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Reexamination of methods for calculating the initial slope of the dynamic structure factor 
demonstrates the importance of covert correlations between the motions and subsequent 
positions of interacting colloidal particles. These correlations, whose existence has hitherto not 
been explicitly emphasized, explain the numerical discrepancies between one- and two-time 
derivative methods for calculating dS (k,t )Idt. A method for avoiding artifacts due to these 
correlations is presented. 

I. INTRODUCTION 

The dynamics of suspensions of interacting colloidal 
particles forms a major topic of current research. 1-8 Recent 
successes in the experimental study of concentrated un­
charged colloid suspensions,I-3 and the extension of Oseen­
type hydrodynamic interaction tensors to cover three and 
four particle forces,4 suggest that rigorous tests of our under­
standing of macroparticle dynamics should now be possible. 
However, before such tests can be made, unambiguous cor­
respondence must be established between experimental data 
and calculable quantities. In this note, expressions for the 
mutual diffusion coefficient Dm are considered. 

Experimentally, Dm may be obtained from the dynamic 
structure factor (intermediate scattering function) S (k,t ) by 
examining its initial slope; by definition 

-Dmk 2S(k,0) = lim dS(k,t) , (1) 
t---.o dt 

where k is the magnitude of the scattering vector k. S (k,t ) can 
be determined with quasielastic light scattering spectrosco­
py and a digital correlator. Since it is physically impossible to 
measureS(k,O) with correlation techniques, the limit ofEq. 
(1) necessarily represents an extrapolation towards t = 0 
from some relatively large time - 50 ns-l f..ls. 

S(k,t )isrelatedtotheinstantaneouspositionsfi(t ) of the 
N scattering particles by 

S(k,t)=N- 1 (~I eXP{ik.[ri(O)-fj(t)])}, (2) 

the brackets denoting an ensemble average. A variety of ex­
pressions for the initial slope of S (k,t ) exist. For example, 
Beenacker and Mazu~ use 

Dm = (N- 1 -£ DiJkB T- -£ Sj}c(af..l) , (3) 
i,j~ I j~ I ac P,T 

where D ij is the diffusion tensor, k B is Boltzmann's constant, 
and S. is the fluid mobility-the flow offluid induced by the 
moti~n ofparticlej. Equation (3) appears nearly identical to 
the form obtained6 by Akcasu and Gurol for the diffusion of 
beads of a polymer chain, If one neglects hydrodynamic in­
teractions, Eq. (3) reduces to the expression 

dS(k,t) = -N- 1 /.-£ k2D0t5ij 
dt \ I,}= I 

Xexp{ik.[ri(O) - fj(O)) J), (4) 

a) The support of this work by the National Science Foundation under Grant 
CHE82-13941 is gratefully acknowledged. 

of Ackerson et al.,7 where Do = tr(D)!3. On the other hand, 
this author8 obtained the form 

dS(k t) _ ( N 
~c:..::..:.':....!.... = N 1 . L exp Iik.[ri(O) - rj(O)]} 

dt I.}= 1 

x [ - ik.vj(t) - k.Dij.k - k . ..::1D.k]), (5) 

where vj(t) is the velocity ofparticlej at time t (t #0), and 
where ..::1 D is the dynamic friction term due to correlations 
between the Brownian displacement and the subsequent in­
terparticle forces on each particle. 

Equations (4) and (5) are obtained by the seemingly in­
nocuous application of elementary calculus, followed by use 
of Kubo relations, such as 

(f ds VBi(O)VBi(S)) = D;;, (6) 

between the diffusion coefficients and the Brownian velocity 
v Bi of a particle. Unfortunately, Eqs. (4) and (5) are numeri­
cally inequivalent. On rearrangement, Eq. (5) is found to 
contain nonzero terms in V.(Dij)' as well as the nonzero..::1D 
term, while Eq. (4) lacks such terms. The differences between 
these equations have largely been ignored, or ascribed to the 
neglect of unspecified hidden correlations in the particle mo­
tions. The objective of this note is to locate the hypothesized 
hidden correlations, thereby demonstrating which of Eqs. 
(3)-(5) is to be preferred. 

Section II of this paper proceeds as far as possible 
towards Eqs. (3)-(5) without using model-dependent as­
sumptions. In Sec. III, a model for particle motion based on 
the generalized Langevin equation is introduced. Equations 
equivalent to Eqs. (4) and (5) are obtained in Sec. IV; these 
equations are shown to have equally valid derivations, but 
not to be equivalent. In Sec. V, correlations hidden in the 
Langevin equation are revealed; it is argued that by structur­
ing the calculation correctly the hidden correlations can be 
avoided. A discussion is found in Sec. VI. 

