PENETRATION OF GAMMA RADIATION THROUGH WATER

counter. The relative rate is given by

C(uox)=[j;

where ¢(E’) is the efficiency® of the Geiger counter and
K is a normalization constant.

Geiger counter observations of the relative counting
rate produced by a Cs®7 source in water are represented
by the solid curve of Fig. 7. Statistics of the data were
of the order of 1 percent and are not indicated on the
curves. The circles represent the relative counting rate
C(uox) as computed from Eq. (4).

’
B max

f’<E’,uox>e<E'>dE'+e(E0>e-"°’JK,
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Bistatic Radar Cross Sections of Surfaces of Revolution*
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The results obtained by applying the current-distribution method to the problem of approximating the
scattering cross section, when the transmitter and receiver are separated, are presented for several simple
geometric configurations. The method is applied for the case in which the transmitter is located on the
axis of revolution and the ratio I/ is large, where [ is a “characteristic dimension” of the body and A is the
wavelength. These results indicate that in most of the cases considered the cross section increases as the
angle between the receiver and the transmitter increases.

1. INTRODUCTION

N this paper, bistatic radar cross sections of simple
configurations are obtained by applying an approxi-
mation method. In most of the cases considered the
configuration is a surface of revolution, the transmitter
is located on the axis of symmetry of the body, the
polarization is specified, and the position of the receiver
is allowed to vary in a plane containing the axis of the
body.
The physical description of bistatic cross sections
differs from that of monostatic cross sections in that
the receiver and the transmitter are permitted to be

* This paper is a condensation of the report UMM-115, *“Studies
in radar cross-sections VIII—theoretical cross-sections as a
function of separation angle between transmitter and receiver
at small wavelengths” by Siegel, Alperin, Bonkowski, Crispin,
Maffett, Schensted, and Schensted, Willow Run Research Center
University of Michigan, October, 1953. In addition, portions of
this paper were presented in a talk “Determination of scattering
cross-sections for the case of separated transmitter and receiver”’
by Siegel, Bonkowski, Crispin, and I. V. Schensted, presented
at the Symposium on Microwave Optics, McGill University,
Montreal, Canada, 1953.

located at separate positions. To specify the bistatic
radar cross section of a body for a general location of
transmitter and receiver more than one angle is re-
quired. However for most cases discussed in this paper,
one angle, the angle 8 shown in Fig. 1, suffices. The
bistatic radar cross section, therefore, is denoted by
a(B). It is evident that the monostatic backscattering
cross section is a special case (8=0) of the bistatic cross
section and can be denoted by ¢(0).

The approximation technique used is the current-
distribution or physical-optics method. This method is
applicable when the wavelength of the incident radia-
tion is small with respect to the characteristic dimension

’
7 Axis of Symmetry

of Scatterer

Scattering Body

Transmitter

Receiver

F1G. 1. The angle 8.
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of the body. In using any approximation method it is
desirable to know how the results obtained from it
compare with the physically expected or experimental
results. In determining the monostatic radar cross
section, when the wavelength is much less than the
characteristic dimension of the body, the current-
distribution method has provided many results which
are in close agreement with experiment and with exact
theoretical solutions.

The current-distribution method has been subjected
to much criticism on both theoretical and experimental
grounds."? For example, reasoning based on the assump-
tions of the current-distribution method would lead
to the conclusion that this method should not be used
when the surface has a point discontinuity. However,
the method predicts the nose-on backscattering cross
section of a semi-infinite cone to within experimental
accuracies, if not exactly.3+

When solving far-zone problems for which the bodies
are infinite in the direction of propagation, Abelian
limit processes usually are convenient unless the con-
figuration’s tangent at infinity is parallel or perpen-
dicular to the propagation vector. The limit process is
commonly used, because it is not possible to get in-
finitely far from an infinite body. If the viscosity or
conductivity of the medium is introduced into the
problem (although these quantities may be negligible),
then the problem becomes formally the same as the
previous one with the objection to the limit process
removed. In this paper, an Abelian limit process is
used in the discussion of the semi-infinite cone.

