THE UNIVERSITY OF MICHIGAN
COMPUTING RESEARCH LABORATORY!

A METHODOLOGY FOR
THE DISTRIBUTION OF DATABASES

Mourad Oulid-Alssa

CRL-TR-206-84

Under the Direction of
Professor Keki B. Irani

APRIL 1984

Room 1079, East Engineering Building
Ann Arbor, Michigan 48109

USA

Tel: (313) 763-8000

}This research was supported by the Department of the Army, Ballistic Missile Defense Advanced
Technology Center, Rome Air Development Center, and the Defense Mapping Agency under Contract
F30602-80-C-0173. Any opinions, findings, and conclusions or recommendations expressed in this publica-
tion are those of the author and do not necessarily reflect the views of the funding agency.

ABSTRACT

A METHODOLOGY FOR

THE DISTRIBUTION OF DATABASES

by

Mourad Oulid-Aissa

Chairman: Keki B. Irani

This research proposes an approach to distribute data that feature semantic cross-

references in a computer network. The unit of distribution is the functional dependency (FD).

Firstly, each scheduled query is assigned a set of cross-referencing data units (CRDUs)
that will normally be accessed, at péssib!y different sites, to process it. Each CRDU is associ-
ated with one FD. The selected FDs are mapped to a so-called query envelope. The selection
of a query envelope is based on semantic integrity and on the minimization of the total
“volume” of the instances of the FDs belonging to the envelope. This problem, identified as
the envelope optimization problem, is presented and analyzed in a formal framework, and is

solved with efficient graph algorithms.

Secondly, the CRDUs corresponding to the FDs of all the envelopes are distributed so as
to minimize the operational communication cost. The issue of preservation of the database
consistency is mentioned. Further, the following modeling points are considered: (i) The
cross-references of physically distant CRDUs, which produce file-to-file inter-site communica-

tion in addition to the usual file-to-user communication, (ii) the partitioning of the set of

i

CRDUs, (iii) the materialization of the CRDUs associated with one envelope, in case of dupli-

cation, (iv) the flow capacity constraints.

The problem of the distribution of CRDUs is modeled in the form of a manageable
multi-commodity mixed-integer program, with quadratic cost and linear constraints. Compu-
tational techniques and numerical experience are discussed. Through experimental investiga-
tions, the research draws some practical conclusions about the distribution of CRDUs in a
computer network. The effect of the reducing and assembly rates over the simultaneous
referencing of CRDUs, and over data redundancy, is investigated. Further, the effect of the
updating rates over cross-referencing, and over data redundancy, is investigated. The results
suggest that a look-up of the user-provided data can indicate whether standard data distribu-

tion techniques, instead of CRDU distribution techniques, can be used.

iii

TABLE OF CONTENTS

LIST OF TABLESootoicieerceeenstereteseseietesssesesasrsessatesnsnesesssssssssasssssssssesesnsassssnare vi

LIST OF FIGURESooooiiereeeecreeceesse et sesrese s nee s stee s seesesressnsasasssses sasesssnsereneneas vii

LIST OF APPENDICEScooo oottt rcvrrevetevteesssresestaneesnsenssesssssesssssessnssaesnsessnnnaes ix
CHAPTER

1. INTRODUCGTIONoiiiieccceecree e cesneeeraeseerssestessesensessseeessessssesssnnanans 1

1.1. The physical environmentcccoooerirmeeiiriceniereine e cerrcrrreeeeeseneens 1

1.2. The user environmentccceevveeeiiirierenninierissieresersneessrnnesesssnneseesans 2

1.3. Distributed query processingc.cccovvveerrceirrienniverenier s seeesreee e esenaena 3

1.4. The problem of database distributionccccovvrrmriiivirieiiiriiiiniennn, 4

1.5. Research motivationsccceeroiiieciiiiinniiecicee e eecssneeressernr e enne 5

1.6. Cross-referencing data units (CRDUS)ccoovvvuveiereencirecnneie e cseenen, 7

1.7 ODJECHIVESoviiiiiirreiirrnrereesitueeesssetrrereneesssranneesessasasssnseessesensasesassnnsassns 9

2. BACKGROUNDcoiiviiiiriiecneninieererseessneessresssvanessnresssssesssesssssessessasssssassns 10

2.1. The relational modelccceoeeeirnmiirireneie e 10

2.2. Functional dependency: A tool for logical schema design 11

2.3. Minimum depiction of functional dependenciesccccovvvervvriivennnrnnnn. 13

2.4. Distributed query processingcccccccoriiiriirirnveeersensrseereeereaesneesssneeeens 14

2.5. Data allocation modelscccceeeiiiiriieiieice e 17

3. PRELIMINARY FRAMEWORKcccccooiiiiiiiiiiiinncrenireeceseeeecnnecssneesnnens 26

3.1, DefilitiOnsocoeviiiiiniiieiiieterriciieineeeereeseisrniateeseseeesrsncressaeseesesessnsrenraes 26

3.1.1. Functional dependencies and database schemacccccernnenne, 26

312, Fagraphs ..oocciiiieiiiiiee et et e s s ae s erae s 30

3.1.3. Link and envelopecccueeenn.eee. 32

3.1.4. Distributed query processing seqUenCeccceeereeveenenerereeeeriennne 34

3.2. Initial problem formulationcccccoovvieriiiirienrnec e 35

3.3. Procedure towards a solutioncccccoooeveriirriiiiccineceee e e 36

4. DATA MODELINGoiiiiiiicmienrtceneterrterteesrsreseeneaer e eessaesssbeeesnsaessnnnes 39

4.1. Foundation of the distribution approachccccoevvrieeeiviiiieerecnnenen. 39

4.2. Step-1: Initial processing of a user F-graphccccccevevvmnviviivrnrecnrnnnen. 41

4.2.1. F-graph reductioncccovvviveiiiiiiiiiiiirerteer e 41

4.2.2. Minimum F-graphcc.ccoociiiiiiniinnniiiiir e e 48

4.2.3. Lossless F-graphccooovvmmiieiiiiiiiicr e 51

4.3. Step-2: Extraction of a linkccccoviviiiiiirinier e, 58

4.4. Step-3: The envelope optimization problem (EOP)cccccovvrvivenrennn. 69

4.4.1. Relation-size estimation techniquescoceeeuvvevvvinenercennneneen. 70

4.4.2. A '‘brute-force’’ approach to solve EOPcc.ccceccvriviinnnnnn 71

4.4.3. A first heuristic approach to solve EOPcccooiviiiiiinivvnnnnnnn. 76

iv

41.4.4.

Final solution of EOP ..covviiiiiiiriiiririiiiniiie s eeer e e s eevarsasnsses

4.5. Consistency preservation in updatesccccocceiiiinrinniniiniiininn

4.5.1.
4.5.2.
4.5.3.

Constraints on the antecedent and range of an FD
Deletion of attribute valuesccccccoevemremrnenreeenneinerereeneereieeenene.
Update ca8CAdEScceereecureeiiirenerirrneneirerrresseneerssssanessssncesssenes

4.6. Summary of PART 1: From users’ FDs to envelopesccccceecvveenenn
4.7, EXAMPIE ..oooirieeei e sabs e e s e
5. A MODEL FOR DATABASE DISTRIBUTIONccccoccenvmmicnrirnrerencneerennes
8.1, NOLALIOMeeviiiriiiiicrnreeriesneneesarnesecsrnneaessnnsassrnnsessssarerasssnseessosnreses ssnnes
5.2. “Naive” distribution modelingccceeeveriecviriniiicvinrnirne e
5.3. PART 2: A model for the distribution of CRDUsc.cceevrvvrvrvninnnennnee.
6. COMPUTATIONAL TECHNIQUESccovvieniriinnerireeneterrersvnrseneeens
6.1. Solving the uncapacitated model by integer programming

6.1.1.
6.1.2.
6.1.3.

Description of a branch-and-bound algorithmc.ccceeeeeeee.
A practical problemcooveviiriiin e
Practical limitationscccceerveerieeecincreininineeevienrensssnneesssnnseassee

6.2. Improving feasible solutions for the uncapacitated model

6.2.1.
6.2.2.

Adaptive random search for the uncapacitated model
Solving the MRDB problem with XrefUcccoovvmeieviivnveecnneneen.

6.3. The capacitated modelccccceecrieirviimiiniiirernerrcrree e ee s e

6.3.1.
6.3.2.
6.3.3.

Decomposition of the capacitated modelccccvveiiiiniinnnnnns
Optimizing the capacitated modelcocecevvvuiinnniiiininnnnnenne
Convergence and robustness of XrefCccccceeevvvinnirivceneiennnn

7. EXPERIMENTAL RESULTS ..ottt secreceseneesneneseseecssnneane
7.1. Effect of the reducing rates over cross-referencingc.ccccceeeceeecueninnens
7.2. Effect of updating over cross-referencingccceevevieriinnennccissnecs
7.3. Lower and upper bounds for the communication costcccceeeeecenenrnne

8. CONCLUSION ...ooiiiiierctieerecieivrresessesseeresraeseeeessnnnanns i eeererirreesneesernaas
8.1. The Problemcooiiiiiireiirei it rerercererireee e s e ssrearerereee s sesneranasenens
8.2, UnSolved iS5UEScccccveeerieirrereiierirsisnessessareessseneressssnasessssneesssnsesesan
8.3. Research contributionscccocveueiiiiiiiiiiiiiiene e e e
8.4. Improvements and further researchc.cccouneeeen,

APPENDICES

BIBLIOGRAPHY

...

...

82

95

97
105
109
134
135
139
141
149
149
150
154
159
161
163
170
171
172
176
179
185
185
188
189
192
192
194
195
196
199

225

LIST OF TABLES

Table

4.1. Cardinalities and widths of the FDs in the envelope of query Q t,5 111
4.2. Cardinalities of FDs, in the envelope of Q t,5, projected on each referenced

AEETIDULE oooieiiiceniii ittt et e e eeee s e et ee s snens s s rne e s snnns 112
4.3. Possible partitions of the referenced attributes for query Q t,5ocueeeeeee..e. 116
4.4. Cardinalities and widths of the FDs belonging to the envelope of query Q t,7

.. 118
4.5. Cardinalities of the FDs, in the envelope of query Q t,7, projected on each

referenced attributecccoovrviiiiiiiiiiii e 118
4.6. Possible partitions of the attributes referenced by query Q t,7ccovecriennneniss 122
6.1. Some functional dependencies for the MRDBc.ccceviverirnniiinicericcrcrcnen, 154
6.2. Typical user-provided transactions for the MRDBcccccovieiveiiivinvivcenniennnn. 1556
6.3. Typical frequencies for the MRDB transactionscccoecvevvricevenriincencennnecnne 156
6.4. All the FDs selected for distribution, and the possible partitioning configura-

tions for the MRDBccoocciiiiiriniiiiiieciien ettt s s e creesras s e e se s s seaas 157
6.5. An example of numerical input (corresponding to site 2 in the MRDB prob-

lem) to be provided to the distribution programccccecovvviininiiiiiinininiinn, 158
6.6. A partial solution for the MRDB problemcccccovruvniniinrnenniiinriene e, 160
6.7. Notations for the capacitated modelccocviiiiveriiiiiiniin i e 175
6.8. Additional definitions for the adaptive algorithmcccceoviiiiniiininiinnnnnnnee. 180
C.1. The user-provided functional dependencies (FDs) for the MRDB 21
C.2. Typical scheduléd transactions for the MRDBccceovvimrrveniviivriieree e, 212
C.3. Needs of each site in the MRDB computer network, and frequencies of oc-

curence of all the transactionsc.cooiirieiiiiciirccirerirrerer e esetr e et reessreressssanes 213
C.4. Cardinalities and widths of the functional dependencies for the MRDB 214
C.5. Cardinalities of the functional dependencies, for the MRDB, when projected

ON ALLTIDULES ..oooiiiiiiicrie e ce et e e s srer e s srere e st e s e e ne e s seas 215
C.6. Attribute widths for the MRDBcccccoiiiiiiinniiiicececc e evecieees 216
C.7. Cardinalities of the domains for the MRDBcccccoviiiniiininincirnecccecee 217

vi

LIST OF FIGURES

Figure
2.1. The effect of data clustering on distributed query processingc.cccceevvvverennne 23
2.2. Noncritical semi-joins in distributed query processingcccccceeeivirveeeennreeeerenns 24
2.3. The materialization problemcccccciiiiiiiinnnniiesi e 25
4.1. An example of F-graph reductionccccoeeiiiiiiivineiiineiiiiniinnr e e 64
4.2. Another example of F-graph reductionccccoooiimiiiiiciiiiiiiicc e 65
4.3. Yet another example of F-graph reductionc.cceceririeiiiiinivnnicnciinnn e e, 65
4.4. An illustration of LR-minimalitycccocoviimiiiiiiviiiiiriiicrie e et eee e 66
4.5. A lossy F-graph (i), and its lossless version (ii)ccccoovvreveveecrinennccccnncnenes 67
4.6 A DK oottt e e st e s ae s s et e e e e s rae et esaesabes 68
4.7. An F-graph with ‘‘partial’’ and ‘“‘total” labelscc.ccoorurrvienneiiiienniecrien, 104
4.8. An F-graph depiction of the Medical Record Database (MRDB)c..cc...... 125
4.9. A minimum F-graph for the MRDBcoooiiiiiiiiiiiictieeirccecnsecrtrrrereee e snens 126
4.10. The link of QUETY Q £,5 ..oooiriiiiiiiiiiee e centre e ee s sre s s e aee e ssnrressresnnaeesnsebesan 127
4.11. A proper link for query Q t,5ooiiiiiiiiriiicr e e e 128
4.12. The metagraph for qUery Q t,5ccoiiimiiiiiviieriiniirer e rerree s eserrrec s craeevarerens 129
4.13. The weighted metagraph for query Q t,5cooviiiiiiriiicciien e e 130
4.14. The link of query Q t,7coouvrrreennnnnne e e e e srees 131
4.15. The metagraph for query Q t,7 .coorirvriiiiiiii e e e e 132
4.16. The weighted metagraph for query Q t,7 ...coocovriiiiiiiiiciiiiiccir e e 133
5.1. The placement of two redundant CRDUs at the same siteccceevrecnerrennnn. 148
5.2. A distributed query processing schemecccoovvevreeictiriieencereccnree e stvee e 148
6.1. Random search assihmIENtscccceervrieriicererieniineneienineeesiasesesveses sensaresnssseees 166
6.2. Encoding scheme for the adaptive algorithmcccooovviviiiiiiiiiiiinecee e, 167
6.3. A ‘“structure” for the adaptive algorithm reeeee e e seee e ereeas rerene 168
6.4. The string manipulation operations used in an adaptive searchcccccoeueene 182
6.5. The performance of Algorithm XrefUccccovvirirreivriicinencir e creeecreeees 183
6.6. A schematic visualization of the execution of Algorithm XrefC 184

7.1. Variations of the measure of redundancy and the measure of cross-referencing
with respect to the reducing volume ratioccccceeevviiniiincnvivnneceie e, 190

7.2. Variations of the measure of redundancy and the measure of cross-referencing

vii

with respect to the updating volume ratio

viii

..