II. MODEL-INDEPENDENT RESULTS 

S (k,t ) only depends on the time interval between the two 
moments [in Eq. (2) 0 and t] at which the particle positions 
are known. Denoting these two moments by l' and T, with 
t = T - 1', and invoking the physical requirement that parti­
cle positions are continuous functions of the time, one has 

dS~~,t) =N- 1 C~l-ik'Vj(T) 

X exp ik· [ri(1') - rj(T))), (7) 
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Vj being a particle velocity. 

To use equilibrium statistical mechanics to evaluate Eq. 
(7), the particle positions must be referred to the same time, 
as is done by introducing the displacement 

Drj = iT du vj(u), (8) 

and expanding the exponential as 

e,k·lr + oSr] = e,k.r[ 1 + ik'Dr + ... ]. (9) 

To obtain dS /dt to order k 2, only the lead terms of the ex­
pansion are required. In Eq. (7), rj may be expanded around 
the moment 7, or rj may be expanded around the moment T, 
so 

( dS) =N-I (.f exp{ik.[rj(7)-rj (r)]J 
dt a ,.)=1 

X [ - ik·vj(T) - iT du k'Vj(U)k'Vj(T)]), (lOa) 

or 

( dS) =N-I( f expzk.[rj(T)-rj(T)] 
dt b j.j=1 

X [-Zk.Vj(T)- iT du k.Vi(U)k.Vj(T)]), (lOb) 

where Eq. (8) has been applied to write the displacement Dr in 
terms of an integral over the particle velocity. As will be seen 
below, the Eqs. (3)-(5) for Dm may be obtained from 
(as /at)a or (as fat lb' 

The above computation used only the techniques of 
freshman calculus; differentiation, integration, and expan­
sion in power series to a specified order in k. No arguments 
based on time scales, models for particle motion, or station­
arity were invoked. As long as the power series are conver­
gent, (dS /dt)a and (dS /dt)b must be equal. However, these 
derivations are not identical: 

(i) In Eq. (lOa) the fixed time T, at which Vj is specified, 
is different than the time 7 at which the particle positions are 
specified, while in Eq. (lOb) the fixed time T, at which Vj is 
specified, is the same as the time at which the particle posi­
tions are specified. 

(ii) In Eq. (lOa), the velocities in the correlation integral 
S Vj(u)vj(T) are those of the same particlej at two times, 

while in Eq. (lOb) the velocities in the correlation integral 
S Vj(u)vj(T) are those of two different particles at two times. 

III. MODEL FOR PARTICLE MOTION 

The model for particle motions used here is the general­
ized Langevin equation 

dv 
M -;t = - t,v j + FBi - Vj W, (11) 

in its low-frequency form 

dv 
M-'~O, 

dt 
(12) 

where M is the macroparticle mass, t is the Stokes' Law drag 
coefficient, F Bj is the fluctuating force on the macroparticle 
due to random solvent motions, and - VWis the force on i 
due to the intermacroparticle potential W. At long times the 

Langevin equation is equivalent to the Smoluchowski equa­
tion.9 A particle has a drift velocity 

VDi = - VW· t- I (13) 

and a fluctuating Brownian velocity component 

VBi = Vj - VDi • (14) 

The drift velocity ofEq. (13) is the same as the drift velocity 
found in the Smoluchowski sedimentation equation. In the 
absence of external forces, for identical particles, v Dj has the 
significant property 

N 

L VDi =0, (IS) 
i=l 

which follows from the Newton's law requirement that 
forces (and hence drift velocities) of a pair of interacting par­
ticles are equal and opposite. 

