ). @D

In the overdamped limit {(m*—0) with no climb (T'- ),
this reduces to

X=X+ [(1 + € /271F 1, (32)
Y=Y, (33)

These resuits illustrate the fact that the effects of the
finite effective mass of the dislocations decay away exponen-
tially fast with the two time constanis 7, = m*/y and
1, = m*/T «7,. Inserting experimental data for copper into
the expressions for m* and ¥ [Eqgs. (8) and (10} ], we find
that 7, ~5X 107 1% 5. If the dislocation were traveling at the
shear-wave velocity, it would decay to its overdamped veloc-
ity in a distance of order 10 A. Since these time constants are
so small, we restrict cur attention to the overdamped limit
for the remainder of this paper.

For completeness, we conclude this section by giving the
general equations of motion for the relative coordinate
r=r1, —F, = {Xx 4 §y) in the overdamped limit:

3
K= __mbT (% + %) T 2x(x? — y)cos® @ + x*ysin (i + 4 cos’ @) — p’ sin @]
2ry(l — v} '
57 s oy ar e .
—‘% (2 + ) Hx(xP — pP)sin @ cos @ + X°plt — 4 cos’ @) — 3]
I —cosacos2a 2Zsinacosa {1 1y . cos @ sina
+—Fx<< - )+FM —-—=—~-=—)smacosza——F si ( ) 34
" ” T i;/[‘ yynay—i—r,(S)
bz i 3 bl -
= MO SBE 32 432y (% — pP)cos 2a + 2xy sin 2a]
2ay(l — v}
#bz 2 el ,_2 i) . el .
_ m (X +3*) Hx(l + 2cos* ) (x?sina — 2xycos a — yP sin @) — 2y cos a ]
. 520 2costa sinacose 1 —cossa /1 ]
— F,, sin a(cos — ) F_. ( )—-=F ——=——-—) sin” ¢ cos a. 35
7 ¥ r = 7 r » iy r 33)
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Although these equations are easy to solve numerically, they
are tractable analytically only for the special cases of paralilel
(2 = 0}, antiparallel (@ = ), or perpendicular (¢ = 7/2)
Burgers vectors.

V. PARALLEL BURGERS VECTORS (=10}

For a = §, the overdamped equations of relative motion
{34) and {35) become independent of the external stress:

,ubzx(xz——yz)
= - =, 36
7yl — v) (X + y*)? (39)

2. 2
PR € + ) (37)

TR — ) (3 4+ 372
We begin with the zero-climb limit (I — « }, in which case,
the second equation becomes y = Q or y = ¥, = y(0)}. Thus,
the first equation now becomes

b ix(x* — 35

= P ‘ (38
(1 — ) (xX* +32)?
For y, = 0, this is easily solved to yield [with x, = x(0} ]
2 1/2
x=x0<1+———2—’!£;—t———) , {3%9)
ay(1l — v}xg
while, for y,5£0, it gives
77"7/(1—=—v)€ 2 (x)
t TR e x - - 2 Ln
2 Vo )
o m(——l—)] , (40)
Vs

which cannot be analytically inverted to yield x(2).

For y, = 0, the relative motion is along the line y =0
and away from the point x = 0, with the asymptotic vehav-
ior (as f— o0 )

! ( 2,’1!22? );/2
Clmp(l =y

For y,5#0, the relative motion is along the line y = y,, away
from the “stagnation” points x = + ¥, (where ¥ = y =0},
and toward the values x =0, or x = + oo (asshown in Fig.
23. In this case, the asymptotic behavior is {as f— )

(41)

a)

e =y0=0

& b

oo I

R ﬁn,‘/:}’o#o

FIG. 2. For parallel Burgers vectors (a =90) in the overdamped limit
{m* -0} with zero climb (I' - ), the y separation is constant ( p = y,).
(&) For y, == 0, the x separation increases monotonically. {b) For 3,50, the
x separation moves monactonically away from | y,|, asymptotically ap-
proaching either zero or infinite x separation.
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Jub’t V2 , .
x| m %ol > 1{ Yol 42)
;X‘){e b/ Ly E - g ixul < ; ,Vo! )

In summary, in the zero-climb limit, the y separation (i.e.,
the separation perpendicular to the Burgers vectors b, = b, )}
remzing constant, while the x separation (ie. that paraliel to
eraratlon, or increases if it is initially greatez than the p
separation, asymptotically approaching either zero or infi-
nite x separation, respectively.