LIST OF APPENDICES

Appendix
A, INDEX ottt st er e e et e e s e e s e e eanas 200
B. THE RELATIONAL DATA MODELccccooiiiiiiiicinrecenresecre s e 206
C. THE MEDICAL RECORD DATABASE PROBLEMccccocvvveeniicnicnnnnne, 210
D. INPUT FOR THE DISTRIBUTION ALGORITHMScceonviiiiinnicnne 218
E. OPTIMAL SOLUTION OF THE MRDB - eereeereeseretsamsnsnsssnsisnssessescesessnnen 224

CHAPTER 1

INTRODUCTION

The goal of this thesis is to outline a detailed procedure which can be applied to the
design of distributed databases. In this chapter, the main problem of interest is introduced.
Research objectives are discussed in Section 1.5. Initially described are the notions of ‘‘distri-
buted system” (Section 1.1) and ‘‘user environment” (Section 1.2). The principles of distri-
buted query processing are discussed in Section 1.3. Section 1.4 introduces the notion of a
“distributed database’’ and states the central problem of interest. Section 1.5 provides some
key arguments to support our contention that the design methodologies of database distribu-
tion available at the time of this writing suffer from shortcomings. Section 1.6 emphasizes
one important issue in the research, the definition of a distribution unit. Finally, the research

objectives are stated in Section 1.7 in informal terms.

1.1. The physical environment

Our work applies to a physical environment referred to as a distribuled system#. A dis-
tributed system is characterized by the placement of processing and control functions** at
different computing sites, as opposed to a centralized system in which all the processing and
control functions are located in a main computing center. A single, usually powerful, comput-
ing unit is enough to support a centralized system, however, a distributed system usually

implies the existence of an underlying computer network. A computer network can be visual-

sTechnical words in italic, in Chapters 1 and 2, are defined in Appendix A.

*sA “function” can be visualized as a software module. We refer to functions that are part of a distnbuted
management system, and in particular, the functions applied to the control and processing of transactions.

ized as a set of interconnected sites or nodes. Thus, a computer network consists of a set of
computing units that can exchange information between each other through a common com-
munication medium (usually a network of tightly connected processors, i.e. connected by tele-
phone channels, or loosely connected processors, i.e. communicating through a broadcasting
medium [BOOT 81, DORA 77]). A distributed system can also be supported by a database
machine or some more general parallel computing machines. A fundamental property of a
distributed system is its ability to remain operative for most users (or most jobs), in the event
of occurrence of localized failures of some nodes, or of communication disruptions. In this
context it is assumed that a computer network stands for a set of autonomous computers
together with their interconnecting links. (However, the material of this thesis is also relevant
for the design of distributed systems conceived on one or several database machines). Com-
puters which are said to be autonomous are logically equal [TANE 81], i.e. they participate
within a distributed system in an ‘‘equal partnership’’ relationship. This type of physical
environment excludes any hierarchical or master-slave relationship between any two comput-
ers. Furthermore, the computers of such an environment, sometimes called a horizontal dis-
tributed system, need not have the same physical characteristics. In addition to considering a
distributed system, we will focus on the usage of such a system in the context of database

applications.

1.2. The user environment

The user environment is characterized by the nature of the information processing
applications. In this context, the user environment translates into a database that is to be
processed through intensive cross-referencing of data. Distributed databases are relevant for
the support of such organizations as government agencies, communication industries, tran-
sportation companies, and the military, to name just a few. In general, the type of database
which we wish to consider is one that contains a huge amount of intricately related ‘‘text”” or

numerical data. The information that it represents is under periodic querying and updating,

and in general, each query may require more than a simple reading operation. A query may
indeed involve complex cross-referencing of data. Users originating such queries from each
site of the computer network form a homogeneous usage environment in the sense that they
all belong to the same organization and that the entire database appears to them as if it were
centralized. It is assumed however that there may exist some typical patterns for the queries
and updates initiated from any specific site. The typical transactions are referred to as the
scheduled queries and updates*. Hence, although the information available through the data-
base is accessible by any user from any site, one site may be associated with users with spe-
cialized interests who originate certain types of transactions more frequently than other types
of transactions. The data needs of a user constitute the view of that user. The user environ-
ment to be considered consists of one homogeneous distributed database, and a set of users'
views, where a user is identified with one computer or site of the underlying computer net-
work of the distributed system. We now wish to refine the description of the user environ-

ment and to introduce some technical notions of distributed query processing.

1.3. Distributed query procesging

The concept of dist_ribution implies more than a mere geographical distancing of data.
Indeed, it presupposes some strong features regarding the strategies of query processing. Nor-
mally, a query is processed in three steps. During the first step, any query issued at a user-
site, by virtue of its qualification clauses, leads to some extensive iocal processing on a set of
initially accessed relations**. The relevant relations are usually reduced in size by a sequence
of restriction and projection operations. The second step involves the complex cross-
referencing of the reduced relations. Those relations which are semanticall; dependent, are

involved in a mutual effort to further reduce one another in order to eliminate as much

sAs opposed to ad-hoc queries and updates.

*sSince it is common to use the terminology proper to relational database, the word relation will often be
favored over the less descriptive word file.

irrelevant data, for the query, as possiblet {CHUN 83|. In practice, this is usually accom-
plished by performing a sequence of semi-joins between distant relationstt. Data cross-
referencing in distributed query processing is associated with the so-called inter-site or file-to-
file communication. This type of communication usually incurs a relatively large flow of data
volume, also known, for obvious reasons, as the reducing flow in the computer networki.
When the reduction step is completed, the copies of the reduced relations contain the infor-
mation requested by the query, and are ready to be shipped to and assembled at the user-site
to produce a final answeri}. This third and last step of distributed query processing is
referred to as the file-to-user communication, and is associated with the so-called assembly
flow in the computer network®*. At the design stage, the data units which are subject to dis-
tribution are referred to as cross-referencing dats units (CRDUs), because in the operational
stage of the distributed database, they will assume the form of relational tables or fragments
thereof**, and will be submitted to cross-referencing during the distributed query processing
sessions. The objective of this research is to find an efficient and formal approach to the

problem of defining and distributing CRDUs.

1.4. The problem of database distribution

Although the problem of ‘‘where to place the data” can sometimes be solved pragmati-
cally, it is nevertheless a non-trivial one mainly because of data dependence. Further, data

distribution may rely in many ways on formal optimization techniques.

It is usually not practical to replicate and store a whole database at each site of a net-

work, particularly in the case of a very large database. Data units which are semantically

tE.g. if they have one or more common attributes.
HLocated at different sites.

{The words reducing and file-to-file will be associated with a logical operation such as a semi-join, with the
cross-referencing communication process established between two relations, or with the resulting flow in the network.

$1The assembling operation may be performed at a site distinct from the user-site. However, there seems to be
no advantage in doing so.

¢The remark made in footnote § applies also for the terms assembly and file-to-user.
ssE g. after the application of projection and restriction on some larger relations yet to be defined.

dependent on one another may have to be stored at different sites, and may thus require some
information to be represented with partial redundancy. A single transaction originated at one
site may therefore causé some interlocation accesses to take place between several sites other
than the user-site. Such a database is called a distributed database. Hence, a distributed data-
base is characterized by the storage of data units, organized into files, at several sites of a
computer network. Any data unit may be stored in at least one site and may be accessed by

any other site when needed.

In this context, the overall operating cost of the distributed database results primarily
from the communication cost per unit time. Given a network of computers that share com-
mon data units, the problem of finding a placement of the data units over the computing
sites, such that this placement yields a minimum overall operating cost, while satisfying a set
of physical and logical constraints, has been identified in the literature as the ‘‘data alloca-
tion'' problem. Usually, whether multiple copies of data units are allowed or not is stated

explicitly.

This research addresses a larger problem; that of defining, selecting and distributing
CRDUs so that relations can be synthesized at each site. This problem is identified as the
database distribution problem. Thus, data allocation can be considered to be a subproblem of
the database distribution problem. Note that the word ‘‘distribution” is used, rather than the
word “‘allocation”. In our terminology, ‘‘distribution’ includes the possibility of keeping
duplicate copies of any one of the CRDUs. In the section that follows two issues which

motivate further research in the solution of the database distribution problem are indicated.

1.5. Research motlvations

For some organizations, a specific distribution of data may naturally be dictated by the
rigid nature of the applications associated with the sites of a network [BOOT 81]. However,

if the database to be designed is not initially partitioned, and if no a priori distribution natur-

ally emerges, then the database distribution problem needs to be addressed, to some extent, in
optimization terms. Further, the most critical issue to consider when distributing data in a
computer network is the definition of a unit of distribution. This latter issue is discussed at
more length in Chapter 2. The choice of a unit of distribution will eventually affect the per-

formance of a distributed database.

The traditional methodology [BUCK 79] applied to the database distribution problem,
consists of dealing separately with the two problems of defining the database files and of allo-
cating them to the computers of the network. Hence, the allocation phase usually rests upon
the assumption that the data are already organized into files. The methodology applied to
define those files makes use of centralized database design techniques. That design approach
is inefficient because measures of performance, mainly the traffic cost associated with distri-
buted query processing mechanisms, are not taken into comsideration at the time when the
initial files are defined. In general, the distributed database design methodologies available at
the time of this writing are based on the pragmatic notionrthat file definition and database
distribution are two independent problems [BUCK 79, ESWA 74]. It must be realized that
this approach is a simplified solution to the general database distribution problem and needs
to be reviewed and extended. The underlying methodology of this work emphasizes, to some
extent, a synthesis approach of design. The proposed design process starts with the definition
of the CRDUs, which may be looked at as the elementary building blocks of some, yet unde-
fined, relations, and it ends with the definition and usage of those relations in the distributed

system environment.

The latter paragraph contains some remarks about the methodology of distributing
databases. The next observation refers specifically to current data allocation models and their
solution techniques. In these models, it appears that the assumption of data independence is
routinely made. This assumption implies that the distributed query processing mechanisms

are exclusively modeled as sequences of file-to-user accesses [RAMA-b-79]. Indeed, this

assumption of data independence implies that any query can be solved by sending a complete
answer from a distant site (that possesses the required information) to the site where the
query is issued. Therefore, the simplest models of data allocation follow standard mathemati-
cal structures, similar to those of the ‘“‘facility-location” type problems in operations research.
However, the data independence assumption (which is a prerequisite for those models) cannot
realistically be applied to complex databases that make use of relational database teghniques
since it is inadequate to represent distributed query processing mechanisms, i.e. the cross-
referencing of data units located at different sites, as was noted previously. The issue of
cross-referencing in distributed query processing will be discussed in more detail in the next
chapter. Furthermore, the data independence assumption prevents us from investigating the
effect on the traffic of the update transactions, which are originated by the system (as
opposed to those originated by the user), to preserve database consistency. Updates and
update side-effects will be treated in Section 4.5. Thus, if optimization is to be included in a
methodology for database distribution, some basic semantic issues must be considered, and
therefore, modifications must be made on current mathematical programming models of data

allocation.

1.86. Cross-referencing data units (CRDUs)

In this section, the term ‘‘cross-referencing data unit’’ is given a precise definition. The

soundness of such a definition is argued.

A transaction originated by a user at some site of the network is really an access of
data-items or attributes. Therefore, instead of defining a CRDU to be a file or - relation, a
natural approach might be to associate a CRDU with an attribute. However, attributes, as
such, are meaningless from a semantic point of view. The notion of dependency among attri-
butes, which is central to guarantee the correctness of transaction processing, suggests that

groups of attributes can be used to define CRDUs. To ensure query correctness, several rules

have been developed in the literature. These rules hold for semantic constraints of the func-
tional type* known as functional dependencies (FD) [ARMS 74]. It is convenient to identify a
CRDU, i.e. an atomic data unit which can be subject to distribution, with an FD. Semantic
constraints of the functional type, or FDs, are chosen for the following reasons. (1) FDs are
sufficient to determine whether a data access leads to a semantically correct answer, for a
query, or not. (2) They are simple and easily identifiable by the user. (3) They are the build-
ing elements of the synthetic approach to construct logical database schemata for the three
major models, the “network’’, the ‘‘hierarchical’’, and the ‘relational models”. It has been
shown that FDs can be used to design logical databases for any of the three models mentioned
[BERN 76, DELO 78, HOUS 79]. Further support for the choice of FDs to stand for CRDUs

will be provided in Section 2.2.