Some doubt has been thrown on the applicability
of the physical-optics approximations to electromag-
netic scattering problems in the past by the assertion
that these approximations would always be in error
by more than the corresponding physical-optics ap-
proximations to the acoustic problem. At least one
apparent contradiction to this assertion is presented
in references 3 and 4, where it is shown that physical-
optics predicts the exact electromagnetic cross section
for cones of small angle, whereas the same approximate
methods predict a value four times as great as that
predicted by the acoustic wave equation.

Although the quantitative theoretical explanation
of this factor of four cannot be elaborated at the
present time, it is clear that such a disagreement should
not be unexpected. The acoustic wave equation which

! B. B. Baker and E. I. Copson, The Mathematical Theory of
Huygen’s Principle (Oxford University Press, New York, 1950),
second edition.

2 Symposium on Microwave Opiics (Eaton Electronics Research
La(li)(iratory, McGill University, Montreal, Canada, 1953), Vols. I
and IT.

3 Siegel, Alpern, Crispin, Hunter, Kleinman, Orthwein, and
Schensted, ‘“Studies in radar cross-sections IV-——comparison
between theory and experiment of the cross-section of a cone,”
Willow Run Research Center, University of Michigan, Report No.
UMM-92 (February, 1953).

4 Siegel, Crispin, and Schensted, J. Appl. Phys. 26, 309 (1955).

ET AL.

has been used is merely an approximation to the exact
equation of the motion. This approximation is valid
only when the wavelength is large (in comparison to the
dimensions of the scatterer), because the influence of
viscosity in acoustics is greatest at small wavelengths.®
However, the physical-optics approximation is valid
only when the wavelength is small in comparison to
the dimensions of the scatterer. Hence, the physical-
optics approximation cannot be expected to reproduce
accurately the real situation of acoustic scattering at
any wavelength, whereas the same approximation can
be expected to reproduce accurately the real situation
in electromagnetic scattering whenever the wavelength
is small.

Although in the above only an infinite body was under
discussion, there is nothing in the argument which
requires that the surface be infinite; the same type of
conclusion would be reached for a finite body in a real
fluid.

The cone result shows that it is possible to treat by
the current-distribution method at least some bodies
which have point discontinuities. There is no proof
available at the present time that pointed bodies in
general can be treated by physical-optics. Such a proof
would require a stronger basis than the present existence
and uniqueness proofs in electromagnetic theory, since
the papers of Weyl and Miiller®” and the Fredholm
theory are based on the assumption that the body is
“sufficiently smooth.”

In addition to the cone solution, a point (or rather
four such singularities) has been treated by Kouyoum-
jian in his solution for the cross section of a square flat
plate® by the Levine-Schwinger variational procedure.®
The physical-optics result was in fairly good agreement
with the variational result in the region where the
wavelength is equal to, or less than, the length of the
side of the plate. Kouyoumjian’s experimental results
agree more closely with the variational curve than with
the physical-optics curve, but no great error would be
made if the optics result was used.

In addition, the physical-optics determination of the
nose-on backscattering cross section of an ogive (still
another pointed body) is also in close agreement with
experimental results (see reference 3).

2. THE METHOD FOR DETERMINING BISTATIC
CROSS SECTIONS

If the surface of the scattering body is assumed to
be perfectly conducting, the equation for the scattered

5J. W. S. Rayleigh, The Theory of Sound (Dover Publications,
New York, 1945), second edition.

8 H. Weyl, Math. Z. 55, 187-198 (1952).

7 C. Miiller, Math. Z. 56, 80-83 (1952).

8 R. G. Kouyoumjian, “Calculation of the echo area of several
scatterers of simple geometry by the variational method,”
Symposium on Microwave Optics (Eaton Electronics Research
Laboratory, McGill University, Montreal, Canada, 1953), Vol. I.

9H. Levine and J. Schwinger, Commun. Pure Appl. Math.
Vol. IIT, No. 4, p. 355 (December, 1950).
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magnetic field® can be written as

1 e—ikR
Hcc=~" f(nXHt)XV(
47 J g R

where H,,=the scattered magnetic field vector, n=the
unit normal to the surface, H,=the tangential com-
ponent of the magnetic field on the scattering surface,
R=the distance separating the receiver and the integra-
tion point, k=2r/A (A= wavelength), and .S= the region
of integration=the entire surface of the scatterer.