Stokes' Law is a low frequency approximation. If one 
applies a force on a particle, there is some short time 7 H 

before the surrounding solvent molecules reach their steady 
state behavior. As shown in Rice and Gray,IO this time is 
shorter than the correlation time 7 B of Eq. (16). The Brow­
nian velocity component is usually assumed to have a very 
short correlation time 7 B: 

(16) 

The random motions are also generally assumed to be 
decoupled from the slowly varying drift velocity,9 so that the 
Kubo relation applies 

(i'VBi(O)VBj(U)dU)=Dji> t>7B. (17) 

Hydrodynamic interactions between the Brownian macro­
particles lead to well-known4

•
11

•
12 modifications in Eqs. (13) 

and (17). 
The energy of a system of macroparticles may be de­

composed into kinetic energy terms dependent only on parti­
cle velocities and potential energy terms dependent only on 
particle positions. In the canonical ensemble, at a given in­
stant in time the particle positions and velocities are there­
fore independent, so that 

(exp!zk.[rj(T) - rj(T)] J zk.vj(T) 

= (exp! zk.[rj(T) - rj(T)]} ) (ik·vj(T) = 0 (18) 

the final equality following from the reflection symmetry of 
the kinetic energy. 

IV. REDUCTION OF dS(k,t)ldt 

Equations (11)-(18) are now used to reduce Eqs. (lOa) 
and (lOb) to simpler form. From Eq. (18), the part ofEq. (lOb) 
which is linear in v vanishes. Equation (15) remains true if 
each term is multiplied by the same constant, so to order k 2: 

jtl [exp zk· [rj(T) - rj(T)] 

(19) 

If one substitutes Vi = VB; + VDi and uses Eq. (19), Eq. (lOb) 
reduces to 

J. Chern. Phys., Vol. 80, No. 12, 15 June 1984 



6236 George D. J. Phillies: Dynamic structure at short times 

( dS) = _ lim N- 1 
( f exp{ik.[r;{T) - rj(T)] l 

dt b t~O ;.j~ I 

X iT du k'YB/(U)k.YBj(T)). 

In Eq. (lOa), the linear term in 

(exp [ik.(r;(-r) - rj(-r))] k·y Bj(T) 

(20) 

vanishes, because between rand T the Brownian velocity 
will have thermalized, losing any possible correlation with 
r;(r). Equation (lOa) becomes 

( dS) = lim N- I j f exp{ik.[r;(-r) - rj(r)] J 
dt a t~O \;.j~ I 

X [-ik.YDj(T) - iT du k·yBj(u)k.YBj(T) 

-iT du k·yBj(u)k.YDj(T) 

- iT du k'YDj(U)k.YBj(t)]). (21) 

If T - r is small, yDi(u) is nearly constant over the interval 
(T,r); the omitted term in 

f dl-t yD;(u)yDi(T) 

is linear in t, and vanishes as t - O. By comparison with Eq. 
(5), we define 

k·.1D·k = iT du k·yBj(u)k·yDj(T) 

(22) 

Finally, from the Kubo relation (17), one generally infers 

c.~ I exp rlik.[r;(r) - rj(r)]! iT du k'YBj(U)k.YBj(TI) 

(23a) 

and 

c.~ I explik . [ri(T) - rj(T)] l iT du k'YB/(U)k.YBj(T)) 

= ( . f e,k.[r;-rj ] k.Dij.k). (23b) 
',}= I 

Here we have used the argument that exp[ik.(r; - rjl] is 
essentially a constant over the time -rB during which 
f du YB(U)YB(T) is nonzero, so that the average overYB is not 
affected by differences between the r;(r) ofEq. (23a) and the 
r;(T) ofEq. (23b). 

The above considerations serve to reduce Eq. (10) to a 
more familiar form. As shown in Appendix A, if one expands 
Dij as 

Dij = Drflij + kB T (I biJ + IbiJm )Oij 
I I.m 

(24) 

where T ij and T;m) are the two and three particle Oseen ten-

sors, and bu and bum represent the effect on the mobility of i 
of reflections by I and m of the hydrodynamic wake of i, one 
obtains 

but 

(2Sb) 

Equation (2Sa) is equivalent to Eq. (5), while with the proper 
hydrodynamic tensors Eq. (2Sb) takes the form ofEq. (3) or 
Eq. (4), confirming the above assertion that Eqs. (3HS) all 
follow from Eq. (lOa) or Eq. (lOb). 

One of the major results of the modem hydrodynamic 
theory of interacting spheres, emphasized by Felderhof, II is 

VI·Djl#O (26) 

ifDjI is expanded to high order in (air). Here a is the radius of 
a sphere, while r is the distance between the spheres. While 
an incompressible fluid satisfies V·y = 0 for its own flow, the 
Faxen theorem insures that the velocity of a sphere in a non­
uniform flow is not the same as the velocity which the fluid 
would have had, at the sphere's center, if the sphere had been 
absent. The motion of the spheres, relative to a divergence­
less fluid flow, need not be divergenceless. 