The relational model is selected because it is the best adapted to current distributed
query processing terminologies as discussed in Chapter 2. However, this does not presuppose
any restriction as far as the local physical database implementations are concerned. In this
context, the CRDUs are the physical counterparts of FDs, and can be visualized as particular
types of relational tables featuring at least two columns of attribute values. In the remainder
of this thesis, FD is used to denote a functional dependency as an abstract concept. A CRDU

refers to the physical instance of an FD.

Algorithms for synthesizing relational tables [WANG 75, BERN 76, KAMB 78] permit
the construction of relations at each site after the CRDUs mapped into FDs are distributed.
Thus, under our definition of the CRDUs, it will be possible to define a methodology which

introduces optimization early in the solution of the database distribution problem.

#This choice is made without any loss of generality because dependencies between attributes that are not of
the functional type can be modeled with artificial FDs called non-functional relationships. 1f the concept of non-
functional relationships [BERN 76} is considered to be too controversial for some readers, another argument support-
ing the use of FDs is that it is widely acknowledged that regular FDs augmented with the related notion of join-
dependency (defined in Section 3.1) are enough to capture the semantics of most practical databases [BEER 81].

1.7. Objectives

The problem addressed in this thesis is now broadly stated. A computer network which
consists of computer sites and of communication links is available. The computer network
has a predefined topology and the links have fixed channel capacities. It is equipped with a
horizontal distributed system in the semse of Section 1.1. A distributed database is to be
designed for the benefit of an organization of users in the sense of Section 1.2, and a universe
of data-items is provided by the organization together with a set of FDs. This organization
also provides specifications for every transaction, query and update, at each site, together
with the occurence frequencies of those transactions and some statistical information about

“raw’’ data-volumes* with respect to FDs and attributes.

The problem objectives are the following. (1) Model and select a set of CRDUs which
may be subject to distribution without any loss of the over-all information, and which will
allow simple and efficient file-to-file accesses in the operating phase of the distributed data-
base. Determine how the CRDUs are affected by updates. (2) Represent the problem of
organizing CRDUs in the computer network in the form of a manageable mathematical
optimization model. The organization of the CRDUs must capture*# (i) the cross-referencing
characteristics of distributed query processing, (ii) the clustering of the CRDUs, e.g. whether
they belong to a common relational table or not, and the resulting effect on the assembly and
reducing flows of data-volume, and (iv) the materialization, in the static sense, of the CRDUs
i.e. the choice of relevant instances of CRDUs to seek access to, for each query, when there
are duplicates. (3) Explore and implement efficient numerical techniques to solve the pro-

posed model of (2) so as to minimize the operational communication cost.

The next chapter surveys related studies in the literature, and develops some back-

ground for the research.

#See Section 4.4.
s¢The following issues will be explained in more details in the next chapter.

CHAPTER 2

BACKGROUND

In this chapter the conceptual foundations needed to achieve the objectives of Section
1.5 are laid out. Relevant issues are discussed in light of related studies in the literature. At
the same time, some basic assumptions are made. The relational model is first introduced
(Section 2.1). The usage of functional dependencies in database schema design is discussed
(Section 2.2), and means to depict functional dependencies are reviewed (Section 2.3). Distri-
buted query processing is described (Section 2.4), followed with a survey of earlier data alloca-

tion models (Section 2.5).

2.1. The relational model

Some basic technical terms of relational database modeling are introduced. The rela-
tional model [CODD 72| has been the object of very intensive and rich studies. It is legitimate
to claim that database theory, as it is being developed now, was born out of the relational
model. What makes it attractive is its nonprocedural orientation. The definition of a rela-
tional database will not be expanded on; comprehensive presentations can be found in [CODD
79, CODD 72, DATE 78, ULLM 80| to name just a few sources. A relation or relational table
will be referred to as a subset of the arbitrarily ordered cartesian product of a list of domains.
A domain is itself a value set for one or several attribute types (the “‘atomic”’ data-item
types). A relation is a set of tuples. Thus, a tuple represents a possible value for a specific

list of attribute types. That list constitutes the heading of a relation. Well-defined opera-

10

11

tions can be applied to relations to reduce them or to combine them together. These opera-
tions are used to define the relational algebra [CODD 79, CODD 72, DATE 78]. More will be
said below about the use of these operations in conjunction with distributed query processing

policies.

In the next section, functional dependencies are discussed. They can be visualized as
special types of relations that can be used as building blocks to generate more complete rela-
tions. The process of defining relations from FDs is known as the synthetic approach of logi-

cal schema design.

2.2. Functional dependency: A tool for logical schema design

The functional dependency (FD) semantic constraints serve as building units in database
design. FDs were first mentioned in connection with the normalization of relational tables as
a measure to avoid update anomalies [CODD 72]. Axioms pertaining to FDs were established
in [ARMS 74| as a foundation for a formal description of database semantics. After the first
definition of third normal form was proposed in [CODD 72|, there followed the concept of
multivalued dependency (MVD) [FAGI 77|, implying stricter normal form definitions. Data-
base theorists recognized early the interest for synthesizing schemata from functional depen-
dencies [WANG 75, BERN 76]. The synthesis approach consists of building noﬁnalized rela-
tional tables given an initial set of FDs. However, in [KAMB 78], the algorithms presented in
[WANG 75, BERN 76] were shown to feature some weaknesses. In this latter work, a new
algorithm for synthesizing relational tables was presented. As mentioned in [KAMB 78|, the
reason for considering FDs exclusively, and not multivalued dependencies, in th= context of
relational tables synthesis, stems from what we might call the universality property of FDs.

To quote Kambayashi [KAMB 78]:

An FD X — Y holds in any set of attributes that contains X | _J Y under the uniqueness as-

sumption discussed in [BERN 76); an MVD is defined together with the set of attributes
where it holds.

12

This is why MVDs are considered primarily in the context of a decomposition approach of
schema design [BEER 80, ZANI 81] rather than a synthetic approach. A representation of a
database as a set of *‘3NF’’- normalized relational tables is not unique [LOZI 78]. Heuristics
aiming at improving the performance of a centralized relational database were devised as an

extension to the synthetic approach [LOZI 78.

The relational model is not the only logical database model which gains to make use of
FDs. FDs have been shown to serve in the conversion from a hierarchical model to a rela-
tional model [DELO 78]. Also, they have been used to construct logical database schemata
described with the network model [HOUS 79]. In [HOUS 79|, operations defined on FDs are
used to ‘‘navigate’’ through a schema and to describe transactions in a formal way. However,
those ‘‘navigation’’ mechanisms do not always capture a correct query processing since so-
called lossy accesses, as described in [AHO 77}, may sometimes occur. It has been argued that
a set of FDs together with the notion of lossless join (to be discussed in the next section), is
enough to capture the semantics of most practical databases [BEER 81]. Further, the impor-
tant problem resulting from deletion cascades [HOUS 79] is most simply observed through
FD-modeling. Deletion side-effects associated with consistency preservation can assume a crit-
ical role in database distribution. These particular aspects of query correctness, i.e. data
integrity and data consistency have been avoided in previous data allocation methods [PALM
79, BUCK 79|, and in mathematical file allocation models [CASE 72, CHU 73, ESWA 74,
MAHM 76, MORG 77|, mainly through the assumption of data independence. The preceding
arguments support further the claim, made in Chapter 1, that it is indeed appropriate and

quite general to retain FDs as the sole low-level semantic modeling tools.

In the next section, issues pertaining to the depiction of a minimum cover of FDs, ie. a

smallest set of FDs which is semantically equivalent to a given set of FDs, are discussed.

13

2.3. Minimum deplction of functional dependencles

The main idea of this section is that the non-redundant depiction of a set of FDs by
graphical means is a convenient way to arrive at the representation of a minimum cover of

that set.

In [AHO 77, BISK 79, LOZI 80|, similar results concerning lossless joins of relations
have been reported. The main result of interest to us is summarized in Theorem 1 (Section
4.1) which combines two corollaries presented in [BISK 79]. Corollaries 1 and 3, and Proposi-
tion 7 extend this result to relational schemes involving FDs uniquely. The notion of lossless
join is useful to determine whether or not a query solution respects the database integrity.
We are not considering the correctness of actual query processing steps, since we assume that
appropriate processing strategies are available, but rather the validity of the so-called query
envelopes [CCA 80]. In this work, the envelope of a query is informally defined to be a por-
tion of the data which is sufficient for answering vthe query. A query envelope consists of a set
of FDs that features the lossless join property. Since, for each query, the choice of an
envelope is not unique, optimization will be used to determine a ‘‘good’’ query envelope. The
envelope optimization problem is not unlike the problems considered in [LOZI 78, LOZI 80|
for a centralized database. In [LOZI 78] the author considers possible improvements of
Bernstein's synthesis algorithm [BERN 76] to enhance database performance. In [LOZI 80],
given a set of relations, the author looks for efficient query procedures. We borrow the notion
of F-graph to depict FDs, and the notion of a link to extract a relevant portion of a database
for a query, from [LOZI 80]. (Although this latter notion will be refined and adapted to our
specific needs). Because of the ‘‘distributed” nature of our envelope optimization problem,

our assumptions and solution techniques are different from those proposed in (LOZI 80].

The methodology described in [LOZI 80] begins with an initial F-graph (Section 3.1.2)
to depict FDs, but no mention is made as to how such a graph could be obtained without

redundancy. The generation of an initial F-graph from a user-provided F-graph is one impor-

14

tant issue to address, especially in the context of automatic schema design. A set of reducing
rules for F-Graphs based on Propositions 1-3 (Section 4.2) are provided to eliminate redun-
dancy systematically. The approach which consists of building reduced F-graphs is justified
by Propositions 5-7 (Section 4.2), in light of previous results on minimum FD covers reported
in [MAIE 80}. It is shown that Algorithm Reduce of Section 4.1 which constructs a non-
redundant F-Graph to depict FDs, leads to the same result and is at most as complex as

[MAIE 80]'s algorithm which derives LR-minimum covers of FDs.

The discussion on FDs and the means to represent them suggests that they can be util-
ized to describe a user's view of its data [FEDA 81] and also a system view of the data (if the
FDs are rearranged to eliminate excessive redundancy). The focus will be placed on a low
level of abstraction corresponding roughly to the ‘‘instance operations level” of [NAVA 76],
and not in consideration of mappings from ezternal schemats to conceptual schema as in
[FEDA 81], although the importance of this latter issue at a higher semantic level is recog-

nized.

Determining an envelope of lossless FDs for a query constitutes a starting point from
where actual query processing sequences may be derived [CHUN 83]. In the next section dis-

tributed query processing strategies are discussed.

2.4. Distributed query processing

It is essential for comprehension of the proposed model (Chapters 4 and 5) to outline the
characteristics of distributed query processing [HEVN 79, WONG 77, CCA 80, CHUN 83].
The first issue associated with the solution of a distributed query is the localization, through a
data directory, of the relevant data needed [CHU 76]. It is assumed that such directories are
available at each site [CHU 76]. Since data may be replicated at different sites, a specific non-
redundant instance of data must be determined for each query. This instance of data is

known as a static materialization [CCA 80, HEVN 79]. A static materialization refers to a

15

physical representation of the query envelope which itself refers to a smallest portion of the
conceptual schema relevant to solve the query. A materialization can be obtained by table
look-up [CCA 80] or can be determined dynamically during query processing [WONG 81]. It
is assumed that a look-up table will eventually be available at each site [HEVN 79]. During
the normal operation of the system, a certain user query issued at some site will always look
for a specific CRDU at a specific site. The system in charge of selecting the most cost benefi-
cial copies of data to be included in a query materialization is called the ‘“‘integrity subsys-
tem” in [HEVN 79]. The next issue is query analysis. It is mainly concerned with the decom-
position of a query statement, expressed in a high level language, into simpler subqueries

[WONG 77]. This leads to the accomplishment of elementary processing tasks.

Query optimization is the final issue of query processing and it is the objecﬁve of the
“‘query processing subsystem’ [CCA 80, HEVN 79]. To visualize the optimization of a distri-
buted query the relational algebra is now mentioned. The relational algebra is basically
defined through its operations on relations, mainly, Selection, Projection and Join [CCA 80].
Each data processing task can be mapped to one of those algebra operations. A join can be
substituted by a pair of semi-joins. In most practical cases this substitution actually results
in less communication overhead [CCA 80, CHUN 83|. Whereas the joining of two relations
necessitates the displacement of at least one whole relation to a common site, a semi-join
operation can be performed by keeping the relations at their local sites, and by transmitting
their respective joining columns to each other. Hence, joining several relations, which
incidently is a commutative and associative operation [AHO 77], can be achieved by a
sequence of semi-joins. This implies that one semi-join can take advantage of another in
terms of data-volume [CCA 80]. At this point it is worthwhile to pause and .aake the follow-
ing remark. One query may be solved by more than one sequence of such selections, projec-
tions and semi-joins. It is commonly accepted that all the restrictions and projections must be
performed locally, as far as possible, to reduce the size of the initial relations. Those smaller-

sized relations are referred to as fragments. It is assumed that an efficient sequence of semi-

16

joins can be found prior to addressing the allocation problem explicitly. That it is correct to
do so results from the fact that, in-a packet switching network, delays are mainly propor-
tional to the flow of data-volume, and therefore, in such an environment, any optimal query
processing sequence depends mainly on the partitioning of accessed relations, and not so much

on their positions in the network [CHUN 83].

