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By studying cross correlations in the intensity of light scattered by a fluid sample in different directions at 
different times, it is possible to measure the dynamic scattering function S(k,t) for the fluid. The multiple 
scattering contribution to the time-dependent cross correlations is very substantially less than the multiple 
scattering contribution to S(k,t) as obtained by a conventional singie-detector quasielastic light scattering 
system. 

Quasielastic light scattering spectroscopy is common­
ly used in the study of bulk samples of weakly scattering 
fluids which are in thermal equilibrium. 1 For such 
systems, in the absence of noise, 2 the scattered light 
at a single pOint is characterized completely by its two­
time intensity correlation function (spectrum) S(k, t) • 
It is also possible to study cross correlations between 
light rays scattered by the sample in different direc­
tions. However, if homodyne detection is used, cross 
correlations between scattering intensities in different 
directions give at most the information that is already 
available from S(k, t). 3 

In this note, it is shown that for the study of strongly 
scattering fluids one- and two-detector experiments are 
not equivalent, in that the double-scattering contributions 
to the spectrum and the cross spectrum are not the 
same. For the particular geometries considered here, 
multiple scattering has a far smaller effect on the two­
detector cross-correlation spectrum than on the single­
detector autocorrelation spectrum. 

We first consider a conventional single-beam, single­
detector experiment (Fig. 1). The incident light wave 
vector k/ illuminates the sample; some of it is scat­
tered at point A into light of wa\e vector kF' which goes 
to the detector. The scattering vector in the experi­
ment is k = kF - kl' The intensity of the singly scattered 
light 11 (k, t) is related to the positions r/(t) of the scat­
tering particles (presumed identical) by 

I 1(k,t)oo I E o12(i It exp[ik' r;(t)f (1) 

ci beinr; the scattering cross section, Eo the intensity 
of the incident beam, and NA the number of particles in 
the volume A. 

Crosignani et al. 1 demonstrate that multiple scattering 
contributions to the spectrum are dominated by uncorre­
lated events in which the scattering takes place in wide­
ly separated parts of the sample cell. In a typical 
event (Fig. 1), the light is scattered out of the incident 
beam at point B and towards the detector at point C. 
The intermediate wave vector is ks, the scattering vec­
tor at the two events being ks - k/ ooq and k - q, respec-
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lively. The double scattering intensity corresponding 
to this pair of events is 

(2) 

NB and Ne referring to the number of particles in the 
scattering volumes at Band C, respectively. The time­
dependent parts of the spectra corresponding to single 
scattering and to the specified double scattering event 
are 

xii f; eXP {ik.[r/(t)-ri t+T)]})j2, 
\ /,)-1 

(3a) 

x (t exp{iq' [rj(t) -rJ(t+ T)]}) 2 

x\( .~, exp{i(k-q)· [r.(t)-r.(t+T)]} >\' (3b) 

The tota1 double scattering spectrum is obtained by sum­
ming Eq. (3b) over all allowed pairs of volumes (B, C), 
including the coincident volumeB'" C '" A, using the ap­
propriate value for q in each term of the sum. 

~I 

DETECTOR 
FIG. 1. Quasielastic light scattering apparatus, showing in­
cident beam (k/), scattered light (kF ) going to the detector, 
single scattering in volume A, and double scattering (with in­
termediate beam ks ) in volumes Band C. 
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FIG. 2. The proposed two detector experiment. The geometry 
is planar. From symmetry the scattering wave vectors for 
laser 1 to detector A and from laser 2 to detector Bare k and 
-k, respectively; other labels are as in Fig.!. 

