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Wigner function simulations of structures with experimentally observed high peak-to-valley
ratios are carried out. It is shown that if care is taken with the numerical method used, the
simulations reproduce these sharp resonances. When scattering is ignored, peak-to-vailey
ratios of 33.7 are obtained for a pseudomorphic InGaAs-AlAs structure. The effects of phonon
scattering are included to first order. Also, a small-signal analysis is carried out and the results
are used to predict the rf power generation capability of these devices.

I. INTRODUCTION

Estimates of the upper frequency fimit for resonant-tun-
neling dicdes'™ have indicated that these devices are useful
into the THz range. Experimentally observed oscillation at
56 GHz® and detection of 2.5-THz signals’ has generated
considerable interest in the potential of these devices. The
basic mechanism responsible for negative differential resis-
tance and fast response times has recently been questioned in
the literature.™® It is therefore desirable to develop methods
from quantum transport theory to model the transient be-
havior of resonani-tunneling devices.

The Wigner function method has been successful in
modeling the general features of resonant tunneling di-
odes.” Y However, it has been found that this method under-
estimates the peak-to-vailey ratios chserved experimentally
at low temperatures.” Also, simulations showing the high
peak-to-valley ratios observed recently in InGaAs-InAlAs
structures'' have not yet been presented.

In this paper, a modified numerical method is used'?
which does predict high peak-to-valley ratios for these struc-
tures. Both the simulated peak-to-valley ratio and the peak
current density are in the range of experimental resuits.
Since agreement was not possible using the original numeri-
cal formulation of this method,”'? it is concluded that careis
required in the numerical implementation of the problem.

The effects of phonon scattering have been included to
first order in the modeling of GaAs-AlGaAs devices."’ This
article shows the effect of including InGaAs phonon scatter-
ing rates on device performance. Inclusion of phonon scat-
tering at room temperature reduces the peak-to-valley ratio
from 33.7 tc 6.81.

An advantage of the Wigner function simulation meth-
od is that it readily allows modeling of transient and smali-
signal effects.”!° In this article, a small-signal analysis of an
InGaAs-AlAs device is carried out. By assuming that the
small-signa! equivalent circuit of the device is constant over
a given rf voltage magnitude range, an estimate of the f
power generation capability of the device is obtained.

The Wigner function method used is 2 single particle
approach, i.e., many-body effects such as wave-function
antisymimetrization and carrier—carrier scattering have not
been included. The analysis is one dimensional with the as-
sumption of a thernal equilibrium distribution for states in
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the transverse direction. Although the self-consistent field
has been included in Wigner function simulations,'? self-
consistency has not been included in the results presented
here.

i. BASIC METHOD AND EQUATIONS SOLVED

The equation for the time evolution of the Wigner func-
tion f{x, k) is**

Pk B YD (k)
gt m*  Ix & gt c
i 7=

LT ala [ apsintk—k&
z-n-ﬁj,w {J; y sin(| »)

x [V(x +J£-) - V(x ——;Jzé-)ﬂf(x,k’), (1)

where /' is the one-dimensional Wigner function in m 2, m*
is the effective mass in kg, and V(x) is the potential energy
for electrons in joules. In this equation, {Jf/dt) - represents
the time evolution of f due to scattering processes. To first
order, scattering may be included in a manner similar to the
scattering term appearing in the Boltzmann transport egua-
tion.'* In the simulations including phonon scattering in this
paper, a scattering term of the following form was included
in the equations:

(M) =7 nug(k)f(x’k)
gt Jc

+ > S (KK F (KT, (2)

where S, (k) is the scatiering rate from the state with wave
vector k to all other states, and S, (£ ',k) is the scattering
rate into state k from another state & . These scattering rates
are calculated using the expressions from first-order pertur-
bation theory,'® considering bulk phonon modes only for
acoustic and polar optic scattering. After proper normaliza-
tion consistent with the one-dimensional Eq. (1), these ex-
pressions were evaluated numerically by summing over all k-
space intervals included in the simulation to obtain the
scattering rates of Eq. (2). The material constants appearing
in the scattering expressions for InGaAs were obtained from
Ref. 17,
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The discretized form used to solve Eq. (1) is (for £ > 0)
ff(xskm ) “’f(xykm ) .