The quality of a processing sequence is measured by the cost of its semi-joins (the
volume of data to be transmitted) and their benefits (the volume of data eliminated by a
semi-join operation [CCA 80, CHUN 83|). Algorithm OutTree of Section 4.4 eliminates, as
much as possible, the need to access attributes that do not belong to the target list of a

query, while minimizing some measure of cost associated with semi-joins.

No distributed query processing strategy is, as of now, standard. However, the SDD-1
algorithm [CCA 80| contains all the features of a realistic strategy. ‘‘Algorithm H" of [CHUN
83] follows the same spirit proposed in [CCA 80|, but goes further towards the optimization of
semi-join procedures. During a distributed query processing session, a query originates file-
to-file communications to execute some data-reducing operations, or simply, reducing opera-
tions. Once those oberations are completed, file-to-user communications take place to collect
the result, at the originating user site. This action of collecting the final relevant data is
referred to as the assembly operation+. It is important to note that the flow incurred by file-
to-file transmissions as well as the assembly flow are much larger than the flow corresponding
to messages due to requests and control [CHUN 83]. The reducing flow is based upon the
transmission of large volumes of data, sometimes complete columns of a relational table at a
time, associated with join or semi-join [CCA 80| operations. For updates however, transmis-
sions are mainly due to messages. However, transmissions of messages associated with con-
currency control mechanisms are not considered, neither are the time delays due to transmis-

sion and waiting in queues [MAHM 76, KHAB 80]. The main focus is on the minimization of

¢Note that the terms assembly and reducing were previously used in connection with the flow rather than the
logical operations that lead to that flow. Such a flexibility in terminology will be continued.

17

data-volume shipments.

In the final section, some characteristics of earlier data allocation models are surveyed.

Modeling assumptions and mathematical aspects are discussed.

2.5. Data allocation models

Early research on data allocation has been reported in [CASE 72, CHU 73, ESWA 74,
MAHM 76, MORG 77|. Further studies related to the same problem include [KHAB 80, F1Sii
80, RAMA 79b, APER 80]. In all the publications mentioned above, the assumption of file
independence is made. This means that, given any query, the complete answer to the query
is the collection of the partial answers contained in all the relevant files accessed. Unfor-
tunately, this assumption is entirely inadequate when applied to a distributed database that
is represented by a set of relational tables. As was noted above, distributed query processing
does not consist in 2 mere file-to-user access, but incurs file-to-file communication, as well,
between sites other than the user site [BOOT 81, CCA 80]. When considering a network of
autonomous computers [TANE 81], and users at each site, with roughly the same needs in
terms of logical accesses, it is hazardous to claim the feasibility of designing independent files
that will seldom necessitate any file-to-file communication when processing queries. Relations
are not independent, they are related by the attributes they have in common, and therefore,

they must be allowed to participate in cross-referencing operations.

A model for the placement of relations in a network, that apparently departs from clas-
sical ones is presented in [RAMA 79b]; it applies to a relational database in which cross-
referencing accesses are permitted. However, the query processing policy assumed in [RAMA
79b] requires that the relations accessed in a multi-relation retrieval, must be moved simul-
taneously to the originated site before retrieval operations can be performed. In essence, this
amounts to restricting the query processing communications to file-to-user communications,

and therefore the flow of data associated with the reducing operations, which has been

18

referred to as the file-to-file flow, is not considered.

In [APER 80], however, the problem of distributing a set of relations in a computer net-
work is considered from a different viewpoint. Indeed, the author acknowledges the impor-
tance of including cross-referencing in the distribution stage. An efficient heuristic is used to
allocate already existing relations to the sites of the network. The two last mentioned studies
do not address some very typical issues in the distribution of CRDUs; these are introduced

below.

There is one main difference between distributing, on one hand, files which do not
feature the cross-referencing property, and on the other hand, CRDUs, and in particular rela-
tions, which by definition can participate in cross-referencing accesses with one amother
because of semantic dependence. In the first case it is acceptable to evaluate the total data-
volume flow using the superposition principle, whereas in the second case the data-volume
contributions are ruled by highly nonlinear effects due to clustering. To understand the signi-
ficance, on data-volume flow, of clustering CRDUSs, let us consider Figure 2.1. It depicts two
possible cases of relatioﬂ clustering for a query, originated at site t, which needs to access
relations R1[A,B], R2|A,C|] and R3[A,D]. In Figure 2.1-i R1 and R3 are clustered* at site 1.
R2 is available, by itself, at site 2. The query may be processed by following a strategy as
depicted by the graph of Figure 2.1-i. On this directed graph, arc (a,b) refers to a
“dummy’’** move of relation R3 towards R1 resulting in a join R1{A|R3. Also, each vertical
arc such as (b,e) indicates that no data flow is associated with the corresponding access of
data because no physical inter-site move is required. Arc (b,d) represents a reducing operation
from R1[A|R3 towards R2 initiated at step O of the distributed query processing sequence; it
corresponds to the semi-join (R1°A]R3%)|A> R2° which requires the shipment of a volume of

data labeled (R1°AJR3°%)[A]t . Arc (d,e) corresponds to a reducing operation from R2

*We may visualize the clustering of R1 and R3 as resulting from the join of R1 with R3 over column A if it is
advantageous to do so.

eslt obviously incurs no flow since R1 and R3 are located at the same site.

{The superscripts indicate the step in the distributed query processing sequence. R1[A|R3 sends all the values
of A that it possesses, to site 2 where R2 is located. We assume familiarity with the usual notation for join, sems-

19

towards R1|A|R3, initiated at step 1; it is labeled R2[A] to indicate that the copy of R2, at
step 1, sends its own column of values for the attribute A, to site 1. The assembly flow results
from a transfer of relations (R19A]R3%)< A]R2! and R2!, respectively from sites 1 and 2, to
the user site t. For the case depicted in Figure 2.1-ii, R1 and R2 are clustered at site 1. They
are represented by their join R1[A|R2 at site 1, whereas R3 is available at site 2. The flow of
data-volume resulting from this configuration is indicated in Figure 2.1-ii. It is assumed that
the query processing strategy depicted seeks to minimize the flow of data-volume for this new
configuration of the initially accessed relations. The distributed query processing strategy of
Figure 2.1-ii is shown to be totally different from the previous one in Figure 2.1-i. The reason
is that in each case, the particular representation of the initially accessed relations is fully
taken advantage of by the distributed query processing algorithm used [CHUN 83]. Therefore
the two configurations of R1, R2 and R3 in the network, result in different combined file-to-
file and file-to-user flows. Obviously, the clustering of CRDUs affects in a non-trivial way the

flow of data-volume associated with the distributed query processing mechanism.

Yet another problem arises from overlooking the importance of the position, in the net-
work, of the user who originates a query. Figure 2.2-i shows an optimal query processing stra-
tegy to solve a query by _operating on three distinct CRDUs r, q1 and q2. It is assumed that
those CRDUs will be placed at different sites, and hence the clustering effect needs not be
considered. Figure 2.2-ii displays the reducing and assembly flows in the network when ql is
at site i, q2 at site j, r at site k and the user site t is distinct from i, j and k. If the user is
moved to site k, then site t becomes identical to k; the flow would look as shown in Figure
2.2-iii. The assembly flow resulting from the shipment of the processed copy of r to site t is
discarded. However, one question still remains; looking at Figure 2.2-i, it can be noticed that
arcs [(1,2),(t,3)] and {(j,2),(t,3)] correspond to cross-referencing operations aiming at reducing
the size of the copy of CRDU r, and therefore the assembly flow from k to t. Furthermore,

because no other cross-referencing operation is to either benefit or follow from their

Join and projection.

20

application, it is said that these cross-referencing operations are noncritical. Of course it
seems futile to try to decrease the size of r because this will not trigger any move to decrease
the sizes of ql or q2 any further, and because r is already at the destination site t! Therefore
the arcs which are represented with dashed lines can be omitted from Figure 2.2-iii, illustrat-
ing the fact that, even without the effect of clustering, the total flow, in processing a query,
may be affected by the location of the site at which the query is originated. The term non-
critical will be used in association with a cross-referencing operation or a semi-join, in the
context of distributed query processing when discussing the optimization model. A more for-

mal definition will be provided in the next chapter.

The next remark is about the materialization issue. Figure 2.3 depicts a user, at site t,
who originates a query that may be answered through the access and cross-referencing of
CRDUs R1, R2 and R3. The figure depicts a multiple copy situation. The query needs only
access a non-redundant instance of the set {R1, R2, R3}; this is referred to as a static materi-
alization*. Such materializations are not known in advance, therefore, at the design stage,

the materialization problem must be addressed jointly with the distribution problem.

Finally, stringent physical constraints may have to be considered at the design stage.
This is particularly true if the supporting computer network of the-distributed system does
not include communication links which feature virtually infinite flow capacity characteristics.
For instance, if static routing is used to direct the traffic in the network, it may not be practi-
cal to always follow the shortest path from a node i to a node j whenever some communica-
tion is to take place between node i and node j. Consequently, any isolated communication
between i and j may be associated with a set of superposing paths from i to j. If adaptive
rouling techniques are used, the flow is forced to follow the least busy routes in the network.
At the design stage, for both routing techniques mentioned, finite flow capacity may affect

the distribution of the CRDUs. This issue is most easily dealt with when a descriptive

*¢As opposed to a dynamsc materialization [WONG 81], which may include redundant copies and which may al-
low the query processing to take advantage of parallel processing of those redundant copies.

21

mathematical model is available.

The computational methods applied to allocation problems are usually based on integer
or mixed-integer programming algorithms. A few of them are surveyed below*. The scope of
the problem analyzed in [MAHM 76] is larger than those of most file allocation formulations.
It includes a wider description of the computer network, such as links and nodes religbilities,
and file avatlability. Time delays are also considered explicitly. The final model is a nonlinear
integer program. A nonlinear branch-and-bound integer programming technique is adopted for
its solution; it turns out to be unsuccessful for problems that are not of small size. In [KHAB
80|, the file allocation problem is combined with the communication network design (i.e. its
topology and channel capacities assignment). The communication cost is identified by a non-
linear integer (0-1) expression because the flow is estimated in terms of the zero-one allocation
variables and probabilities associated with the access policy. Furthermore, the number of
copies for each file are fixed by the file availability requirements. Hence, the proposed design
approach leads to a simple form of the allocation model. The file allocatiqn routine is based
upon a greedy algorithm that has been tested with as many as ten sites. in [MORG 77], the
problem includes the allocation of programs as well as files. The associated mathematical
model is a mixed-integer linear program. In the solution of this model, each possible file
assignment is represented by a vertex on an n-dimensional hypercube. A partial search is ini-
tiated with any feasible file assignment. A sequence of file assignments are generated by
branching forward on the hypercube. Through the execution of the algorithm, a feasibility
test is consulted to determine wether some portions of the hypercube can be discarded. The
model described in [FISH 80| is based on simple file-to-user accesses and on the premise that
the whole database can be represented by one file. Overall it features the mcst assumptions in
terms of database and network requirements. Nevertheless, the problem leads to a mixed
integer program as in [MORG 77|, and the algorithm presented is valuable in its own right

regardless of the initial assumptions. The algorithm is based on heuristic building blocks for

*None of them deals with the issue of cross-referencing in distributed query processing.

22

generating feasible solutions. A lagrange relaxation approach is followed for obtaining lower
bounds on the cost of an optimal solution. [FISH 80] also includes the development of a domi-
nance test that can be used in a preprocessing step to reduce the size of the problem before
submitting it to a branch-and-bound algorithm. This algorithm has been shown to withstand
a relatively large scale testing. It has been proved in [ESWA 74] that the classical file alloca-
tion problem is np-complete. Since then, researchers have encouraged the use of heuristics to
solve such problems [CHAN 77, RAMA 79a]. Also, some possible pragmatic techniques appli-

cable to data allocation have been described in [BUCK 79, HAMM 79, PALM 79].

In the following chapter (Section 3.1) a formal definition for some of the technical
terms encountered so far* is given. The problem of interest is then worded in a more precise

way (Section 3.2) and a solution procedure is sketched (Section 3.3).

*Other technical terms are briefly defined in Appendix A in casual words. For more complete definitions, the
references should be consulted.

23

—— Local join: No inter-site move. No delay.
* Participation in a semi-join: No inter-site move. Finite delay.
/ Participation in a semijoin: Intersite move. Finite delay.
| Semi-join.

Figure 2.1. The effect of data clustering on distributed query processing

24

i

|
]
1]

=0

Figure 2.2. Noncritical semi-joins in distributed query processing.

25

R1 Rz’

% COMMUNICATION 0

NETWORK

Ri|[Rs

Figure 2.3. The materialization problem

CHAPTER 3

PRELIMINARY FRAMEWORK

This chapter is divided into three sections. Section 3.1 contains basic definitions with
appropriate references. Section 3.2 provides a concise statement of the problem of interest in

more formal terms. Section 3.3 proposes general guidelines to tackle the problem.

3.1. Definitions

In this section definitions of the terms Functional dependency (FD), closure and covers

of a set of FDs, relation scheme, and database schema are presented.