We now return to Eqs. (36) and (37) and consider the
case of finite climb (i.e., finite I'). For p = O, we again have
y =0, and x(¢) is again given by Eq. (39). Thus, we will
restrict our attention to the case y,550. We first note that
Egs. (36) and (37) yield

ub?

yxx 4+ Typ = —b | 43
yy ) (43)
whick is easily integrated to give
2ub® — wy(l — ) (x? — x2N\V?
» :yo< e ° \@ (44)
(1 — )y

Inserting Eq. (40) into Eq. (44) yieids the path y{x) tofirst
order in ¥/F < 1:

/4 - Vo \}] }
14+ i2in — I} —
7= }’0{ M r { (xo - J’o) (xoj

which shows how y deviates from y, near the stagnation loci
y = - x and near the asymptotic values x == 0, + . Note
that this expression is valid only as leng as the correction to
y = p, remains small, so that it breaks down too near the
values x =0, + yy, + oc.

To find the asymptotic behavior as 7 — o0, We cannot use
Eqg. (43) (since x—0, -~ o}, but, rather, we must return to
Eqgs. (36) and (37) (and we need not assume [ > 7, but only
[ > yfor definiteness ). For |x,! < | p,|, we have x -0, so that
these equations become

(45)

2
% = — __ﬂnf_.m; , (46)
ay{l — v}y
. b2
[ . a— (47)
(1 —v)y

The second equation yields

. 2ub’t )‘/ 2

i p| - ——t—— (48)

R (ﬁru ) ’
and inserting this into the first equation gives

|| oce =T, (49)
Finally, combining these results yields

phosfx) o (50)

{x and y always have the same signs as x, and y,,, respective-
ly). Thus, as £— o, we have x—0, and | y| - oo along the
path (50). Also, note that, for zero climb, x — 0 exponential-
Iv with time as Eqg. (42), while, for finife climb, x -0 as the
power law (49).

Finally, for |x,] > | ¥ol, wehave [x] - c0 as ¢ — w0, 80 that
Egs. {36) and (37) become

A. Eykholt and D. J. Srolovitz
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pb’

— -, (51
my{l — v}x
2
= ____MLT i {52)
7w{(l — v)x*°
The first equation yields
/ 1/2
Q\ 2ub’t ) ’ (53)
ay{l — v}
and inserting this into the second equation gives
iylczt37/2f‘ (54)
o Jx|*7T. {55)

In summary, the trajectories are as shown in Fig. 3 (in this
figure, we take x,, ¥, > 0; the other three cases are obtained
by refleciing this figure through the x and/or y axes). For
the trajectory with x - G, i T'> ¥, this trajectory crosses over
from horizontal to vertical motion (i.e., the effects of finite
v/T become important) when [x| =¥ yo{/T.

V. ANTIPARALLEL BURGERS VECTORS (=1}

For a = , the overdamped equations of motion (34)
and (35) become

PO L 1€, el 3 WY 'y (56)
my{l —~v)(x" +y)° Y

pb’y(3x* vy 2,

7l (1 — v)(x? + yH)? r
In order to obtain analytic solutions, we restrict our atten-
tion to the case with no external stress (F,, = F,, =0). in
this case, these equations become the same as Egs. (36) and
(37) with g replaced by — g, and they are solved in exactly
the same manner.