Under physical-optics assumptions, H; can be ap-
proximated as twice the tangential component of the
incident magnetic field on the “illuminated” side of
the body and zero on the “shadow” side of the body.}
Letting the incident magnetic field have a magnitude
H, and a direction a, then according to this
approximation

H,= 2 Hoet 0

)dS, (2-1)

on the illuminated side of the body,
Hg = 0
on the shadow side of the body,

where k=a unit vector directed from the transmitter,
assumed to be infinitely far away, to the origin of the
coordinate system; r=the radius vector from the origin
to any point on the surface of the scatterer; and
i;=a—(a-n)n,

If the receiver is at a very great distance from the
body, if the body is finite, and if the incident magnetic
field is of unit magnitude, then Eq. (2-1) can be expressed
in the form

e—ikR’

Hsc=

F(8) (2-2)

RI

where

ik
F(g) =5—[(no~ a)f— (no-f)a],

f= f n exp[ —zkr- (no+k) Jds
=izlz+iyly+ial 23

and R’=the distance from the origin to the receiver.
The radar cross section is given by"

o(B)=4n[|F.|*+ | F, |+ |F.|%]. (2-3)

The amount of energy received is proportional to the
square of the magnitude of the scalar product of the
vectors H;, and d, where d is the direction of the
receiver polarization; thus it is convenient to define

illuminated
region of body

0 J. A. Stratton, Electromangetic Theory (McGraw-Hill Book
Company, Inc., New York, 1941), p. 466.

t The shadow curve is the locus of points on the body for which
k-n=0. This curve separates the portion of the body “seen” by
the transmitter (i.e., the illuminated side) from the shadow side.

1 K. M. Siegel and H. A. Alperin, Report No. UMM-87, Willow
Run Research Center, University of Michigan (January, 1952).
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F16. 2. Geometry for surfaces of revolution.

the effective cross section as

7e(B)=4r|F-d|?
4w
Ue(3)=;\;|(HO'a)(f'd)-(no'f)(a'd)lz- (2-4)

If d is given by a vector whose components are pro-
portional to the complex conjugates of the correspond-
ing components of F, then ¢.(8) reduces to o(8).

If the body is a surface of revolution (the axis of
symmetry taken to be the z-axis), if the receiver is re-
stricted to be in the yz-plane with y<0, and if, in ad-
dition, the transmitter is located on the z-axis (z>0),
then the geometry shown in Fig. 2 applies. With the
situation as pictured in Fig. 2,

no=1, sinf—1, cosf, and k= —i..

If the polarization of the incident wave is a=i, and if
the surface is symmetric with respect to the yz-plane,
then from Eq. (2-3)

4
ga=iy(8)=—]1,|? (2-5)
XQ

where

I.= f %, exp[ —ikr- (no+k) 1ds.

illuminated

region of body
In many cases, the integral I, can be evaluated easily
with the aid of the following Double Stationary-Phase
theorem (hereafter, this theorem will be referred to as
the D.S.P. theorem):

Theorem :
d pb
I=f f fx,y) e =0 dxdy,
If c a

Let
(1) f(x,y)=X(x)Y (y) is analytic in the region
R={zyla<a<d, c<y<d},

(2) g(x,y) is analytic in R,

(3) there exists one, and only one, point (xo, ¥o) in
the interior of R, such that

j)0= l]o=0 and f()to—-SQ??fO,

where

P=8z =8y, T=grz, S=fay
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and

=gy,
and

(4) X(&)/ge(¢m) and Y (n)/gy(£m) are of bounded
variation for (¢) in R but not in

R'= (x,y|wo— < a0+ 8,30—e <y < yote),

then

=+ 2imeihe (2090 f (x50,57,) 1
I= / ° .LO(—)as k— o,
k[fofo—S[)Z]* k%

For a surface whose first and second derivatives are
continuous, the essential contribution to the cross
section for short wavelengths can be obtained from the
integral formulation of the current-distribution method
if the integration is performed by the method of
stationary phase. If the integration is performed
exactly, a result dependent upon wavelength is usually
obtained. Since the application of the method of
stationary phase and the physical-optics integrals
depend on the parameter (kI)~', where k=2m/\, [ is the
characteristic dimension of the body and A is the wave-
length, it can be shown that the physical-optics result
is a perturbation of the geometric-optics (or stationary-
phase) result.