IfikVI:DjI does not vanish, Eqs. (2Sa) and (2Sb) do not 
agree, even though these results were obtained by applying a 
single physical model to algebraically equivalent starting 
points. The discrepancy does not go away if one neglects 
hydrodynamic interactions, i.e., ifDij = DrP;j' As shown by 
Ackerson et al./ for T - r small 

N-
I C.~I exp{ik.[r;(r)-rj(r)]) [-ik.YDj(T)]) 

= kB T k2[S(k) -1]. (27) 
f 

In this case, Eqs. (25) becomes 

( dS) = Dok 2[S(k) - 1] - Dok 2S(k) - k . .1D.kS(k), 
dt a 

(28a) 

(28b) 

An explicit calculation,8 now qualitatively supported by ex­
periment,13 shows that.1 0 -=f O. Even if Dij does not incorpo­
rate interparticle interactions, Eqs. (28) indicate (dS Idt)o 
=/=(dS Idt)b' 

V. RESOLUTION OF THE ANOMALY IN (dS/dt) 

The manipulations leading to Eqs. (lOa) and (lOb) are 
unexceptionable, so the inequivalence of (dS I dt)a and 
(dS I dt)b is most reasonably attributed to some subtle fea­
ture of the model for particle motion given in Sec. III. That 
is, Eqs. (2Sa) and (2Sb) are presumably unequal because cor­
relations between VB' Y D ' and the particle positions have 
been neglected. This section shows where and when these 
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correlations are hidden and argues how artifacts due to these 
correlations may be avoided. 

The correlations will be revealed by considering pre­
cisely what one means by the drift velocity. This author8 and 
Pusey and Tough14 give differing physical interpretations of 
Eqs. (13) and (14), but the hidden correlations are predicted 
to occur at the same point. The resolution of the problem will 
be to arrange the computations to avoid the correlations; 
agreement on a more precise physical interpretation of the 
drift velocity will not be needed. 

Pusey and Tough argue that v D is only defined on time 
scales longer than r H' the time scale on which the frequency­
independent Stokes' Law is valid. If the particle positions are 
specifiedata timet, VD(t ) is zero and v(t) = vB(t). Contrarily, 
this author has proposed that since Wis slowly varying, and 
since Wacted prior to the moment t, Eq. (13) defines vD , 

while VB is simply the difference between VD and v. 
For a freely moving particle, VB is commonly envi­

sioned as being driven by random stress fluctuations in the 
solvent. If one neglects interparticle hydrodynamics, the 
Brownian motions of neighboring particles are not correlat­
ed with the particle positions. These images, which appear in 
the interacting particle model as Eqs. (17) and (23), are not 
quite consistent with either interpretation of v D' At mo­
ments other than t, VB may be said to be due to solvent fluctu­
ations. However, in the interpretation of Pusey and Tough, 
v D(t) vanishes. As interparticle interactions still act at t, at 
the unique moment t VB includes a contribution to particle 
motion due to interparticle interactions. vB(t) and vB(T) 
[where T - t>rB ] thus do not have the same physical 
causes. At the moment t, it is then not physically transparent 
that S du VB(U)VB(t) is given by the free particle value ofEq. 
(17), since VB is generally driven only by solvent stress fluctu­
ations, while VB (t ) is also driven by the interparticle interac­
tions. 

On the other hand, if one defines v D by Eq. (13), then 
vB(t) and the li(t) are correlated. Namely, from Eq. (18), 

0= (explik'[li(t) - lj(t)] ]ik.vj(t) 

= (exp{ik'[li(t) - lj(t))] ik.vBj(t), 

(29) 

or 

(exp{ ik· [li(t) - lj(t)] ] ik·v Bj(t) 

= (exp{ik'[li(t)-lj(t)]] ik.Vj W(riJrj ).f- 1), :;60, 
(30) 

which is inconsistent with the argument for Eq. (23). 
It should be possible to remove these problems with 

projection operators or more careful analysis. A simpler ap­
proach is to rely on Eq. (16). Positions and velocities taken at 
the same time may have subtle correlations, but if one waits a 
period >r B' initial correlations between VB and v D or li will 
decay away. A calculation which specifies particle positions 
at a time T, and uses particle velocities only at time t (with 
IT - t I >r B)' will not be affected by hidden correlations, be­
cause by t VB will be thermalized, and v D will have reached 
its low-frequency drift value. By inspection, Eq. (lOa) satis­
fies this approach by correlating li(r) and v(T), but Eq. (lOb) 
correlates lj and Vj at the same moment T. Ifhidden correla-

tions are responsible for the differences between Eqs. (25a) 
and (25b), the fault is in Eq. (25b), not in Eq. (25a). 