In the zero-climb limit, y is again constant (¥ = y,).
For y, =0, we have

( 2ub )1/2
x=xgf 1 — LN
ay{l — v)ix]

which shows that x moves monotonically toward x = G, and
the two dislocations meet and annihilate after a capture time

(37)

y= -

(58}

wy{l — v)xd
Ty == e
o PWE (59)

On the other hand, for y,#0, we have

Y A

Yo b

]
X

FIG. 3. Trajectories for parallel Burgers vectors (a = ) in the overdamped
fimit {m* -0} with finite climb (T > 3. For x4« 0 and/or y, <0, reflect
this figure through the x and/or y axes, respectively.
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. ay{l —v) [

—x2+2 ln( )
E % It =

— 432 in<—-—-—y° )} . (60)
Ve

and x moves monotonically toward the nearer of the two

points x = + y, (see Fig. 4), approaching it asymptotically

as

lxl—{vmgl+ ! (:;’ 1)e‘"’"’z”[z”“"‘””’5]}. (61)
0

For finite climb, if y, = 0, we again have y = 0, and x(¢)
is again given by Eq. (58) with the capture time (59). For
yo#0, Egs. (56) and (57) give (with no external siress)

2
vxx + Ty = _____,_l_l_b;____’ (62)
{1l —v)
which yields
2 P
,,xz.,Lryz:%;/ifLLL_f)_ (63)
{1 —v)
where 7 is the capture time
1—vy{yxg + 9
_m(l—v) (g + TH) .

2ub*
i notice that this reduces to Eq. (59) for y, = 0}. Thus, for
finite climb, in the absence of external stress, two antiparallel
dislocations always meet and annihilate after the finite cap-
ture time (64).
For slow climb ("> ), we may again find how the tra-
jectory begins to deviate from the line y = y,. From Egs.
(63) and (64), we have

2b2f . 1__, 2 L2 172
yzy0<1_ﬁ + 7y{ “’)(f xo)) 65
(1 =3y

and inserting Eq. (60) gives (to first order in /1)

y X —y;
i () a(Z )]
b }’o{ F[ o xé-—y%

This equation is valid as long as the correction to y =y,
remains small.

(66)

4

y=y0=0

b)

P | B ]
L = 14

b—-—MmFyO#O
'iyoi 0 Iyoi

FIG. 4. For antiparaliel Burgers vectors (o = 7} in the overdamped limit
(mm* - Q) with zero climb (I — o } and no external stress (F,, = F,, =0},
the y separation is constant ( ¥ = y,), while the x separation monotonically
approaches the p separation (x— + 3,). {3} For y, = 0, the two disloca-
tions meet and annihilate after a finite capture time
1o == {1 — v)x3/2ub?, while (b} for y,50, the approach x— + y, is
only asymptotic as ¢ co.

. Eykhoit and D. J. Srolovitz
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For finite climb (T > y), Eq. (63) shows that x, y—0as
t—7. To find this asymptotic behavior, we return to Egs.
(56} and (57) (with F,, = F_ = 0). Since x>0, Eq. (36)
requires that | y|<|x| asymptotically. Thus, as 7— 7, the ori-
gin is approached with a slope 4 satisfying 0< |4 | <1, and we
will consider the two cases A = 0 and 4 0 separately. For
A = 0, we have the asymptotic result | y| €|x], and Eqgs. (56)
and (57) become

2
X == — __L , (67)
7y(l —vix
) 3ub 2y .
= e L 68
‘ 7l (1l — v)x? (68)
The first equation yields
2ub(r — ) \12 .
|x|— (_ﬁ_._(,_ﬁ,___),) {69
7y(l -~ v)
and inserting this into the second eguation gives
| plo (7 — )72 (70)
OC{XI37/F= (71)

MNote that this soluticn is valid only for T <3y, since we
assumed the origin was approached with zero slope.
For finite slope 4 520, we have the asymptotic behavior

y=Ax, (72)
and Egs. (56) and (57) become
2 2
_ puh* (1 —A7%) _, (73)
wy(l — (1 + 2%
2 2
y=di= - ML AC A (74)

ATl — v} (E 4+ 4%
Combining these two equations yields the magnitude of the
siope:

12
+v

so that this solution is valid only for I > 3y. For this value of
|4 |, Egs. (73) and (74) become the single equation

PO N . (76)
(1 — v (T — )=
Equation (76) yields
Ix{_)(ZﬂiJZ(F—%-:V)(T—t))m
(- (T =7/

and inserting this into Eq. {(72) gives [using Eq. (75} ]

(755

a7

. I‘__,B,}/ 172

PLEEA N s

| ¥ Ty [| (78)
(- ) (T —p)? ' )

In summary, for I' < 3y, we have the asympiotic behav-
ior {(693~(71}, and, for I" > 3y, we have the asymptotic be-
havior (77)-(79). Since we typically have I'> vy, it is the
latter case which is expected to occur, and these results are
shown in Fig. 5. For slow climb {I'» v}, the motion stays
close to the two dashed lines: the x separation guickly adjusts
to the nearly constant y separation in a time
7o = 7wyl — v)x] /2ub?, after which the two dislocations
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&
b

yﬂ'i A X

FIG. 5. Trajectories for antiparallel Burgers vectors (@ = #) in the over-
damped limit (m*->0) with finite climb {I" > 3y) and no external stress
(F, =F, =0y Here, 1= (T =3/ + 1Y% For slow climb
(I'> 7), the motion stays very close to the twa dashed lines. For x, < Q0 and/
or y, < G, reflect this figure through the x and/or y axes, respectively.

slowly approach along the line y = Ax, annihilating after an
additional time 7 — 7, = 7T (1 — v)y5/2ub’. When the
climb is less slow, this transition is less sharp (as shown in
Fig. 5).

Vi. PERPENDICULAR BURGERS VECTORS (a=n/2}

For a = #/2, the overdamped eguations of motion (34)
and (35) become

. i 52 2y Fx Fvv
x:(i+w) I 2'V)z\z' — -,
Ny F7 2r(l —)(x* ) ¥ T
(80)
YA AT T N
: \y ' T/2r(1—-we+yyY ¢y T
(81}

In this case, there is no advantage in taking the limit of zero
climb ([ — 0 ), or even slow climb (T > %), so we immedi-
ately consider the case of finite climb (T > ).

We again restrict our attention to the case with no exter-
nal stress (F,, = F,, = F,, = 0). Equations (80) and (81)
then yield

xx+pp =0, (82)
which is easily integrated to give
Xy =1 = x5 + Vo, (83)

showing that the relative motion is constrained to the circle
r=1r,=r(0) (ie., the distance between the two disloca-
tions remains constant). In particular, the two dislocations
can neither meet nor escape to infinite separation. From BEgs.
(80) and (81), we see that the stagnation loci are again the
linesy = 4 x {since thisis where (X = y = ), which divide
the circle r == #, inte four arcs (see Fig. 6), with the motion
being confined to one of these arcs.

Since the relative motion is confined to the circle r = 7,
it is convenient to switch to polar coordinates:

(84)
(85)

in which case, Egs. {80) and {81} reduce to the single equa-
tion {in the absence of external stress)

X = ry CO8 &,

y=rysin g,
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. 2
8= __ﬁé_“m(_l_+_§_) cos 26, {86)

Ci—-wA\y T
which is easily integrated to yield

- bty TN (= a0
§=6_ +arctanfe * [t =]

Xtan(8, — 631, (87)

where 6, = 8(0) and 6 = — lror 7, whichever is nearer
to 8,. Thus, we see that § moves monotonically toward the
nearer of the two angles 8, = — i, 37 (ie, the motion is
along the circle » = r;, toward the nearer of the two points
where this circle intersects the line y = — x, asshown in Fig,
6). Furthermore, as  — o0, we have the asymptotic behavior

Gt +e~#brt(y RS VI E A EEOv | tan((u’0~ 9 ),
(88)

showing an exponentially slowing approach to the limiting
value 4 _ .