From Eq. (3b) one may justify the assertion that dou­
ble scattering effects in bulk systems are dominated by 
noninteracting particles. In summing Eq. (3b) over 
possible volumes Band C, one includes both interacting 
and noninteracting pairs. Denoting the numbers of par­
ticles in all allowed volumes Band C by NB and Ne, re­
spectively, Eq. (3b) represents roughly N~N~ compar­
able terms. In a bulk system, each particle interacts 
with-n of its neighbors (n«NB,Ne ), so of all of the 
terms of Eq. (3b) only - n2N 6 of them (drawn from the 
terms in which B= C) represent cases in which, for ex­
ample, particles i and m interact. Since the phases 
are random, the summations in Eqs. (3a) and (3b) grow 
roughly as the square root of the number of terms. 
Equation (3a) is therefore of order (NEga2)2, while Eq. 
(3b) is of order (NE~a2)2(Na2)2. Double scattering 
events in which the first and second scatterings involve 
interacting particles represent fractionally - n/N of the 
total number of double scattering events, and can nor­
mally be neglected by comparison with scattering by 
pairs of noninteracting particles. 

We now consider a two-beam two-detector experiment 

In Eq. (6), i and j are in volume B, and m and n in vol­
ume C. Even if volumes Band C overlap, (i,j) and 
(m, n) (which may be pairwise identical) are separated by 
a vector parallel to k s• In Eq. (6), it is important that 
the indices i, j, m, and n do not all refer to the same 
particle (i = j = m = n is a single scattering event). Equa­
tion (6) then contains only terms like 

(Fig. 2). It would be possible to use one laser (plus a 
beam splitter and additional mirrors) instead of two 
lasers, at the possible price of seeing irrelevant inter­
ference effects between the beams, akin to those in a 
two-beam Michelson interferometer. Denoting the in­
tensities at the two detectors by IA(t) and IB(t), the' ex­
periment measures Sx(k, T) = (IA(t)IB(t+ T». Assuming 
that the two incident beams are well aligned and of equal 
intensity, and that the two detectors view the same 
volume of solution,' the single-scattered intensities are 

\ 

NA \2 
IA1(t)= IEol2a2 ?; exp[ik'rj(t)] , (4a) 

I

NA 12 
IB1(t)=IEoI2a2 ?; exp[-ik· rj(t)] (4b) 

Since the magnitude of the complex exponential is taken, 
Eqs. (4a) and (4b) are identical. With this geometry, 
the single-scattering part of Sx(k, T) is 

(IA1(t)IB1(t+ T» 

=(E~a4\ j~l exp{ik' [rj(t)-rp+T)]} \2) (5) 

i. e., the new geometry measures the same dynamic 
structure factor S(k, t) that the single-detector experi­
ment does. There is a slight difference. It is readily 
shown that (exp[i k' r j(t) + i k" r J( T)]) = 0 for k' * - k. 
In measuring S(k, T), the same scattering vector is used 
at t and t+ T, the -k being obtained when the intensity 
of the scattered field is found. In obtaining Sx(k, t), one 
beam-detector pair obtains k, and a separate beam­
detector pair obtains k' = - k. 

One may also consider how double scattering affects 
Sx(k, T). In a representative pair of events, one photon 
passes from laser 1 through pOints Band C to detector 
A, while a second photon passes from laser 2 through 
pOints Band C to detector B. For the first photon, the 
scattering vectors are ks - kr =q at Band kF - ks =k-q 
at C. For the second photon, the scattering vectors are 
ks - (-kr) =q+2kr at Band -kF-kS =k -q - 2kF at C. 
The contribution of double scattering to Sx(k, T) is 

(6) 

IEol4asl( ~ exp{iq' [r j (t)-r J(t+T)]-2ikr ' rJ(t+Tl} 
j~ 

He 12 
X "'~1 exp{ i(k·- q). [r ",(t) - r n(t+ T)] + 2 ikF' r n(t+ T)}) • 

(7) 
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As long as the volumes Band C are distinct, the two 
exponentials may be separately averaged. (exp[2 ikr 
. r/t+T»)) and (exp[-2ikF ' rn(t +T») vanish by trans­
lational invariance if volumes Band C are large. (For 
diffraction-limited diameters of the scattering volume, 
as is rarely encountered in practice, this argument 
would need modification. ) 

If the volumes Band C overlap, double scattering can 
contribute to the cross spectrum, namely, for overlap­
ping volumes a representative term of Eq. (6) can be 
written 

/Eo/4a
s

l j'J~n;1(exP{2ikF' [rJ(t)-rn(t+T)]} 

xexp{ik' [rm(t+ T)+rn(t + T) -2r j (t)J} 

xexp{iq' [rj(t) +r j (t}-rm(t+T)-rn(t+T)]})12 (8) 

For the average to be nonzero, the first exponential re­
quires j and n to interact; the second exponential then 
requires j, n, and m be close enough to interact. The 
final exponential consequently requires j, m, n, and i 
to interact. This is only possible if i, j, m, and n are in 
the same microscopic volume. If volumes Band C over­
lap, i == j *" m == n, corresponding to an interacting pair of 
particles, is also allowed. 