VI. DISCUSSION 

In the above, two alternative methods of expanding dS / 
dt at short times were considered. These amounts give ex­
pressions which are algebraically equivalent to results pre­
viously obtained with other techniques.8.7 While the expan­
sions ofEq. (10) appear algebraically equivalent, in that both 
of them are based on a power series to a given order in k, the 
expansions give different numerical answers for the mutual 
diffusion coefficient Om. In Sec. V, it was argued that the 
discrepancy arises from the neglect of subtle correlations 
between particle motions and positions. These correlations 
were not evaluated directly. A consideration of the model for 
particle motions indicates that these correlations are most 
likely to be handled incorrectly if particle positions and 
Brownian velocities are averaged at the same moment in 
time, as opposed to averaging the particle positions at one 
moment, and the particle Brownian velocities at another 
moment. Equation (25a) for dS / dt is therefore to be pre­
ferred to Eq. (25b), in accord with our previous work. 8.19 

Historically,9 the Langevin equation (and the corre­
sponding Smoluchowski equation) were applied to cases 
(harmonically bound particle, sedimentation) in which 
changes in the fluctuating force F B and in the external force 
- Vi W could be presumed to be uncorrelated. As noted by 

Chandrasekhar,15 in obtaining the Langevin and Smolu­
chowski equations one has made the drastic assumption that 
the forces can be divided into two uncorrelated 16 parts. In 
the cases discussed by Chandrasekhar, the force F B was as­
sumed to fluctuate several times during an interval so short 
that -.tvi only changed by a small amount. This assump­
tion was clearly physically reasonable. In contrast, in the 
colloidal diffusion problem considered here, F B and Vi W 
both fluctuate on molecular time and distance scales. The 
usual methods for obtaining the Smoluchowski equation 
from a Fokker-Planck equation l7 will still be valid, but FB 
and Vi W can no longer be assumed to be independent. In the 
presence of these correlations, the Smoluchowski equation 
form 

lim dd
S 

= ( f {Vi·Osm,VrVi·Osm·/3'Vj [Wl]eik"ri-rj)) 
1_0 t i,j= I 

(31) 

for the time dependence of the dynamic structure factor 
should be correct, if Osm is interpreted correctly, Here 
f3 = (kB Tj-I. Equations (25a) and (31) agree if the diffusion 
coefficient Osm of the Smoluchowski equation is a dressed 
diffusion coefficient 

(32) 

incorporating the effect of correlations between F Band 
Vi W. [Equation (31) has V·D terms.] 

If Om were to be obtained from the Smoluchowski 
equation (31) with the assumption that Dsm is a bare diffusion 
coefficient Dij or Do 8ij' no LlD term would be found in Dm , 

because interpreting Osm as the bare diffusion coefficient is 
equivalent to assuming that Ll D = O. This (negative) predic­
tion is confirmed by extensive calculations of dS /dt, using 
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the Mori formalism and the Smoluchowski equation with 
Dm = Do; such computations find no sign of a .dD term 
through order (k 2) and first order in time. 18 

The physical nature of the dynamic friction term may 
be more readily understood by considering an extreme case 
of intermacromolecular interaction: the formation of a 
dimer from two monomers. Suppose one has two noninter­
acting particles, whose Brownian displacements over some 
period of time are RI and R2, respectively. A covalent link 
between the two monomers will serve to distribute the force 
on each particle over both particles of the dimer. By. Eq. (15), 
any reduction bR in the displacement of one particle of the 
dimer is exactly matched by an increase in the displacement 
of the other particle. To illustrate this effect, consider the 
special case in which RI and a R are directed along the line 
centers of the two particles. In this case, the fluctuating force 
responsible for RI will be resisted equally by both particles; 
instead of moving the first particle through R I, the fluctuat­
ing force will move each particle of a linked pair through an 
equal distance RI/2. 