3.1.1. Functional dependency and database schema

Let U be a universe of attributes. Every attribute a; in U takes its values from a
domain set DOM(a,). Let X = {a,,- -8y} and Y ={by, - bp }, (XS Uand Y C U)
be ordered sets of attributes. Suppose there exists a function f

f: DOM(a)X DOM(a)X * - - XDOM{a,) = DOM(b,)X - - - X DOM(b,,),
i.e. for any z,7 € DOM(a)X ' - - XDOMa,), at any time, if z = Z, then flz) = f(Z). A
functional dependency (FD) is said to hold from X to Y, denoted by X — Y, if there exists
such a function f. More casually, f is said to hold on X | J Y. We also say that X determines
Y. X | Y is called the attribute scheme of f and is denoted by S). If both X — Y and
Y — X hold, we write X +—— Y. We will use capital sized letters from the end of the alpha-

bet, such as X ,Y ,Z, to denote sets of attributes. Single attributes will be denoted with

26

27

small case letters from the top of the alphabet, such as g, b, - -

FD inference rules, known as Armstrong’s rules, have been studied in the literature

[ARMS 74]. These are:

FD inference rules

FD 1 (Reflexivity) ¥ C X, yields X — Y,
FD 2 (Augmentation) Z C Wand X - Y

yield XW — YZ (where XW stands for X | J W),
FD 3 (Transitivity) X ~+ Y and ¥ — Z yield X — Z,
FD 4 (Pseudotransitivity) X — Y and YW — Z

yield XW — 7,

FD 5 (Union) X — Y and X — Z yield X — YZ,
FD 6 (Decomposition) X — YZ yields X — Y and X — Z.

A set of inference rules is said to be complete if it implies rules FD 1-6. Relaxed versions
of FD 1 and FD 2, together with FD 4, can be shown to constitute a complete set of inference
rules [KAMB 78|. These are:

(i) X-X

(i) X = Y yields XW — Y,
(iii) X ~ Y and YW — Z yield XW — Z.

The closure F¥ of a set of FDs F is the set of all FDs that can be inferred from the FDs
in F using a complete set of inference rules. Given some sets of FDs F and G, F' is a cover of
Gif F*=Gt.

A set of FDs F is nonredundant if there is no set of FDs G properly contained in F with
Gt = F* |MAIE 80|. A set of FDs is minimum if there is no set G with fewer FDs than F
such that G+ = F* [MAIE 80]. A set of FDs F is L-minimum if:

(1) F is minimum, and

(2) for every FD X — Y in F, there is no X C X with X — Y in F*+ [MAIE 80].

28

A set of FDs F is LR-mintmum if it is L-minimum, and replacing FD X —+ Y in F by X — Y,
with ¥ C Y, alters the closure of F [MAIE 80}.

As in [BISK 79), a relation scheme is defined to be a pair <X,E> where X C U and
E C F*is a set of FDs holding on attributes of X, i.e. if R — S € E, then R us C X
Note, however, that even though R — S may hold on RUS, <R U 50> is a legitimate
relation scheme, where @ denotes the empty set. If only the first entry or the second entry of
the pair <X,E> is relevant, we use the notation <X,> and <,E> respectively. The rela-

tion scheme < U, F> is called the universal relation scheme.

A database schema is a set D = {<XF,>, ' ,<X,,F,>} where Uuxi=vU

f==1

n +
and (|J F) = F*, and the FDs of F, hold on X,. Note that this definition is more res-

1=1

trictive than the ome in |[BISK 79). A datebase subschems is a set

- A m

D= {<Y,E;>, +,<Y, ,E, >} where, (1) the set Z defined as Z = | J Y, satisfies
t=1

A m
Z C U, (2) the set E defined as E = | J E, satisfies E* C F'*, (3) the FDs of E, hold on

i=1
Y,.

For X={a, " ,8,}) CU (and X is ordered) a finite set
r C DOM(X) = DOM{a)X - - - XDOM(s,) is defined to be a relation on X. We also
denote such a relation by r[X]. Each element ¢ of r is a tuple of values defined on X. (A
tuple ¢ can be seen as a function from a set of attributes X to DOM(X)). AnFD Y — Z is
said to hold in a relation r defined on X if it holds on some subset of X, ie. Y Uzecx

Note that for any two tuples ¢ and ¢ in r, if {{Y) = & Y) then {2) = & 2).

A class of instances described by the relation scheme <X,E> is I cxps = {r: risa
relation on X, and all FDs of E hold in r}. An element of [cxp is called a relation
instance. A database schema D = {<XF,>, -+, <X, ,F, >} describes the following

class of instance sels:

29

Ip = {{ry, - ,r}: r €Elex psfori=1---,n}

If X C X then ¥X) denotes the subtuple containing the |X| components of ¢X) correspond-
ing to the elements of X. The projection, over Y C X, of a relation r defined on X is
Y] = {t:t € rand t = {Y)}. The natural join of two relations, r|X] and s|Y], denoted by
r|X M) Vs, or simply rlls, is 41X () Y]e = {t : {X) € r[X] and {Y) € ¢[Y]}. The semi-join
of relation s[Y] with relation r[X], denoted by r[X [Y>s or simply r[>s, is
(>0 = (Y.

| A database schema D = {<X,,>, * -+ ,<X,,>} is said to feature (or satisfy) the loss-

less join property, or display a join dependency, with respect to <UF> if, for all
n

r€leyrs, r= ||) r|X,], where the notation on the right hand side of the equality
=

means that all relations are joined together. This notation is appropriate because the join

operation is associative and commutative. Le¢ D be a subschema

' A m A m -
{KYLE>, + ,<Yp,Ep>}andlet Z= | Y, and E= | E;. D is said to satisfy

§ mm]]

n
the lossless join property with respect to <Z,E> ifforall r € [¢zps, r = || . Y,].
|} m==

The concept of universal relation scheme or simply, universal relation (UR), has been
discussed by many researchers; see for instance [BEER 81, ULLM 82, FAGI 82, MAIE 83].
The implications of such a concept are coﬁtroversial. However, there is some agreement that
the universal relation is both useful and practical [MAIE 83]. Furthermore, to quote [BEER
81]:

In almost any *real world” situation, a single join dependency suffices, together with some
functional dependencies, to define the legal relations that might be the universal relation at
some time.

In order to render the concept of universal relation acceptable the following assumptions are

made:

30

Assumption UR-1: If an FD holds from X to Y, then it 12 unique. In particular, X = X

denotes the identity FD over X.
Assumption UR-2: The attributes are named in such a way that rule FD 8 is satisfied.

Assumptions UR-1 and UR-2 imply that sufficient renaming of attributes needs to be made.

Assumption UR-3: Any database schema D satisfies the lossless join property with respect to
<UF>.

Assumptions UR-1 and UR-3 are discussed in [ULLM 82|, and Assumption UR-2 is necessary

if problems pointed out in [ATZE 82] are to be avoided.

3.1.2. F-graphs

In this section, a graphical means of depicting the FDs of the universal relation scheme

< U,F>, first used in [LOZI 78], is introduced.
Let <UF> be a universal relation scheme where F = {f,,--- f,}. Let
G = <Ng,Ag> be a bipartite graph where N; =V U W for some V and W,
Ag = A, |JA, forsome A, and A,, and VO W =49, A, N A, =0. G issaid to
be the F-graph of <U,F> if and only if:
For all f, € F where f, stands for X; — Y, (for some X, , Y, C U) there exist,
(1) V' ={y, 16, €(X, |J Y.)} where v, denotes the only node which is labelled a;
(2) w' € W is unlabelled and only associated with f,,
B) A/ =A{(ve,w): 0 €X},
4) A = {(w,,v,): 6, €Y,},

and further:

31

1 v=y Vv,
(2) W={wiv w2!"'rwn}’

() A=) A

1=z

4) A, = U Av-

1==1
Any FD f, € F is said to be ezplicitly represented (or simply, ezplicit) in G. V is called the
set of v-nodes, and W the set of w-nodes. Given a node z, the set of predecessors of z, n(z),

is 7(z) = {y : (v,2) € Ag } and the set of successors of z, o(z), is o(z) = {y : (z,4) € Ag }.

A v-node y is reachable [LOZI 80] from a set of v-nodes V C V if:

(2) There exists w, € W and (v, ,y) € A, and all ¥ € 7(w;) are reachable from V.

A w-node y is reachable from a set of v-nodes V C V if all the nodes of n(y) are reachable
from V. A set of v-nodes V is said to lead to another node y if y is reachable from V. A w-
node z of an F-graph G leads to another node y of G if y is reachable from 7(z). A set of w-
nodes W leads to another node y if all z € W lead to y. In general, a set of nodes X leads to
a set of nodes Y (we write X > Y) if X leads to every node of Y. A source of a set of v-

nodes V is defined to be any w-node w, that leads to V.

If v, is a v-node and g, its attribute label, the a4, is also denoted by Atf(y,). If

V= {v1,0g, -, vy } is a set of v-nodes, {Att(v,) : v, € V} is denoted by At(V).

Given a w-node w, and a set of v-nodes V such that w, >V, Q@ C Uis a keyof

At V) if and only if:
(1) @ = Att|n(w;)),

(2) forany @, : @, > V, n(7,) ¢ n(w,).

32

If a set of FDs F is LR-minimum, then the corresponding F-graph is said to be

minimum.

An F-graph is said to be lossless if the database schema defined by

D= |y {<,{f, }>} satisfies the lossless join property with respect to <U,F>..
[EF

3.1.3. Link and envelope

Defined below are, a link (we will compare our definition with that of [LOZI 80]) from a

set of w-nodes to a set of v-nodes, and an envelope for a set of v-nodes.

Suppose there exists a sub-graph L(w,,v) =(ViUW; ’AV[UAWE) of G where
w, € Wand av € Vand w, > vin L, but for any y € Vigywe w, % vin L - {y}, and
further, if any arc ¢ is deleted from AVEUAWE' then w, $ v in L- {e}, then E(w,,v) is

called a proper link from w, to v. We say that any arc in L is a linking arc from w, to v

with respect to AV[UA Wi Ws and v are respectively called the source and the sink of L. If

El(ws,v) E"’(ws,v) stand for all the proper links from w, to v, then

a " _
L{ws,v) = |J L'(w,,v)is simply called the link from w, to v. The link L{w,,T) from w; to

1==1

TCV is defined by: Lw,,T)= |J Lwsv). An F-graph L(w,,T) defined by
veT

L(w,,T) = U Ei'(ws ,v) is called a sub-link of L (or simply, a sub-link). If for any
ve T
ty € {1’ '"v}

node y in L we have that w, 3 T in L - {y}, then L is said to be proper. Given W, C W,

the link from W, to Tis (W, ,T)= |J Lw,7T).
ve W,

An FD f: X — g,, is said to be a base-FD in an F-graph G if there exists w € W such
that X = Ati(n(w)) and a; € Atf{o(w)).

Given the F-graph G of a universal relation scheme <U/F>, an FD f,: X — Y,

f € F* is said to be induced by a sub-link L(W,,T) if X= U {At{v)} where
ve v,

33

A

Vi U 7(w) and Y = | J {AtH(v)}. If such an FD f; is not explicit in G, it is said to be

weEW veT

3

implicitly represented (or simply, implicit) in G. The notation f{w,,v) will denote the FD

induced by a proper link L(w, ,v).
The length of a proper link L(w,,v;) is defined to be the maximum number of w-nodes,

including w,, encountered on a directed path from w, to v;.

If there exist two or more distinct proper links from w, to v;, and two of which are
L*(w,,v;) and L7(w,,v;), then the pair [LH{w,,v,);L (w,,v;)] is said to be a doublet. Let
fHw,,v;) and f(w,,v;) be the respective representations of L% and L, in the F-graph G.

Then, by Assumption UR-1, f/* and f~ must be identical.

Let IT(ws ,v¢) be a proper link. Let c C Vi, be such that:
(1) C> v and,
(2) forany v, ECC-{v,} $ v.

Define C C Wy as,

A

C U_mw)

v, €C
A cutset T of L is defined as:

a -
I'={{w,,v;): w, € Ciand v; € C}.

By abuse of notation, we write I' = (C, 5)

Given an F-graph G of a universal relation scheme < U,F>, and given a set of v-nodes
T, an envelope K(T) of T is a subschema

a
K(T) = {<Y1:El>: <Y, ,Em >} where,

(1) for any <Y, ,E;> € K(T), there exists f, € F* such that E, = {f;} and

Y, = S4),

34

(2) for any v, € T, there exists <,{f, }> € K(T) such that At{(v,) € S(f;) and,

m m
(3) K(T) satisfies the lossless join property with respect to < | J Y, , U &>

1==] t=m]

Such an envelope K(T) is always guaranteed to exist but is not necessarily unique. In the next
chapter, we will show that, for any T, for Condition (3) to be satisfied, it suffices to have
some set of attribute Y, be such that Y, — At{T) holds. In the worst case, ¥, may have to
be identical to Att(T). We will also show that given a sub-link L{w;,T), the set of relation

schemes defined as:

{<SAw, u)), {Aw,u)}>},

(w] ’"1)6 Awl.

is an envelope of T. However, we will see that such a sub-link, which has a single source w,
for all its v-nodes, can only be guaranteed to exist in a special kind of lossless F-graphs. We
will also show that Assumption UR-3 requires that, for any T, at least one envelope K(T) can
be determined for which all the FDs are in F rather than in F*, as would be the case more
generally. Further, that a universal relation scheme < U,F> which satisfies Assumption UR-3

must be depicted with a lossless F-graph.

3.1.4. Distributed query processing sequence

Let R, '+ ,R, denote I relations. Let R represent the list of these relations, i.e.
R = (R,, - ,R;). A distributed processing sequence is a sequence R", n=20,1, -+ K
such that R"*!'=T"*!'[R"], n=0,1,---,K-1 where T"*! is a transformation
that consists of semi-joins executed with respect to some pairs of relation instances of the
form (R, R") at step n + 1, and where R is obtained from R after all initial projections

and selections have been performed for a given query. The final result of the sequence, REK,

satisfies RX = [|(RX) = [|(R,°). Any semi-join R¥~![> R ! contributing to the transfor-
] 4

mation TX is said to be an noncritical semi-join with respect to the sequence. All the other

semi-joins are said to be critical. In Figure 2-i (Chapter 2), a distributed query processing

35

sequence was depicted using a directed graph.

