LETTERS TO THE EDITOR

Stabilization and Binding of Quantized Radicals*
KASIMIR FAJANS
Department of Chemistry, University of Michigan,
Ann Arbor, Michigan
November 12, 1942

In any attempt to reach a uniform point of view concerning the electronic structure of molecules, one has to consider the electric interaction and the quantization.

Using a few characteristic examples we shall combine these two factors into a principle which seems to have broad application to chemical binding.

The oxide MgO can be considered as ionic. However, O⁻ in the free state is unstable with respect to O₂⁻ and e⁻ (I) and, therefore, the principal quantum number of its eighth electron is \(n = \infty \). When combined with Mg²⁺ the value of \(n \) is reduced, in all probability, to \(n = 2 \). This process requires energy and, thus, the neon state of O⁻ has to be stabilized by the binding process.

This point of view can be applied to an electron pair. Left to itself the pair would dissociate. However, it can be stabilized by positive charges, in H⁺, He, Li⁺, as well as in H₂, Li₂ and represents a special distribution of negative charge. Depending on the field strength of the positive charges, the pair can be expected to assume a larger or smaller size with unchanged principal quantum number \(n \), but can also differ in quantization as has been concluded (II) for H₂ and Li₂.

One characteristic example of this analogy between O⁻ and an electron pair will be given here. The P atoms in P₂O₆ form a tetrahedron, 6 of the O atoms are situated near the middle of its 6 edges, and each of the remaining 4 is attached directly to one P atom. The P-O distances for the 4 oxygens are shorter than those for the 6 oxygens, which can be easily understood if one derives the molecule from P⁵⁺ and O⁻. The one-sided polarization leads to shorter distances than a many-sided polarization. The structure of P₂O₆ is similar to that of P₂O₄ suggesting that the 4O⁻ have been replaced by 4 unshared electron pairs. Finally, in P₄, which also has a tetrahedral structure, the 6O⁻ of P₂O₄ can be considered to be replaced by electron pairs, each pair shared by two P⁵⁺.

Coordination compounds are characterized by the binding of stable molecules or of radicals stabilized by the binding process. The remarkable group of isoelectronic substances Ni(CO)₆, Co(CO)₆(NO), and Fe(CO)₅(NO)₂ is diamagnetic. The C-O distance (1.15±0.03A) in these compounds differs slightly from that in free CO (1.128A), the N-O distance (1.11±0.04A) is near that in NO⁺ (1.073A). We suggest that the compounds contain deformed CO and NO⁺, both of which have great stability as particles with ten electrons (III). Accordingly, the metals are present in these compounds in the isoelectronic form Ni, Co⁺, and Fe⁺, having the electron configuration \(K^2L^2(M+N)^{16} \).

In the normal stable paramagnetic state of the Ni atom, the electrons beyond the L shell are subdivided into 3s²3p⁶and 4s². The transfer of the two NO⁺ into the L shell would complete it and make it diamagnetic. We therefore conclude that this state of higher energy is stabilized by the energy of binding between particles with 10 and 18 electrons.

The boron hydrides can be fitted into the above scheme, e.g., B₃H₆ can be formulated as BH₃·B₂H₄·BH₂. The radical B₃H₄ is a member of the isoelectronic series Na, HCN, HCCH, H₂BBH₂ in which the successive splitting of the nucleus (III) leads to the loosening of the system. Similarly, B₄H₈ is B₂H₄·BH₄, the former of the two radicals having an 18 electron shell.

The above offers examples of stabilization of radicals with various numbers of electrons, 2(2e⁻), 6(BH₄), 8(O⁻), 10(B₄H₈), 18(Ni) within ionic, covalent, and coordination compounds. In papers to follow this binding principle will be extended to many other cases.

I appreciate the valuable discussions with Professor Norman Bauer, University of New Hampshire, and Mr. Theodore Berlin.

* This is communication V on "Electronic Structure of Molecules." See communication IV, preceding letter.
† L. R. Maxwell, J. Opt. Soc. Am. 35, 374 (1940). As will be shown in a detailed paper, the gradation of the distances in P₄, Fe₂O₆, FeO₃ can be understood from the above point of view.
§ The binding is due to dipoles and polarizability.
¶ The proposed structures are in agreement with the electron diffraction results of S. H. Bauer and L. Pauling, J. Am. Chem. Soc. 58, 2403 (1936).