Superficially, then, the interparticle interaction appears 
to have no effect on the mass flow m.dx; instead of moving a 
monomer of mass m through R I, because of the interaction, 
twice the mass is displaced by half the distance, so m.dx 
appears the same with or without the interparticle bonding. 
However, the bond distributes the random forces on both 
particles evenly over both particles. If RI and R2 are much 
larger than the bond length, the effect of the bond is to cause 
the first particle to be displaced by (RI + R2)12 rather than 
R I, and similarly for R2. Uncorrelated random variables add 
incoherently. The distribution of (RI + R2)12 is narrower 
than the distributions ofRI and R2, so the mean-square dis­
placement of a particle in a dimer is less than the mean­
square displacement of the same particle when it is free. Phy­
sically, the.d D term acts by averaging the random force F B 

on each particle in an interacting cluster over all of the parti­
cles in a cluster. The average of several random forces has a 
narrower distribution than a single random force. The aver­
aging diminishes the diffusion coefficient of the individual 
particles. 

APPENDIX: {dS/dt)a and (dS/dt)b IN THE PRESENCE OF 
HYDRODYNAMIC INTERACTIONS 

The goal of this Appendix is to obtain Eq. (25a). From 
Eqs. (21), (22), and (23a), one has 

( dS) = N- I /.f expik.[rJT) - riT)]) 
dt a \',J=I 

X [ - ik·vDj(T) - k.D.iik - k . .dD.k]). 

A compressed notation for the mobility tensor is 

Ilu = L bi/ + L bi/m, 
I#i I.m 

#i 

(AI) 

(A2a) 

Ilij = Tij + L T imj , i=l= j, (A2b) 
m#ij 

where the leading terms of the band T tensors are4 

bi/ = - ~ (.!!...)\/ri/' (A3a) 
4 ri/ 

X [1 - 3(r ml·ri/)2] + 6 [rim ·r m/ ] 2 [r m/.ri/ ] 2 

(A3b) 

(A3c) 

(A3d) 

where a is the sphere radius, r ij is the scalar distance between 
i andj, r ij is the unit vector from i toj, I is the identity tensor, 
rr denotes the outer (dyadic) product, and only the lowest 
order term (in air) of each tensor has been given. 

The diffusion tensor and the drift velocity may be writ-
ten 

V Dj = Il·Fj + L Iljl·F/, 
/#j 

(A4a) 

(A4b) 

where aij is the Kronecker delta and F/ is the force on l. 
Simplification follows closely on the lines of an earlier pa­
per. 19 If the ensemble average over particle positions is nor­
malized as 

(A5) 

S d~ being the integral over the N particle coordinates, {3 
being (kB T)-I, and Vbeing the volume of the system, Eq. 
(AI) becomes 

(
dS) N-1 SdrN -P(W-A)~ ik.(r,-rj ) - = <--e £..e 
dt a V N 

ij 

X { - k.~ (lljl·F/) - k.[Do + kB TIl.ii ].k 

- k . .dD.k}. (A6) 

Here the sum on l includes l = i, the mobilitiesll may depend 
on the coordinates of more than two particles, and in the end 
only terms of order k 2 will be retained. As before, 19 the forces 
can be eliminated by the identity 

e- P(W-A)F/ = kBTVde- P(W-A)), 

and an integration by parts, yielding 

( dS) =N-lkB Tfd~ e- P(W-A) 
dt a V N 

(A7) 

X {~ikVd e,k.r'pjI] } - ~e'k.r"k'Il.ii'k} - k·.dD·k, (A8) 
4JJ 4J 

Equation (A8) may be simplified. In particular, the 
1= j=l=i terms ofthe first sum, with VI acting on the expo­
nential, cancel the terms of the second sum with i =1= j. Terms 
of the first sum with I = i =1= j, and V / acting on the exponen­
tial, may be combined with the surviving terms of the second 
sum. From Eqs. (A4a) and (A5), 
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(dS) = N-1(}; e·1<-rl/( _ k.Oij.k) 
dt a 'J 

+ L l,·rijikV/: [OJ/ ]) - k·~O·k. (A9) 

As stressed by Felderhof, V/·Oj! #0 if one goes to higher 
order in (air). 

Equation (25b) results from the substitution ofEq. (23b) 
into Eq. (20). This equation differs from Eq. (3) by the ab­
sence of the term ofEq. (3) in Sj. This difference is not physi­
cally significant. Equations (23b) and (25b) contain the true 
diffusion tensor appropriate to moving particles in a closed 
volume, while in Eq. (3) Beenacker and Mazur were obliged 
to use the diffusion tensor appropriate to an infinite volume 
of fluid. The - ~j Sj corrects for the difference in boundary 
conditions. 
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