3.2. Initial problem formulation

An informal summary of the problem follows. User provided imputs include: (1) A
universal relation scheme which consists of (i) a universe of attributes, (ii) a set of functional
dependencies (FD) holding on the attributes, and (iii) some statistical information for each
attribute, the domain from which the attribute gets its values, and for each FD, (2) a com-
puter network with tightly or loosely connected nodes. It is assumed that the communication
network has a fixed topology and that there is enough over-all channel capacity. Communica-
tion costs, and channel capacities are assumed to be given. (3) The user’s scheduled queries
and updates. A query is assumed to consist of a target list of attributes, a usage frequency,
and a set of qualification clauses holding on attributes. An update is assumed to consist of a
target list of attributes, a type, i.e. whether the update is a ‘‘delete’’ or an ‘‘add”, and an
occurrence frequency. The first phase of the problem must consist of identifying the FDs
which will allow the solution of every query and which will enhance the performance of distri-
buted query and update processing. The second phase of the problem must result with a dis-

tribution of FDs in the network which minimizes the operational communication cost.

The problem is expressed in formal terms below. We are given the following: (1) A
universal relation scheme <U,F> where U is a set of attributes and F a set of FDs which
hold on U (the assumptions UR-1, UR-2 and UR-3 hold on < U,F>), and 0 a set of statistical
informations for each attribute and each FD#+. (2) The graph of a computer network
I = (N,A), where N stands for the set of nodes identified with computer sites, A stands for
the edges identified with communication channels. The graph has a fixed topology, and the
network has appropriatet channel capacities. Transmission costs characteristics are given.

(3) For each usersite t€N, a set of queries is given, defined by

s4See Section 4.6.
{This means that there is enough channel capacity overall to accommodate the total traffic.

36

A
Q ={Qu = <Tu,vy,Cu>, 1< k<K;}, where K; is a positive integer,

Ty = (g, -, jff;‘), and 7% = 1 indicates that the i® attribute a, € U is referenced
in the query, = O otherwise. vy is the frequency of occurrence of query @y, and Cy, is a set

of qualification clauses specified with respect to the universal scheme < U, >. For each user-

A
site s € N, a set of updates is given, defined by U, = {Uy = <Ty, vy, TYPE>,

1<k< I_(; }, where I-(-s is a positive integer, T is defined as Ty with the subscript s sub-
stituted for the subscript ¢, and j* = 1 indicates that the i** attribute a, € U is referenced
in the update. vy is the frequency of occurrence of Uy, and TYPE is either “ADD” or
“DELETE”. (A query (@) or an update (U) is called a transaction. Given a transaction
Qu or Uy, theset T = {a, : 6, € U and 7% = 1} is called the target list of the transaction.
The corresponding set of v-nodes in the F-graph is referred to as the set of target nodes.) The
following is to be achieved: (1) For each query @; find an envelope
Ky C {<,{h }> : b, € F*} whose FDs contain the attributes referenced in @ . (2) Distri-

bute on I' the CRDUs mapped to | J Ky so as to minimize the total communication cost.
Qu

3.3. Procedure towards a solution

The task of organizing CRDUs in the computer network is divided into two parts: (1)
The determination of envelopes for all queries, i.e. the selection of appropriate FDs, and (2)

the distribution of CRDUs mapped to the selected FDs.

The main steps according to which the distributed database design problem is addressed

are outlined:
PART 1: Selection: From users' FDs to envelopes

Given an initial set of FDs, F, a universe of attributes U, and a set of transactions for
each user node, the following is to be achieved: For each query, one envelope which leads to

the efficient processing for that particular query is to be determined. The following approach

37

is proposed*:

$Step-1: Given an F-graph, build a minimum F-graph G (Algorithm Reduce). The
full reduction of the initial user-given F-graph leads to extensive decrease in
processing effort later on in the design method. It is shown that Algorithm
Reduce is slightly less complex than [MAIE 80}'s algorithm. Given an F-
graph, G, make minor modifications to satisfy losslessness, as required by
Assumption UR-3. This step ensures that a query referencing any set of attri-
butes can be solved correctly. Algorithm NoLoss addresses the problem as a

simple covering problem.

+Step-2: Given a set of target nodes (for every query), find the sets of w-nodes from
which the target nodes are reachable (Algorithm GetSources |[LOZI 80]);
these w-nodes are referred to as source nodes. Find the nearest set(s) of
source nodes (Algorithm GetNearestSource [LOZI 80]). Find the link from
the source nodes to the target nodes. This is accomplished by Algorithm Get-
Link which is a corrected version of Algorithm 2 in [LOZI 80]. This step con-
sists of extracting, from the F-graph, the subgraph which is sufficient to solve

the query under consideration.

{Step-3: For each query, given a link from a set of source nodes to a set of target
nodes, extract FDs that cover the target list, contain a minimum number of
unreferenced attributes, and lead to low-cost distributed query processing.
Thus, each query is assigned its own envelope. Each FD, in an envelope, is

mapped to a CRDU.

Step-4: Determining input data-volumes in preparation for PART 2. A distributed

query processing algorithm such as [CHUN 83]’s may be used.

sAlthough the approach based on the synthesis of a distributed database through the distribution of CRDUs
mapped to FDs is original, some steps of its implementation make use of existing algorithms. For this reason we at-
tach a "double dagger” (§) to indicate an original contribution, a "dagger” (1) to indicate that modifications have
been made to some known algorithms. Other algorithms or techniques are appropriately referenced.

38

PART 2: Distribution: Covering the network with CRDUs
{Step-5: Given a set of CRDUs, find a minimum cost distribution and materialization.

Step-6: At this stage in the design, for each query, a database subschema that satis-
fies the lossless join property has been obtained. Since redundant FDs may
have been allocated at any one site during Step-5, a nonredundant subset
(not just any nonredundant cover) of FDs must be identified at each site.

Relations are then synthesized from FDs using [KAMB 78|’s algorithm.

In Chapter 4 the problems of depicting FDs, finding envelopes for target nodes, and

selecting FDs that will be mapped to the CRDUs in PART 2 are addressed.

CHAPTER 4

DATA MODELING

The first section of this chapter begins with the statement of a known result pertaining
to the lossless join property of a set of relation schemes. In Section 4.2, properties of F-
graphs are studied and Step-1 of the distributed database design problem is addressed. A set
of rules to simplify F-graphs that depict extraneous FDs is then proposed. This problem is
related precisely to the problem of finding LR-minimum covers for a set of FDs. Section 4.3
deals with F-graph manipulation algorithms for Step-2. Section 4.4 is devoted to the model-
ing and solution of Step-3, or the envelope optimization problem. Section 4.5 discusses some
important issues of consistency preservation associated with the updating of FDs in a data-
base. Section 4.6 closes this chapter with a complete summary of the data modeling

approach, and with illustrative examples.

4.1. Foundation of the distribution approach

It was mentioned, earlier in Chapter 1, that each CRDU, an atomic unit of distribution,
is associated with one FD. Supporting arguments for this choice were given. This section con-
solidates the role of FDs in database distribution. Here, the database distribution philosophy
is based on vertical distribution (i.e. with respect to attribute types, exploiting the “projec-
tion’ operation), and on the synthesis approach [BERN 76, KAMB 78]. The explanation for
the latter statement is that, after distribution, the FDs assigned to a site can be used to build
a relational database [BERN 76), a network database [HOUS 79], or a hierarchical database

[DELO 79]. Horizontal partitioning (i.e. with respect to tuples, exploiting the ‘“selection”

39

40

operation), is beyond the scope of this thesis, but could still complement the proposed

approach without conflict.

The well known result on lossless join [AHO 77, BISK 79, LOZI 80], summarized in

Theorem 1, is of central importance to our distribution approach. Given a query with target

”
list Y, and given a database subschema D = {<X,, >, -+ ,<X,, >} where Y C U X,

f=1
Theorem 1 indicates how to guarantee that some relations r,, - - - ,r,, which are picked from

I<x,> ' "I <x, > respectively, can be joined to solve the query while preserving semantic

integrity. Theorem 1 combines two corollaries reported in [BISK 79].

Theorem 1: Let D = {<X,, H,>, - ,<X,,H,>)} be a database subschema and

n
<Z,E> a relational scheme such that | J X; = Z. Furthermore, suppose that H, where

f=sl

A n
H= |JH,, is o covering of E (H* = E?) such thot for any R — S € H, there ezists

=1

<X,,>€D wth RYS C X, (condition C). Then there ezists <Xiy> € D such that

X,—~Z€ E* if and only if D has the lossless join property with respect to <Z,E>.

Proof: Refer to [BISK 79]. e

The next corollary refers to the special case where each relation scheme in the database
subschema contains a unique FD. Although Corollary 1 trivially follows from Theorem 1, it
provides a criterion which is easier to use than that provided by Theorem 1. This criterion
only involves FDs, and thus Corollary 1 suggests that FDs constitute natural units of distribu-

tion.

Corollary 1: Let D = {<X,{h,}>, -, <X, ,{b,}>) be o database subschema and

<Z,E> o relational scheme with |) X, = Z, and H = {hy, - - - b, } such that H¥ = E,
1]

end X, = Sh,) for 1< i< n Then there ezists a <X;,{h;}> € D that satisfies

41

X, = Z € E* if and only if D has the lossless join property with respect to <Z,E>.

From that follows a sufficient condition for an F-graph G to be lossless.

Corollary 2: If an F-graph G =(VUW,A‘, UA,) 12 a sub-link with single source,

G = L(w,,V), then it ig logsless.

The converse is not necessarilly true. As a counter-example, consider the F-graph that depicts

two explicit FDs AB — C, and A — D.

4.2. Step-1: Initial processing of a user-F-graph

A user-provided F-graph may feature unnecessary redundancy in depicting FDs. Several
steps may be taken to simplify the user F-graph while preserving its information-
representation content. These steps are presented in Section 4.2.1 in the form of a detailed
algorithm, Reduce. Section 4.2.2 considers the theoretical implications of Algorithm Reduce.

Section 4.2.3 indicates how Assumption UR-3 may be enforced on an F-graph.

4.2.1. F-graph reduction

The following propositions state some properties of F-graphs. Typically, if the FD infer-
ence rules of Chapter 3 can be applied to some of the explicit FDs of an F-graph, to obtain
other explicit FDs, then the latter can be eliminated from the graph, and the graph simpli-
fied. The notation X, will denote a set of attributes, and V, will denote the corresponding
set of v-nodes in an F-graph. If no subscript is used tobdenote a set of attributes, such as X,
then the notation Vy will denote the set of v-nodes associated with X. We will use the fact
that, in an F-graph which depicts F, the statement V; > V; is equivalent to X; — X, € F*

(see |LOZI 80]).

Proposition 1: Given an F-graph G which depicts F, let vy € V be a v-node and

wr €n(vy). If there ezists V, Cn(wr), V, Ca(wr),V, leads to V; inG,

42

and V, () V, =8, then the arcs in the set {(v;,wr): v; € V;} are extrancous (i.c. do not

alter the closure of the FDs ezplicitly represented in G), and can be deleted from G.

Proof: Let V, be defined as V; = m(wr)-(V; |J V;). To show that the arcs in
{(v,,wr) : v, € V;} are extraneous, it suffices to show that X; is superfluous in the left hand
side of the explicit FD X; | J X; | J Xi — Ar (1). From the hypothesis, V, > V;, which is
equivalent to X, — X; € F*. Rule FD-1 says that X; — X, U X (2) also holds. Using
Rule FD-4 on (1) and (2) leads to X; U X — Ar. Therefore, Ar is determined by
X U X without any reference to X;. Furthermore, since V, nv= §, the arcs of
{(v, ,wr) : v, € V,} are only used to convey the participation of X; in FD (1), hence they are

extraneous. ©

Proposition 2: Given an F-graph G which depicts F, let the FD f; : XY — ZS be ezplicit in
G, and let w; be its w-node. If the FD X — Z can be induced by a link, L, and w; ¢ W,

then, the arcs in {{w,,v,): v, € V} are eztraneous in G.

Proof: Since X — Z € F*, by FD 2, the depiction of XY — Z is redundant. e

A set of rules are proposed that can be used to simplify an F-graph that depicts extrane-
ous explicit FDs. These reducing rules are based on FD-rules of Section 3.1.1 and exploit Pro-

positions 3 and 4.

A reduced F-graph is an F-graph on which the following rules have been performed.

RULE 1: while CONDITION 1, Some w-nodes w,, - -+ ,w, have ezactly the same
predecessor set,”” do REDUCE 1. Combine all the w-nodes w,,w,, -+ - ,w, into a unique
w-node say, w;. Delete all the arcs incident on wo,wg, * * - ,w,. Create new arcs (w,,7;)
for all v; such that (w,,v,)€A,,2< < n

/* RULE 1 makes use of rule FD-5. See Figure 4.1-i. */

RULE 2: while CONDITION Q,: “There ezist some V and w for which V = n(w) N o(w)
" do

REDUCE 2:
begin

43

for all 7 € V, delete (wv) _
if there 12 no v-node v ¢ V
such that (w,v) € Ay, then

delete w from W and

delete oll the arcs incident on w

end
/* RULE 2 uses rule FD-1. See Figure 4.1-iv. */

RULE 3: while CONDITION Q,: “An FD XY — Z 18 ezplicitly represented in the graph
and w, € n(Vz) ie its w-node, and further X — Z s induced by o link L(W,,Vz) where
W, € \J olvn) do
v, € Vy
REDUCE 3: /* Makes use of Proposition 2. */
begin
delete all (w,,v,) where v is
6 v-node labelled with an attribute in Z (v;, € V)
if there 18 no (w,,v,)
such that v, ¢ V;z, then
forall v, € V
and v, 18 labelled with attributes of X or Y
delete (v, ,w;)
delete w, from W
end
/* See Figure 4.1-iii and 4.3. */

RULE 4: while CONDITION (Qy: "For some wy € W, there ezists a proper subset of
n(wr), V, that leads to another subset of n(wr), V, and V, | V; =0~ do

REDUCE 4: [* Makes use of Proposition 1 */
begin
for all vy, € V,
delete (v, ,wr) from A,
end
/* See Figures 4.1-ii and 4.2. */

Conditions 2, 1, ,{2; and g can easily be implemented; here is how:

(1) Condition Qy :
This condition simply requires that every w-node w, be checked for the foilowing property:
Given w, , is there a w-node w,, w, # w;, such that n(w;) = n(w,) ? This is answered by

tracing the F-graph backwards from w;, and checking if there exists such a w,. The time

complexity for RULE 1 is O(| W}?).