For a pointed body, the method of stationary phase
cannot be applied directly for most values of 8. The
cross section predicted by geometric-optics is equal
to wR1R,, where R; and R, are the two radii of curvature
at the stationary-phase point. A stationary-phase point
is one at which a plane of constant phase (mo-+k)-r
=const, is tangent to the surface of the body. Hence, if
a finite body has a point singularity, its cross section
by geometric-optics would be zero. In this case, the
physical-optics answer cannot be obtained from the
geometric-optics answer by perturbation because there
is no nonzero solution to perturb. A solution can, how-
ever, be obtained by integrating the surface integrals
obtained exactly in one variable and by stationary
phase in the other.

It is sometimes possible, by known methods, to solve
the bistatic problem if the transmitter is located on the
axis of symmetry but not otherwise. Since it is often of
more interest to have the receiver located in this
position, the reciprocity theorem of electromagnetic
theory!'? should be examined in the light of the approxi-
mation technic to be employed. This theorem allows
the cross section to be determined for given positions of
the transmitter and receiver if the problem has been
solved with these positions interchanged.

With ¢.(8) defined as in Eq. (2-4), it follows that
when the wavelength becomes extremely short, all the
contributions to f cancel out except those from the im-
mediate vicinity of the stationary-phase point on the
side of the body toward the transmitter. Clearly

125, A. Schelkunoff, Electromagnetic Waves (D. Van Nostrand
Company, Inc., New York, 1943).

ET AL.

n= (no+k)/|n+k| at a stationary-phase point, and,
for extremely short wavelengths, f=4 (no+k) where 4
is not changed by an interchange of transmitter and
receiver. Therefore, in this limiting case, Eq. (2-4)
becomes

4z
de(ﬁ)z;lfll’l(1+no-k)(a-d)*—(no'a)(k'd)lz- (2-6)

If no and k are interchanged, and simultaneously a
and d are interchanged Eq. (2-6) is unaffected. Hence,
reciprocity is obtained for the current distribution
method in the limit of extremely short wavelengths.

When a wavelength-dependent expression for the cross
section is obtained by the curremt-distribution method,
complete reciprocity is not obtained. However, since the
exact theory shows that there is reciprocity, whenever
the current-distribution method yields an appropriate
wavelength-dependent formula for one case, the result
can be considered to be an adequate approximation for
the reciprocal case.

3. CROSS-SECTION FORMULAS FOR VARIOUS
SURFACES

In this section the method discussed in the preceding
section is applied to several geometrical configurations.
The method is applied directly in the cases of the prolate
spheroid and the sphere in Section 3.1. A discussion
of the application of the method to a finite cone appears
in Section 3.2, and to an ogive in Section 3.3. Section 3.4
contains the results obtained for an infinite paraboloid
which can be shown'® to be the ewact solution to the
problem. Although the semi-infinite cone is a surface
which does not satisfy the basic assumptions referred
to in Section 2, the results obtained through the formal
application of the method (with an Abelian limit
procedure added) are given in Section 3.3. The results
obtained through a formal application of the Luneberg-
Kline method are also given. Section 3.6 contains an
extension of the method of Section 2, as does Section
3.7. The elliptic cylinder is discussed in Section 3.6
and a special case (in which the integration can be done
exactly) for the spheroid appears in Section 3.7.

3.1. The Prolate Spheroid and the Sphere

The direct application of the method described in
Section 2 to the problem of determining ¢a=i,(8) for
the prolate spheroid given by

x2_|,_ y2 Z2
B oA
and for the sphere
24542 =Re?

yields the following geometric-optics results:
13 C. E. Schensted, J. Appl. Phys. 26, 306 (1955).
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For the prolate spheroid,

B‘Z —3
aa=iyw>=[%B4/A2][<1+cosm+;<1—cosm] ,

g<r. (3-1)

For the sphere,
ga=1,(B)=7R?, B<. (3-2)

These geometric-optics results were obtained by using
the D.S.P. theorem.

oa =iy(B) for hoth the prolate spheroid and the sphere
were also determined by integrating once exactly and
once by analog machine methods. The analog comput-
ing equipment consisted of standard Reeves analog
computor units. The “analog evaluation” was performed
for the special cases given by 4A=10B and kB=100
for the prolate spheroid and 2Ro=100 for the sphere.
Good agreement between the analog results and the
D.S.P. results was found to exist in the range 0°<B
<160° for the prolate spheroid and in the range
0°<B<120° for the sphere. A graphical representation
of these results appears in Fig. 3.