Az m* Ax
sin{27 [ (p — m)/N, }} “ow

sin
= 2rf(p—m3}/N,] ngl

where m and p are indices indicating & and k', respectively,
and where N, is the number of & values included in the
simulation. Equation (3) differs from previous discretiza-
tions™'? of Eq. (1) in the sin (k)/k weighting, which effec-
tively is a window that deemphasizes the high-frequency
components in the discrete Fourier transform of the poten-
tial energy function. As is shown in Ref. 12, the effect of this
weighting is to provide a more consistent approximation to
the moment equations that are derived by multiplying Eq.
(1) by £" and integrating over all &k space. In Eq. (3), the
superscript findicates that a quantity is considered to be at
the future time, ¢ + Ag; therefore, this is 2 fully implicit
method. The upper limit in the Fourier transform of the
potential energy, N_..,, is chosen sc that Eq. (3) is numeri-
cally consistent with Eq. (1) for the linear potential case'?;
thevalue N, = (2/3)N, was used. For the simulations in

this paper, ¥, = 60, N, = 83, and N, = 40, where N, is

the number of mesh points in real space.

To obtain steady-state operating points on the -V
curve, Eq. (1) is solved for df /dt =0, given a particular
value of applied bias, which is assumed to be dropped uni-
formly across the double barriers and well. Starting from a
particular dc solution, small-signal solutions are obtained by

assuming a Wigner function of the form:

FOkY = fao O6,Kk) + [fams (1K) (4)
Also, the potential energy becomes

Vi{x) = Vo (X)) + Ve (337, (5}

where ¥, (x) is applied across the double barriers and well
only. Substituting Eqs. (4) and (5) intc Eq. (3) and retain-
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FIG. 1. Zero-bias sclution for In, s; Gag 47 As-AlAs structure showing elec-
tron density and potential energy profile. Barrier width = 22.6 A, well
width =452 A.
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ing first-order terms only yields a solution for the small-
signal current density in the device. When the small-signal
current density over the barrier and well regions is integrat-
ed and the ratio of the complex small-signal current and
voltage phasors is taken, the admittance per unit area of the
device is calculated. Since this admittance is due to the con-
duction current alene, the term iwC is added to the admit-
tance to account for the displacement current. The capaci-
tance per unit area is determined from

C=e/W, (6)

where W is the distance between the outer edges of the dou-
ble barriers. For the structure analyzed in this paper,
W=904A.

fil. DEVICE STRUCTURE AND dc SIMULATION
RESULTS

For the simulations, a pseudomorphic Ing 53 Gag 4, As-
AlAs structure was chosen for which excellent experimental
results recently have been reported.!' Figure 1 shows the
electron concentration and assumed potential energy for the
de, zero-bias solution of this structure. For this device, peak-
to-valiey ratios of 14 at room temperature and 35 at 77 K
have been obtained experimentally, with peak current densi-
ties in the range of 2—4 X 10* A/cm?. The conduction band
discontinuity in Fig. | is assumed to be 1.2 eV, and the effec-
tive mass is assumed constant throughout the device and
equal to 0.042 m,, the InGaAs value.

Figure 2 shows the static -V curve calculated at room
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FIG. 2. Static I- ¥ curve for the structure of Fig. 1 at room temperature both
with {dotted curve) and without (solid curve) phonon scattering. Peak-to-
valley ratio is 33.7 without scattering, 6.81 with scattering included. Nu-
merical method of Eqg. {3) was used.

R. K. Mains and G. I. Haddad 5042




temperature for this device, both with and without phonon
scattering included. For the case without phonon scattering,
a peak-to-valley ratio of 33.7 was calculated. When InGaAs
scattering rates were used throughout the device, the calcu-
lated peak-to-valley ratio was 6.81. It is believed that this
calculation underestimates the experimental peak-to-valley
ratic due to uncertainties in the scattering rates as well as to
numerical problems inherent to the solution of the Wigner
function equations.'* The calculated peak current densities
with and without scattering were 2.31 and 2.43 < 10° A/cm?,
respectively, on the low end of the experimental current
range.

In the experimental [-¥ curves, the peak and valley cur-
rents occur at higher voltages than the calculated values, at
0.7 and 1.0V, approximately. It is believed that this discrep-
ancy is due to the fact that self-consistency has not been
included in these calculations. Preliminary work on Wigner
function simulations including self-consistency'? shows that
approximately half the applied voltage can be dropped
across accumulation and depletion regions adjacent to the
device barrier regions.