44

RULE 1:

for all w, € W do
begin
for all w, € W - {w, } do
begin
if n(w;) = Predecessor({w;)
then REDUCE 1
end
end

(2) Condition Q;:

This condition is the most easily verified. For each w-node w, m(w) and o{w) are compared.

RULE 2 has a time complexity O W}).

RULE 2:

for all w € W do
begin
it 7(w) C o(w)
then REDUCE 2
end

(3) Condition Qg
For every w,, this condition may be checked by trying to find a link L(WJ-,VZ) which does

not contain w,, where | j {n(w): w € W;} is contained in 7(w;), and Vz C o{w,). This is

v

accomplished by starting from n(w,) and by traversing the F-graph forwards in search of such
a link (ALGORITHM ReachAll, Sect. 4.3, of time complexity O(|A,| + |Ay|), can be used).
Note that we do not need to identify Vy (defined in the statement of CONDITION ,) expli-

citly. All we need to check is if such a Vy exists at all. The complexity of RULE 3 is

O(IW] X (|14,] + |4u])).

RULE 3:

for all w, € W do
begin

45

Look for a set, of v-nodes , S, reachable (not trivially)
from n(w,) without using w, .
(ALGORITHM ReachAll Sect.4.3)

V; =S o(w,)

iV, #

then REDUCE 3
end

(4) Conditions Qg

Co.ndition (2, is slightly less obvious than the others. The reason is that one must try to look
for a link (of any length) from one subset of a set of v-nodes, P, to another subset of P.
(Algorithm ReachAll, Sect. 4.3, of complexity O(|A,| + |A,|) can be used.) However, there
seems to be too many cases to check a priori. The following proposition will be helpful to

determine whether Condition (4 is satisfied or not.

Proposition 3: Let us consider the formulation of Condition
Q3. Let P = {v1,vq, - " ,vx } = n(wr) for some wr. The only subsets V, of P that need to

be considered are those for which |V,| = K - 1.

Proof: Note that V; = P does not need to be considered since V; must be a proper subset
of P. For K = 1 the proposition is trivially true, and so is it for K = 2. For K = 3,
{vy,ve} > vy, {vy,vs} > voand {vovs} > v, are the only links that need to be considered.
Indeed, v, > v, does not need to be considered if {v,,v3} > v, is considered because if
{vy,vs} } v, then v, } v, otherwise, we are done. In general, consider the following
reachability cases, V; > vy, -,V > vg where for any i}, WVil=K-1, wv ¢V,

and for any 3 i, V, V= If for some 5; V, > v; holds, then Condition Q, is true
k % k

and (v;,wr) can be deleted, therefore there is no need to consider the eventuality of R > v,

holding for any other R C P. On the other hand, if V, # v, then for any R C Vi

R > v, does not hold either. o

46

Using Proposition 3, Conditions {25 can be checked in a time of complexity O|r(wr)| X

(|Ay] + |Ay])). The complexity of RULE 4 is therefore:

0“ Zewlﬂ(wr)l] x(lAu|+|A..l)]

= o141 x (14,1 + 14D]

RULE 4:
for all wy € W do
begin
P .= n(wr) .
for all v, € Pdo
begin
V, =P-{y}

find the set, S, of all the v—nodes reachadle from V,
(using ALGORITHM ReachAll, section 4.3).
itv, €85
then begin
REDUCE 4
P.=Y,
end
end
end

To show that all the redundancy featured by an F-graph can be removed by a sequen-
tial application of RULE 1-4, one must show that (i) there is no need to repeat any of RULE
1-4 more than once. (ii) RULE 1-4 are “complete’”’, in the sense that no other rule is needed

to eliminate redundancy.

Proposition 4: Let the indezes 1 and j denote any two of 2, 8 or 4, and i i3 different from j.
Given an F-graph G, an unsuccessful attempt to apply RULE i on G, may never be successful

after a successful application of RULE j .

Proof: RULE 2-4 do not alter the closure of the explicit FDs in G, and therefore do not alter

reachability (>).e

47

Hence, the order in which RULEs 2-4 are applied is immaterial. For performance, since
RULE 3 and RULE 4 are of the same time complexity, it makes no difference if RULE 3 pre-
cedes RULE 4 or vice versa. However, because RULE 2 is of lesser complexity than RULE 3-
4, it should be applied before the latter. RULE 1 must be repeated after the application of

RULE 4, and the following example shows why.

Example: Suppose the set of explicit FDs is: {AC — E, ABC — D, A —» B}. RULE 1 can-
not be applied. However, RULE 4 can be applied and leads to: {AC — E, AC - D, A — B}.

Now, RULE 1 can be applied. The result is: {AC — ED, A — B}. o

In practice it helps to apply RULE 2 first, then RULE 1 and RULEs 3-4, then RULE 1 again,
in that order. Indeed, RULE 2 is only of time complexity Of|W]], and RULE 1 is of lesser
time complexity than RULEs 3-4. Further, RULE 1 will eliminate most superfluous w-nodes

(and the arcs incident to them or emanating from them).

The following algorithm is used to fully reduce an F-graph:

ALGORITHM Reduce: /* Fully reduce a user F-graph */

RULE 2
RULE 1
RULE 3
RULE 4
RULE 1

end Reduce.

Proposition 5: The application of Algorithm Reduce on an F-graph G, leads to an F-graph G

which depicts a nonredundant set of ezplicit FDs.

Proof: To prove the assertion of the proposition, one has to show that no explicit FD can be
induced by other explicit FDs using a complete set of FD-rules. Suppose there exists in G an
explicit FD, f,: R — R, which is redundant and has not been detected by RULE 2, RULE 3

and RULE 4. Note that, from the application of RULE 2, we have Vp NVs= #. Because

48

f, is redundant, it can be induced by a link I{W,,Vg) which does not contain w, (the w-
node associated with f,) and does not contain the arcs incident to w, or emanating from it.

Since Condition 2, (Proposition 2) is met, f, should have been eliminated by RULE 3. e

Proposition 8: Algorithm Reduce has a time complezity bound of order:

of 14,1 x (14,1 + 14,1]

Proof: The total time complexity of Algorithm Reduce is:

complexity(RULE 1) + complexity(RULE 2) + complexity(RULE 3) + complexity(RULE 4)

= O(|WI*) + O(1W]) + O(IW] X (|4, + |4,])) + O(4, | X (14,] + |4,)

=0(|4,] X (|A,] + |4y])).®

In the next section, a correspondance is established between a reduced F-graph, i.e. an
F-graph obtained as a result of the application of Algorithm Reduce, and a minimum cover

of FDs.

4.2.2. Minimum F-graph

Algorithm Reduce can be used to derive an LR-minimum cover for a set of FDs as

stated in the following proposition.

Proposition 7: An F-graph is minimum if and only if it i3 fully reduced.

Proof: Let us call H the set of explicit FDs in the fully reduced F-graph G. Let F be the set
of FDs that were explicitly represented by the original F-graph G. Algorithm Reduce simpli-
fies or eliminates all the explicit FDs of F that can be derived from H using a complete set of
FD rules (i.e. reflexivity, augmentation and pseudotransitivity). This implies that H is a non-
redundant cover of F (Proposition 5). To show that it is minimum, we use a result reported in
[MAIE 80|, namely, that a non-redundant cover H is minimum if and only if there is no

X — Xand Y = Y in H such that: X «~— Y and X — Y can be induced by using a set of

49

explicit FDs, I and INEs(X)=19, where
Ey(X) = {X—-» VX Ve Hand)A(ﬁ——oXEH"’}. If for every X + X and Y — ¥ in
H, X + Y, then H is minimum. Else, if H is not minimum, suppose there exist X — Y and
Y = X, both in HY, and we can reach Vy from Vy on the F-graph of H through a set of
exiﬂicit FDs I, and I (] Ey(X) = 0. This implies that there exists a set of explicit FDs
I C H which can be used to reach Y from X on the F-graph, such that for any X ~Zinl,
b's + X. If we take Xto correspond to a set of v-nodes on the link from X to Y such that
X = Y, then, X — X Further, since Y — X by hypothesis, therefore)A(-—+ X too, a con-
tradiction. Therefore, H must be' minimum. Let us now show that H is also L-minimum. If
it is not, then, for some explicit FD XY — Z in H, we can find an FD X — Z in H™. This
implies that there exists a link from a subset of o{Vy) to V; in G which is a contradiction
since we asserted that RULE 3 and RULE 4 cannot be applied any further. Therefore H is L-
minimum. Let us assume it is not LR-minimum. There must exist an FD X — YZ in H and
Y is superfluous (i.e. the arcs existing between the w-node associated with the FD, and the
v-nodes in Vy, are extraneous). This implies that X - Y € H +. Therefore, a link can be
found between a subset of o(Vy) and Vy, without using the w-node associated with the
explicit FD X — YZ. This is contradicts the fact that RULE 2 and RULE 3 cannot find a
range of application. Therefore H is LR-minimum, and G is a minimum F-graph. The con-

verse is obvious. e

The advantages of having an algorithm such as Algorithm Reduce are now discussed.
(1) It can be noted that Maier’s algorithm [MAIE 80] is of complexity O(n?) where n is the
length in number of characters of the initial set of FDs F. Since n = |A,| + |A, |, Algorithm

Reduce seems to be of slightly lower complexity than Maier’s.. However, a careful look at

Maier’s algorithm reveals that it is really of complexity 0[maz{|A,,| , |Ag |} X n] Note

that Maier's Algorithm features two steps of complexity O(|W] X n) (respectively for non-

50

redundancy and minimality), one step of complexity O(|A,| X n) (to enforce L-minimality),
and one step of complexity O(|Ay| X n) (to enforce LR-minimality). On the other hand,

Algorithm Reduce has only one step of time complexity O(]A,| X n). Further, note that | W]

is no greater than -2’1 . Hence, Algorithm Reduce is more direct in its approach than Maier’s

algorithm. (2) Since the F-graph is going to be directly submitted to some processing (section
4.3-4), it is easier to use it from the beginning rather than resort to some indirect technique
such as the one reported in [MAIE 80]. For instance, if the information structure of the
universal database scheme is regularly updated or extended, RULES 1-4 can be applied in a
straightforward manner to adapt the F-graph to a changing environment. (3) The reduction
of an initial F-graph decreases considerably the complexity of the algorithms used to select

appropriate CRDUs for all queries (section 4.3-4).

From now on, it may be assumed that any F-graph under consideration depicts a set of

explicit FDs which is LR-minimum.
This section is closed with an example.

Example: To show the interest of comsidering LR-minimum covers, we depict the FDs for

each FD-set below (Figure 4.4):

(1) {A = B, A — C} is nonredundant, but it is not minimum since, by RULE-1

{A — BC} has fewer FDs.

(2) {ABC — D, A — B} is minimum, but not L-minimum since, by RULE-4 the

B can be removed from the left-hand-side of the first FD.

(3) {A — AB} is L-minimum but not LR-minimum, since by RULE-2 A can be

removed from the right-hand-side.e

It has been shown above how an F-graph, depicting FDs, can be fully reduced. The

next step is to enforce Assumption UR-3 if necessary.

51

4.2.3. Lossless F-graph

a
Let E be a given set of FDs. We write E= {X; = Y, X; = Y, - - X, = Y, }.

We now discuss how to efficiently represent the information contained in E with an F-graph.
A minimum covér, F, of E can be found using Maier’s algorithm |MAIE 80}, and an F-graph
of F can then be constructed. An equivalent approach to that of Maier is to build the F-graph
of E and then to reduce it (see Section 4.2.2). Let G = (VJ W, A, |J Ay) be the F-
graph thus obtained. We will later argue that it is desirable to depict a universal scheme
< U,F> with a lossless F-graph, in particular a graph of the form L(w,, V) for some w, € W.

First, we prove a Corollary which states that it is always possible to do so.

Corollary 3: Given any F-graph G = (VUW,A,, UAe), & lossless F-graph G can be

obtatned from G by adding, at most, one ezplicit FD to G.