3.2. The Finite Cone

For a finite cone of slant length 7, and one-half cone
angle v, the application of Eq. (2-5) yields the formula

4rro’sindy
0a =i, () =2 —————{ 2T 2(krob) + 52T 2(krod)}, (3-3)
<b2_ 62)2
where
c=cosy(1+cosB),

and @ is restricted by the inequality 0€8<w—2y. This
formula was obtained by integrating the integral I,

b=sing siny,

Analog Evaluation for the Sphere (kR,=100)-+ ]
Analog Evaluation for the Spheroid (kB=100)-x

10¢
H)
10° 2
5
2
104 %
; /
sls 2
al‘é 108
: Prolate Spheroid (Geometric Optics) +~a./
10? S »
12 (/
10 4
5
2 —
100 — T —t -
; ~ Sphere (Geometric Optics)
5! I | [ I
10 [+] 20 40 60 B0 100 120 140 160 180

B {in Degrees)

Fic. 3. Cross sections of a sphere of radius Rp and of a prolate
spheroid for which 4 =10B as a function of the angle 8.
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Fi16. 4. Cross section of a finite cone of half-angle 15°
and slant length equal to 100A /.

once by parts and once by stationary phase and then
retaining only the dominant term (for large k).

A graphical representation of Eq. (3-3) appears in
Fig. 4 for the special case of y=15° and wro/A=100.

It should be pointed out that the sharp edge of the
finite cone contradicts the assumptions of the current-
distribution method. Thus, the result obtained here for
the finite cone may not be as good an approximation
to the exact cross section as the results obtained for
other bodies.

3.3. The Ogive

The term “ogive” is not defined uniformly in the
literature. For example, Hobson! refers to the figure
obtained by revolving a minor arc of a circle about its
chord as a spindle, whereas Hansen and Schiff’® use
the term spindle to describe the arc of a parabola
revolved about its chord. Others use the term ogive as
a general term of which both of the above configurations
are examples. In the work presented here the term ogive
refers to the minor arc of a circle revolved about its
chord (Hobson’s spindle) and the term spindle will be
used for the parabolic arc revolved about its chord
(Hansen and Schiff).

An ogive of length L, maximum diameter d, and half-
angle a (using the cylindrical coordinates w, ¢, 2) is
given by the equation

(w+h)*+22—P2=0
with
P=radius of the generating circular arc,
lz| < (PP—R2)}=L/2,
ESw+hL P,

BWE. W. Hobson, The Theory of Spherical and Ellipsoidal
Harmonics (The Cambridge University Press, New VYork, 1931).

15W. W. Hansen and L. L. Schiff, “Theoretical study of electro-
magnetic waves scattered from shaped metal surfaces,” Quarterly

Report No. 3 (Microwave Laboratory, Department of Physics,
Stanford University, May, 1948).
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and
a=arccos(k/P).

Direct use of Eq. (2-5) (integrating once exactly
and once by parts) implies that the contributions from
the tip of the ogive and from the shadow rim are of the
same order of magnitude. However, Hansen and Schiff,
who obtained a similar result in their work on the
spindle (see reference 15), showed by a more careful
consideration of the contribution of the shadow rim
that, in fact, the contribution of the shadow rim (or
rather, the penumbra) is of a smaller order of magnitude
than that of the point and that the “correct” answer can
be obtained by merely evaluating the integral at the
“tip.” By applying an analysis similar to Hansen and
Schiff’s penumbra analysis to the ogive problem, ie.,
ignoring the contribution from the shadow rim, it is
found that ¢(0) for the ogive is given by

A tan‘a

-
f bo_%<a<5“"bo~'%, (3~4)

67

where b=5b(8)=Fkp(1+cosB), and bo=>5(0). It should
be pointed out that this result agrees with the electro-
magnetic theory answer for a semi-infinite cone having
either a large cone-angle or a small cone-angle (see
references 3 and 4).