If volumes Band C overlap, it is also possible to 
have a pair of double scattering events in Which one ray 
passes from laser 1 to B to C to detector A and the other 
ray passes from laser 2 to C to B to detector B. The 
scattering vectors for this series are q, k - q, - q, and 
- (k - q), respectively; a representative double scat­
tering term of this sort is 

\ Eo \ 2 a~ I j.itn;l exp{ i q' [rj(t) + r n(t+T) 

-rj(t+T)-rm(t)]}exp{ik' [rit)-rn(t+T)]} (2 (9) 

Here particles i and n, and particles j and m, may be 
close to each other (or the same) but the pairs (i, n) and 
(j, m) must be separated by a vector parallel to k s . 
Term (9) is only nonvanishing if (i,n) and (j,m) are 
within the same correlation volume. 

By comparison with the discussion following Eqs. (3) 
the single-scattering contribution to S,,(k, T) is of order 
(NEg ( 2)2, which is the same as the single scattering 
contribution to S(k, T). In contrast, the double scatter­
ing contribution to S,,(k, t) is of order (NE~ ( 2)2(na2)2, n 

being the number of particles interacting with a given 
particle. The double-scattering contribution to Sr(k, T) 
is therefore less than its contribution to s(k, T) by a fac­
tor of (n/N)2. This reduction in double-scattering ef­
fects by use of a two-detector system should permit 

study of more strongly scattering systems than is else­
wise possible. Several experimental considerations 
for a two-detector experiment may be noted: 

(a) For the experiment to work, the scattering vec­
tors k and - k defined by the two beam-detector combi­
nations must be the same, i. e., they must be matched 
to within A/I0 over the scattering volume. For visible 
light, A - 5000 A; a scattering volume of dimensions ro 
- 100 j.1m is not unreasonable. These values require 
beam alignment to within A8 - A/I0 ro;;; 6. 5 mrad, which 
is difficult, but not impossible. 

(b) The analysis has implicitly assumed that the in­
cident and scattered laser beams are plane waves, re­
quiring spatial filtering of the incident laser beams. 
The planarity requirement also constrains the focal 
lengths of focusing and collecting lenses, since too 
short a focal length will lead to incident or scattered 
waves which are manifestly spherical while inside the 
scattering volume. 

(c) In the detector geometry of Fig. 2, there is noth­
ing to prevent photons from being scattered into the 
"wrong" detector, e. g., photons of laser 1 can be scat­
tered into detector B. This introduces a second scat­
tering vector k' =kr + kF • For 90 0 scattering, the effect 
is irrelevant, since I k I == I k' I; at other scattering an­
gles, Sr(k, T) is the sum of S(k, T) and S(k~, T), making 
data analysis more difficult. If one uses two lasers of 
different wavelengths, by placing appropriate interfe­
rence filters in front of the detectors one may insure 
that each detector will only be sensitive to light scat­
tered through a unique scattering vector. 

A two-detector scheme similar to Fig. 2 was used by 
Griffith and Pusey· to study rotational diffusion of sin­
gle tobacco mosaic virus particles. In this experiment, 
only a single incident beam was used, the spectrum 
being due to the fluctuations in the total number and or­
ientation of particles in the beam. By contrast, in the 
experiment proposed here, fluctuations in the number 
of particles in the beam are taken to be unimportant, 
Sr(k, T) arising from changes in the relative positions 
of a fixed number of scatterers. In the language of 
Griffith and Pusey, we have proposed a "Gaussian" 
two-detector correlation experiment, while their exper­
iment relied on the nonGaussian nature of light scat­
tered by an exceedingly small number of particles. 
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