For comparison, Fig. 3 shows the £-¥ curve for the case
without scattering using the original numerical method.”"?
This numerical method is obtained from the discretization
given in Eq. (3) leaving out the sin(k)/k weighting. The
peak-to-valley ratio obtained using this method was 2.57.

V. SMALL-SIGNAL ANALYSIS AND ESTIMATED
POWER GENERATION

To carry out the small-signal analysis, the device dc so-
lution at ¥V, = 0.44 V, J . = 1.28X 10" A/cm” was calcu-
lated, in the middle of the negative conductance region of
Fig. 2. Figure 4 shows the electron concentration and poten-
tial energy profile for this solution, which corresponds to fg.
and V. in Egs. (4) and {5). A small-signal voitage, ¥, of
different frequencies is superimposed on ¥, and is assumed
to exist entirely across the barrier and well regions. All the
small-signal calculations were carried out at rocom tempera-
ture and without phonon scattering.
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FIG. 3. Static Z-¥ curve for the structure of Fig. | at room temperature and
without scattering using the cld numerical method [no weighting in Eq.
(31
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FIG. 4. dc solution at room temperature with V. =044 V,
Jy4o = 128X 10° A/cm? for the case with no phonon scattering.

Figure 5 shows the real and maginary parts of the admit-
tance calculated from the small-signal conduction current,
as well as the @C displacement current component. At low
frequencies, G is just egual to the negative slope of the -V
curve in Fig. 2. From Figure §, it is seen that the negative
conductance of the device remains essentially constant up to
a frequency of 3 x 10’2 Hz. However, it is also seen that the
wC term in the admittance dominates above 10'° Hz so that
the device capacitance limits the power generation capabili-
ty at these frequencies.

The available rf power from this device as a function of
frequency was estimated as follows. The small-signal admit-
tance of Fig. 5 was assumed to remain constant over a large-
signal voltage range of (¥;;) e = 0.1V. The area of the
device was chosen so that it is matched to 1-{} circuit resis-
tance, which requires that

A= —-G/(G*+B?), (7
where B is the total susceptance, i.e., the conduction plus
displacement current parts. Again, since from Fig. 3 the C
term dominates at high frequencies, the device area and f

power are lirnited by the device capacitance. The available of
power is given by
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FIG. 5. Small-signal admittance calculated for the dc operating point at
V4 = 0.44 Vin Fig. 4. Solid curve is Re( ¥}, small dashed curveis Im( ¥),
large dashed curve is @C.
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FIG. 6. Estimated power generation (solid) and device area (dashed) for 1-
{} matching based on the smalfl-signal data of Fig. 5 and using
(Vi dpear =01V,

Pe=[ (Vi) /2]/[1 + (B/G)] . (8)

Figure 6 shows the estimated power generation capabili-
ty of this device and the area required for 1-£} matching.
Note that these resulis assume no parasitic series resistance
in the circuit, i.e., the circuit resistance is entirely made up of
the 1-8} load resistance K, that is absorbing power. If non-
zero series resistance, R, exists in the circuit such that
R_ + R; = 14}, the P, values in Fig. 6 would be scaled by
the actual value of R, .

The efficiency of the device may also be estimated as
follows:

ﬂ_Prf . (“G)(Vrf ;z)eak/z
Pdc V jdc

de

=8.88X 107 7( ~G).
(9}

From Fig. 5, the negative conductance is essentially
constant at the value 2.3210° S/cm?® up to 3 1012 Hz;
putting this value in Eq. (9) vields a maximum efficiency of
7 = 20.4%. At higher frequencies, 3 decreases as the nega-
tive conductance.

V. CONCLUSIONS

It has been shown that, if care is taken with the discreti-
zation of Eq. (1), it is possible to resolve sharp resonances in
Wigner function modeling of resonant tunneling dicdes.
Both the calculated peak current density and peak-to-valley
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ratic are within experimental ranges, although inclusion of
phonen scattering underestimates the experimental peak-to-
valley ratic at room temperature. A smail-signal analysis
predicts that these devices should exhibit negative differen-
tial conductance up to frequencies of several THz, however
device capacitance places a practical limit on device perfor-
mance at several hundred GHz.

Further work needs to be done on refining the numerical
method used to discretize Eq. {1). Also, self-consistency
shouid be included in the simulation to bring the applied
voltage values more in agreement with experimental results.
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