Assuming that the tip will also dominate for most of
the values of B of interest (i.e., for 0K B<7— 20— [Bo(N) |
where Bo(A)—0 as A—0) as it did for =0 and using an
approach similar to that employed in obtaining (3-4)
the tip formula for the ogive becomes

A2 tan‘a[ 1—tan% tan?(8/2) ]2
Ta =iy (6) = b

167 cos*(8/2)

with 0LB8<w—2a. The application of the D.S.P.
theorem yields

w LY sin(3/2)—cosa]
Oa =iy = )

4 sin%a sin(8/2)

(3-5)

—2a<f<w. (3-6)

a(B) was evaluated on analog equipment for the case
defined by a=15° and wd/A=100. The nature of the
integrand made it difficult to obtain reliable results
over the entire range in B3; however, fairly reliable
results were obtained in the interval m/2<g< 7.

In summary, oa=i,(8) for the ogive has been deter-
mined by

(1) the “tip” method of determination
0L<B<r—2a— BN ]),

(2) the analog evaluation (reliable for 8>/2), and
(3) the D.S.P. method (valid for 7r—2a<g<n).

Examination of these results indicates that if a single
curve were to be fitted through these data, it would
follow the tip formula almost up to the r— 2« value

SIEGEL ET AL.

15

Transmitter =100 M
B o Analog Eveluation
® Exact Evaluation
Receiver of Integral
107
106
109
o
“}A § ﬂ{
|/
103 f.L
2
10 f |
10 o [ }
Geometric Optics
4
—}%‘B) 1 {D.5.7. Theorem) ‘/_.,'
Physical Qptics |
) (*Tip” Formula) |
107
n// l
o
1072 / :
163 : /,/ ;
. sl I
10

0 20 40 &0 80 100 120 140 160 180
B N DEGREES

F1c. 5. Cross section of an ogive of half-angle 15°
and maximum diameter equal to 100\ /7.

of 3 and then follow the trend indicated by the analog
evaluations and the D.S.P. result. The analog evalua-
tions and the D.S.P. result are in close agreement in the
range 155°<B8< 175° for the case considered on analog.
A graphical representation of these results appears
in Fig. 5.

3.4. The Paraboloid

Although the method given in Section 2 is based in
part upon the assumption that the surface involved is
finite, the application of Eq. (2-5) to the paraboloid
defined by

a?4yt=—4Pz

yields an infinite integral which can be evaluated
exactly. The method yields the formula,

oa =iy (8) =167 P/ (1+4cosB)2=4nP? sec'(8/2). (3-7)

Because of the relative simplicity of this formula, no
graphical representation is given. It is shown (see
reference 13) that (3-7) gives the ewact cross section
for axially symmetric scattering from a paraboloid of
revolution.

3.5. The Semi-Infinite Cone

If the method of Section 2 is applied formally (the
assumptions upon which Eq. (2-3) are based involve
assuming that the body is finite in size and does not
contain a point), and the integral involved is evaluated
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F16. 6. Cross section of a semi-infinite cone of half-angle 15°.

with the aid of an Abelian limit process, the following
formula for a semi-infinite cone is obtained:
A? tanty 2(1-+cos2y)?

o (B)= ‘
16w (1-cosB)(cosB+cos2y)?

(3-8)

where y=1% cone-angle and 0< 8<z—2v.

The Luneberg-Kline method cannot legitimately be
applied to the cone problem, since the radius of curva-
ture at the nose of the cone is zero. However, if the
method is applied formally, the expression obtained
has Eq. (3-8) as its first term. The ‘“Luneberg-Kline
answer” agrees with the intuitive expectation that the
cross section should be a maximum in the plane of
electric polarization. Also, the cross section obtained
by the formal application of the Luneberg-Kline
method increases as a function of the separation be-
tween transmitter and receiver (transmitter on the cone
axis) in the expected fashion.

The formula obtained by this method is

A? tanty 2(1+cos2y)

16w (14-cosB) (cos2y—+cosB)

1+cos2y \? 1+4cos2y
N mros) P omros)
cos2y-+cosB cos2y-+cosf

1—cosB 1—cosB\?
————») cos2¢-t- (——*-) ] (3-9)
14-cosB 1+4cosB

where ¢ is the angle between the plane of polarization
of the incident field, and the plane containing the axis
of the cone and the receiver,
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For backscattering, 8=0, this reduces to

a(0)=N\? tan*y/16r, (3-10)

which is just the well-known physical-optics result for
backscattering. It has previously been shown in
reference 3, that the physical-optics answer agrees with
the exact backscattering answer both for large cone
angles and for small cone angles.