In Sec. 1L, we found the motion of the center of mass
only for the cases of parallel (o =0} and antiparaliel
(a = ) Burgers vectors, and we stated that, for a #0, 7, the
center-of-mass motion is very complicated. This is fairly
easy to demonstrate for perpendicular Burgers vectors
(a = 7/2). In the zero-climb limit {I"— « ), Egs. {13) and

(15} become (since 7, = — x,)
¥ =0, (89)
X, =10, (90}

which yield y, =y, = 7:(0) and x, = x,4 = x,{0). Thus,
the center-of-mass coordinates are given by
X =10 +x,) =0+ 400 —x) =x0+ix, (9D
Y=y 4y =y —yi—n)=yo—1iy (92)
showing that, even in the zerc-cimb limit, the center-of-

mass motion is as complicated as the relative motion (for
finite climb, it is even more complicated).

FIG. 6. Trajeciories for perpendicular Burgers vectors {¢ = #/2) in the
overdamped limit {m* —0) with finite climb (T » 3) and no external stress
(F, = F,, =F, =0). The distance between the two dislocations remains
constant, so that the relative motion is along a circle. Furthermore, the mo-
tion is along one of the four arcs between the stagnation points a, b, ¢, and d,
moving monotonically away from a or ¢ and toward b or d.

4210 J. Appl. Phys., Vol. 85, Ne. 11, 1 June 1989

Yil. MOTIONFOR a#0,w/2,

Except for the three special cases o =0, #/2, 7 exam-
ined in Secs. IV-VI, we cannot find analytic expressions for
the relative motion r{¢). For these three special cases, a com-
mon thread is the existence of stagnation loci (points where
% = y = 0) which either attract or repel the motion. How-
ever, for a0, 7/2, 7, no such stagnation loci exist (other
than zero or infinite separation). In particular, this means
that, for these other cases, the two dislocations either meet or
separate to infinity as f— co. To see this, we return to the
equations of motion (12}-(15). In the overdamped limit
(m* —-0) with zero climb (F - « ) and no external stress
(F; = 0), these equations again become Egs. (16)-(19):

yxlz——ﬂz————ms 26 cos(6 — a), (S
27(l — v)r
i b’
vE, = — cos Geos 2(8 — a), (54)
2a(l —v)r
yl =0, (93
7, =0. (96)
Since the relative coordinates are
X=X, — X, =X; — &, co8 @ + 7, sin &, (97)
Y=y —y=y;—§sina—1n,co8q, (98)

then, if we exclude the cases @ =0, 7, the requirements

X = y = O for stagnation points are equivalent to the condi-

tions x; = &, = 0, which yield
cos 28 cos(@ — ) =0,
cos Gcos2(f—a) =0.

(99)
(100)

Multiplying the first equation by sin{@ — &) and the second
by sin § and subtracting the resuits yields the reguirement
(after some algebra)

sin 2a = 0, (101)

which shows that stagnation points are impossible unless
a =0, w/2, w {remember that the labels are chosen so as to
make O<a<7). This absence of stagnation loci for a0,
7/ 2, wimplies that, when such dislocation orientations exist,
the motion is qualitatively different than for the special cases
considered in Secs. IV-VI.

Vill. SUMMARY

‘We have analyzed in detail the relative motion of a pair
of edge dislocations with parallel line directions due to their
mutual interactions in the overdamped limit (m* -0). We
have obtained analytic results for the trajectories in the three
cases of parallel, antiparalle!, and perpendicular Burgers
vectors for both zero climb and finite climb. In each case,
there are “stagnation™ points (stable or unstable equilibria },
which are either attracting or repelling, and these stagnation
points allow a simple characterization of the motion. In ad-
dition, we have shown that, for all other orientations of the
two Burgers vectors, no such stagnation points exist. In such
cases, the pair of dislocations must eventually come together
or separate to infinity.

When an external stress is applied, the same approach
can be used, but the resulting expressions for the trajectories
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are too complicated to be of practical use. In this case, we
have instead given the first-order equations of motion for the
trajectories, which may simply be solved numerically.
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