From Eq. (3-9) it can be seen that the maximum
cross section is obtained when ¢=0 and ¢=m, while
the minimum cross section is obtained for ¢==/2 and
¢=23x/2. The physical-optics bistatic cross section of a
semi-infinite cone, given above in Eq. (3-8), is inde-
pendent of ¢. Since (3-9) is not independent of ¢ it is
clear that the two solutions do not agree exactly.
Examination of (3-8) and (3-9)t however, shows that
the physical-optics answer agrees very well with the
answer obtained by the use of the Luneberg-Kline
method and that it lies approximately halfway between
the maximum and minimum “Luneberg-Kline” curves.
This is shown in Fig. 6.

3.6. The Elliptic Cylinder

Consider an elliptic cylinder with semimajor axis a
and semiminor axis & oriented with respect to the
transmitter and the receiver as shown in Fig. 7. The
angular positions of the transmitter and receiver are
designated by 8y, ¢, and 8., ¢, respectively.

By definition, the radar cross section is given by

o=4x[ | F.|2+|F,|*+|F.|*]

X

F1c. 7. Geometry for the elliptic cylinder.

1+ Note added in proof —Felsen (Report No. R-362-54, PIB-296,
Microwave Research Institute of Brooklyn) has obtained the
exact answer for small angle cones. His result agrees with Eq. (3-8)
but not with Eq. (3-9) when the transmitter is on the cone axis.
This is in agreement with a conjecture made by Siegel (see refer-
ence 2) that physical optics give the correct vector cross section
for infinite bodies with an axis of symmetry in the direction of
Poynting’s vector,
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Fi16. 8. Bistatic cross section of an elliptic cylinder for the case
of transmitter and receiver in a plane perpendicular to the axis
of the cylinder.

where

F (8t70f;¢f7¢1')

i Er- (k d
,—z_g(no-a) f exp[¢kr- (k+ny) Inds

illuminated
portion of
the surface
ika
+___

5 f exp[ ekt (k+no)J(no-n)ds,

illuminated
portion of
the surface

and all the other parameters are as defined in Section 2.
The problem of finding the cross section is the problem
of evaluating the integrals. This evaluation can be
accomplished most simply in elliptic cylindrical co-
ordinates (£,7,2).

Integrating with respect to z first and then by the
method of stationary phase, we obtain

a2\ I eichL__ 1 IZ

7D*[(4a)*+ (Bb)* ]}

a(araet’¢r:¢t) = {GIZ+GZZ+G:52},

(3-11)
where

G1= 4 (ay sind, sing.+a, cosb,) — B(a, sinb, sing,),

T

F16. 9. Geometry for the
prolate spheroid.

SIEGEL ET AL.

Gy=a, sinf.(4 cosp,+ B sing,),
G3=B(a; sinf, cosp,+a, cosb,) — 4 (ay sinb, cose.),
A =siné; cos¢p;+sinb, cose,,
B=sin#, sing,+-sinfh, sing.,
and
D= cos;+cosb.,.

Figure 8 is a plot of the above relationship for the
special case defined by 6,=6,=x/2 and ¢,=0. For the
special case of backscattering in which ¢,=¢,=¢ and
0,=60,=86 (3-11) becomes

a?b?\ | e*PL— 12 sin%d
o (0,¢)=

= . (3-12)
cos?i[ (4a)*+ (Bb) ]
3.7. The Prolate and Oblate Spheroids for
Particular Choices of Transmitter and
Receiver Directions

In Section 3.1 the bistatic cross section of a prolate
spheroid was determined for the case in which the
transmitter is located on the axis of symmetry. In this

3 5'7.L
108 £~
L
5 7
) o] 3.4
102 Correspond a/ —
8 Values of ./
P B -8
< 178/2
b: \ ! ™~ Q/
g 2 /
TN Slew
10! ! \—L
: AN
[
\ «10.56°
2 015 ——frel
2 Yl e 0.3
100 —+
0 30 60 90 120 150

By + B/ IN DEGREES

Fic. 10. Bistatic cross section of a prolate spheroid
(kA =25 and kB=2.5).

section it will be shown that for each transmitter
position (not necessarily on the symmetry axis) there
is one particular receiver direction (or two when use
is made of reciprocity) for which the current-distribu-
tion integral can be evaluated exactly, both for a
prolate and an oblate spheroid.

The geometry used in this evaluation is shown in
Fig. 9. The axis of the spheroid, ny’ and k; all lie in the
sameé plane and the angle between the axis and the
normal to the phase planes is 81. The angular separation
between the transmitter, 7, and the receiver, R, is 8.

If S is the surface, S* is a second surface bounded
by the shadow curve, and V is the volume contained



RADAR CROSS SECTIONS

between S and S*, then the integral over the surface S,
which one obtains in applying the current-distribution
method, may be expressed as a sum of an integral over
V and an integral over S* For a spheroid, $* can
always be chosen as the interior of an ellipse so that
the second integral is easy to evaluate. If §* lies in a
phase plane, the first integral is also easy to evaluate.
This case is the particular case for which the cross-
section integrals can be evaluated exactly.
Carrying out this method of approach yields

TALBY sin(2M)  sin*(M
o= [1—2 )% )] {3-13)
po* L M?

M

where
M==Fpocos(B/2), and pi*= A% cos’8+ B?sin®b.

Equation (3-13) applies only when the shadow curve
lies in a phase plane. This condition is satisfied when

2. B2

tan{B/2)= sinf; cosf.

oo

Tagre 1. Other approximate monostatic cross-section formulas,
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Tagwe II. Other approximate bistatic cross-section formulas.
(Geometry is as shown in Fig. 2.)

Surface Equation of surface 73 =i, B
4282
i%g[(i-%cosﬁ}
"Ellipsoid RN AN +3§(1_mm]‘*
BLr
2
4”‘3232[0%036}

One branch of 2, P}

hyperboloid %=~ C[1+“Ai+3‘z} By -2

of two sheets at—coss)

8<2arctan(B/C)

Elliptic para-

boloid (axis o + ¥__z wA*B?

of symmetry AR C C{1+-cosB)

is z-axis)
Elliptic para-

boloid (axis 2 + £ +2 rA*C?

of symmetry Aa2'C¢C 'B B2(1—cosB)?

is y-axis)

8>0

Orientation of Code to
Surface  surface and radat Cross section symbols
Direction of propa- Ri=distance to
Tons BBl o _goreran conterof
torus Ry =radius of
ring.
Flat Direction of propa- W =width of
fate gation is normal o =42 W2H\ 2 plate,
p to surface H =height of
plate.
Angle between di- a =radius of
Large vection of propa-  _4#[2xa? cosgS1 () P disk.
disk gation and normal A2 x

to disk given by ¢ x .-:‘-;—;—’-1 sing

The maximum separation between transmitter and
receiver which is obtainable is given by

2 B2

tan(8/2)= and tan(By)=A/B.

24B

These results are illustrated in Fig. 10 for the special
case given by 2B=2.5 and k4 =25.

The method used in this section could also be applied
to other quadric surfaces. For example, special cases
could be integrated exactly for an ellipsoid having three
nonequal axes.

3.8. o¢(8) for Other Surfaces

The methods discussed on the preceding pages may
be applied to a variety of other surfaces. Tables I and

1T contain formulas which are readily obtainable upon
the application of these techniques.

4. CONCLUSION

Bistatic radar cross sections have been obtained for
simple shapes by optics approximations. It would be
desirable to be able to compare these results with
experiment. Unfortunately, very little experimental
data exist. With these data absent one must examine
the results in the light of previous experience. Consider-
ing the diffraction of electromagnetic waves through
an aperture, it is well known that optics results for
many applications yield poor approximations. On the
other hand the nose-on radar cross section of a cone
obtained by the optics approximation is in close agree-
ment with, and possibly identical to, the exact solution
for large and small cone angles (see references 3 and 4)
and the cross section of the paraboloid for axially sym-
metric incident radiation is found exactly by an optics
approximation. In the next paper evidence is given
for the wuse of physical-optics approximations for
general infinite bodies of revolution.

The results found in this paper should only be con-
sidered useful when the wavelength is small with
respect to the major dimensions of the body. Questions
as to the order of magnitude of the error must be de-
ferred until more experimental results or further exact
solutions have been obtained.