Proof: By Corollary 1, if a set of relation schemes D does not possess the lossless join pro-
perty with respect to a universal relation scheme <U, >, a new set of relation schemes D
that does satisfy the lossless join property with respect to <U, > can be found. Namely,
D=D U {<Y, >}, where Y C U and Y — U holds. We can apply a similar argument for

our case. Suppose, the F-graph G happens to be lossy. Let U denote the set of all the attri-

A n A
butes, i.e. U= |J X, | Yi, and let V denote the set of v-nodes, i.e. U = At(V). As will

r=1
be shown below, we can always identify a subset S of V such that $ > Vin G. A lossless F-
graph, G =(‘7 U W, A4, U Xw) can be obtained from G as follows: Create a new v-node v
with a new attribute which is the concatenation of all the attributes of the nodes in S. Define
V=1V J {v}. Create a new w-node w,. Define W=Ww U {wo}. Also create a new arc
(T,wo). Define A, = A, U {(v,wo)}. Now create new arcs from w, to every node in S. Call
this set of arcs A, . Define A, = A, U A, - The new F-graph G thus obtained is of the
form G = L(w,,5) Uué= L(w,, W, where L(w,,S) stands for (S| J{v,wo} , Ao J{(v,wo)})-

By Corollary 2, G is a lossless F-graph. o

52

If an F-graph G is of the form G = L {w,,V), for some w,, then we say that G is loss-
less in the sense of Corollary 8. Without loss of generality, we always assume that an F-
graph is lossless in the sense of Corollary 3. Indeed, if an F-graph is lossless, but not in the
sense of Corollary 3, a new FD can be added as it is done for lossy graphs. Such an assump-
tion is not essential, however it is made to simplify the exposure of the proposed design algo-

rithms.

We now argue that no semantic constraint is either added or lost when < U, F> is aug-
mented to <U|J{a},F|J{fo}>. Let us denote At{(v) with the new attribute name a. Sup-
pose the set S in the proof of Corollary 3is S = {8, - - ,8, }. Let a,, - - - ,6,, denote the
attribute labels of 2, - - + 8, respectively. We follow the following convention. DOM(3) is
DOM(a,)X - - XDOM(a,,). Further, the FD f,:3 — a, - -4, and the identity FD
4, "6, = a; -6, hold in ezactly the same relations. Then, given some set of attri-
butes Y such that Y | § {ay, " ,8n} = Y, the join of a relation r € I .7 5 with a rela-

tion 3 € I<{-G-)UY' 5 Produces ¢ = r[Y]s € I<{3)U7- - From our convention, ¢ contains the

same tuples as ¢|a| JY)] or g|Y]. Our convention also implies that / <gt>=1 <>

and thus, no semantic constraint is either added or lost when <U,F> is augmented to
<UU{a}, F|Y{fo}>- (Equivalently, when G is augmented to G). However, the database
schema { <S(/).f> for all f € F| J{fo} } satisfies the lossless join property, whereas
{ <N)./> tor all f € F } does not. The importance of this latter assertion will be discussed

before the end of the section.

In the proof of Corollary 3 we mentioned the problem of identifying a set of v-nodes S.
This problem can be modeled and solved as a simple covering problem as follows. Algorithm
NolLoss , stated below, determines a set of w-nodes, WsourceNodes, that leads to all the v-

nodes of the F-graph, except those in U 7(w). The objective is to minimize the
w € WsourceNodes

cardinality of WsourceNodes. By so doing, the number of attributes that belong to the key of

the universal relation scheme is minimized. Algorithm NoLoss is formulated as a standard

53

covering problem. Detailed implementation is omitted because solution techniques for this

problem are well documented. Appropriate references on efficient solution techniques for the

covering problem can be found in [ETCH 77, SALK 75, MURT 76].

ALGORITHM Noloss: /* Modify the F-graph, if necessary,
to make it lossless. */

begin
/* Solve the following covering problem.
An algorithm such as [ETCH 77)'s may be used. */

: {1 ifw, > v or v €mlw)
Given Py = 0 otherwise,

{l if w, € WsourceNodes
find z = 0 otherwise,

L4
Minimize z,

1 =1

W
subject to g pyz, 2 1 forall j.
=]

end
if | WsourceNodes| > 1 then
begin /# Insert a new key that corresponds
to all the predecessors of the source nodes. */
W= W {wo} [* Where w,
is a new node. */
V.=V {v}
Atl(V) i3 the concatenation of the attribute labels of the nodes in

A, =4, J {Bwo)
for all v € U m(w) do
w € WsourceNodes

Ay = A, U {(wo,”)}
end

end Noloss.

In Figure 4.5-ii, G’ is a lossless version of G, Figure 4.5-i.

v € WsourceNodes

n(w)

The forthcoming theorem clarifies the dependencies between the concepts of lossless F-

graph, link, and envelope. In particular, the theorem states that a lossless F-graph guarantees

54

that, for any set of target nodes T, an envelope K(T) can be determined using explicit FDs
exclusively. Clearly, a lossless F-graph is desirable since one does not have to worry about

inferring implicit FDs to determine query envelopes.

Theorem 2: Consider the following five propositions where G always denotes an F-graph of

the form (VUW , Ay UA,,,), and G depicts a universal relation scheme <U,F>.

(a) G is lossless in the sense of Corollary 8, i.e. G = L(wo,V) for some
wo € W.

(b) Given G, for any T C V, there ezists a link L(w, ,T) for some w, € W.

(c) Given G, for any T C V, there ezists an envelope E(T) such that, for any

< .,{f,}> € BT), f, 18 explicit in G.
(d) G is lossless.
(e) Assumption UR-S.

The following assertions are true.

1) (a) if and only if (b).
(2) (c) if and only if (d).
(3) If (a) then (c).
(4) If (e) then (d).

Further, if G i3 @ minimum F-graph, then:

(5) If (d) then (e).

Proof: Assertion (1) is obvious since we are guaranteed to find at least one link with a single
source i.e. L(wo, V). Assertion (2) follows immediately from the definition of a lossless F-
graph and the definition of an envelope. Assertion (3) follows from (1), the definition of an
envelope, and Corollary 2. All the explicit FDs of a link L{w,,T) can be picked to produce an

envelope for T. Assertion (4) follows from the fact that if Assumption UR-3 holds, then, in

55

particular, it holds for the set of relation schemes {<,f,>, - - - ,<,f, >} where the /.’ s are
all the FDs in F, and from the definition of a lossless F-graph. To prove (5), we will prove

the equivalent Corollary to (5):

Corollary 4: Suppose an F-graph G, which depicts a universal scheme <UF>, is lossless
and minimum. Let G be an F-graph that depicts ¢ scheme < U,E> where EY = F*. then G

19 lossless.

Proof: We know that, if for some Xo C U, Xy — U € F*, then X, = U € E*. Similarly, if
for some Vo C V, Vo> Vis true in G, then it is also true in G. Further, we claim that
such an X, 18 the left-hand-side (lhs) of some ezplicit FD in G. To prove the claim we will
use Corollary 1 together with the definition of a lossless F-graph. Since, by hypothesis, G is
lossless, therefore, by Corollary 1, there exists an explicit FD, say fo, such that X, C S{fo)
and X, — U. If fq is of the form fo: YX¢ — X2, where X U Xt =X,and Y, Z are
two sets of attributes, then, without loss of generality, X, can be redefined to be YX ;. This
completes the proof of the claim. We now wish to show that X is also in the lhs of some
explicit FD in G, since this, together with the knowledge that V, > V and Corollary 1,
would imply that G is minimum. We proceed as follows. Suppose X, is not in the lhs of any
explicit FD in G. Then, in G, V, can be partitioned into at least two subsets Vo‘ and V¢,
where V,= V¢ U V¢, and furthermore, there exist two w-nodes w;, w, such that
m(w,) = V&, n(wy) = V¢, and finally, there exists no w-node which contains V, in its
entirety in its predecessor set. For the rest of the proof we will use the symbol > ; to denote
the reachability relation in G, and >z to denote the reachability relation in G.In G, let W
be the w-node of FD f,. Still in G, let us pick any v-node z out of the set o{w,). In G, sup-
pose w; > z. Then, At{Vy) — Atl(z) € E™, therefore At{{Vy) — Att(z) € Ft too. But,
by hypothesis, At{V 4 U V) = Atf{z) € F, i.e. this latter FD is explicit in G. Therefore,
by Proposition 2, G is not minimum. This latter conclusion contradicts the hypothesis. A

similar argument can be applied if it is assumed that w, >z 2. An identical conclusion

56

would be obtained. Therefore both assumed assertions must be false, ie. w, }5 z and
wo P 5 2. Consequently, the only possibility for Vo > z to be true in G is that for some
S C W, where W is the set of w-nodes in G, S >z z and for any single w;, € S, w, }5 =z,

and |J 7w,) € V,o. Without loss of generality it can be assumed that § = {w,, wy}. Let
v €S

w, be a w-node such that V¢ $z w, and V¢ $5 w,, but V¢ U Vé >z w,. We claim
that there has to be at least one such w-node w, . If not, then for any w,, Ve >z w, or
Vé >5 w, (we already know that V¢ |J V§ > w, is certainly true), and in particular,
for any w; € 7(z), V¢ >g w, or V¢ >5 w,, which would imply that w, >z z or
wg >z 7. However, we showed earlier that this may not occur in G. Thus the claim has been
proved. Now let W, be the set of all such possible nodes w, nearest to V', in the sense that,
for any w, € W,, nlw,)=V Vyzv, for some V,! V,%2 where VJ >z V,! and
Vé >z V% (By assumption, V;! $5 w,, V,2 $5 w,). We claim that the set of w-nodes
W, lead to the v-node z, i.e. W, > z. To prove this claim, we construct W, as follows.

Define W° as {w,,wp}, V' as o(w,) | J o{w;) and W'as |J ofv,). By induction, for some
v, € vi

integer k, we proceed as follows. Top of the construction loop: If w, € W* and w, *s wi,
and wy } 5 w,, then change W, to W, | J {w, }. Continue to add new w,’ s to W, when-
ever it is still possible to do so. If at the end of this adding process it happens that W, # @,
then terminate the construction. This is the end of the construction loop. If however,

W, =0, then change k to k + 1 and let V¥ be |J o(w,), and let W* be |J ofy,).
WI' GW"" "j € V‘

Go back to the top of the construction loop. It should be clear that if the construction is con-
tinued until o/l the w-nodes are examined, (i.e. not only the potential elements of W,), then
wé would obtain the largest set of nodes w,, say Wy . Further, from the construction,
W, >z Wy . Also, suppose that all the w-nodes w, € n(z) are such that w, ¢ Wy . Then by
definition of V—Vy , either wy, >z w, or wy >7 w, . However, we showed earlier that this may

not occur. Therefore, w, € P_Vy, therefore W, >z w; and hence W, >z z. This completes

57

the proof of the claim. Now let us redefine V! to be U V,! and V,? to be U V2

v EW v EW

y y y y

(where V,' and V,? were defined earlier for each w-node w, in W,). From the latter claim,
we have that Au(V,'|J V,?)— Atf{z) €E*(1), and further we know that,
X¢ = At(V,)) € E* and X§ — A(V,?) € E* (2). Therefore, Xg — At{V,') € F* too,
and it is an implicit FD in G. Similarly, X§ — At{V,?) € F*. By (1), either V,! > z or
V,,2 > z, or neither of the previous two reachability propositions are true, but yet
V' U Vi® > z. However, suppose V,! > z. Then V§ >; z and, from Proposition 2,
that implies that G is not minimum, since arc (w,z) is extraneous, which leads to a contrdic-
tion of the hypothesis. Therefore, V! | J V,2>¢ 2, but V,! 5 z and V,2 $ 2. Since
Vo>¢ V'Y VP and V' | V,® > 2, therefore either the arc (wo,3) is extraneous in G,
or Vo= Vy1 U Vy2. In any cas;, the hypothesis is contradicted. The latter assertion implies
that X, is indeed on the lhs of an explicit FD in G. Therefore, by Corollary 2, G is

minimum. This completes the proof of the Corollary and of the Theorem. o

At this point we have developed the tools that permit us to indicate our distribution
approach. For each scheduled query, an envelope will be determined. By definition, an
envelope features a join dependency and therefore guarantees correctness of query processing.
The FDs of all the query envelopes will be distributed; and, at each site, the FDs will be

locally synthesized [BERN 76} into a database.

The first part of the distributed database design problem which consists of assigning
CRDUs (mapped to FDs) to each scheduled query may now be tackled. Section 4.3 deals with
the extraction of a minimum relevant sub-F-graph that suffices to answer a particular query.
The material includes some techniques already reported by Lozinskii [LOZI 80]. We will dis-
cuss some pathological problems inherent in Lozinskii's algorithms, and we will propose some
remedies for them. In particular, we will explain why our original definition of a link is

relevant to those remedies.

58

4.3. Step-2: Extraction of a link

To solve a query, a relevant portion of the universal relation scheme, a query envelope,
must be retained. Having shown, through Theorem 2, that it is possible to find an envelope
for any set of target nodes T, and in particular, an envelope whose FDs are in some LR-
minimum cover H of the user set of FDs F, we now show how to actually determine an

envelope for some specific T.

Given a lossless F-graph G in the sense of Corollary 3, and given a set of target nodes
T, we wish to consider the smallest set K, of relevant envelopes for T, in the following sense.
For any envelope K'(T) € K, if some other envelope K * (T) is such that, K'(T) C K*(T),
then K*(T) ¢ K. For any T there exists at least one w-node that leads to those v-nodes.
From Theorem 2, (a) is equivalent to (b), and (b) implies (c). Therefore, given a lossless F-
graph, in the sense of Corollary 3, and a set of v-nodes 7, to determine an envelope of 7, it
suffices to determine the link L{w;,T), for some w, (indeed, any sub-link of L will do). Note
that distinct w-nodes w; will yield distinct links L{w,,T). All the envelopes contained in the
set K, mentioned above, can be produced by exploiting the implicit representation of FDs in
such links L(ws,T). If an envelope can be produced by using the explicit or implicit FDs of

some sub-link, we will say that the envelope is embedded in this sub-link.

To avoid having to consider envelopes that contain extraneous FDs, some nodes w; may
have to be discarded. To that effect, Lozinskii [LOZI 80| described two short algorithms
(“ALGORITHM 1" and “ALGORITHM 3-Stage B”’) which determine a set of w-nodes (let us
call it SourceSet) each of which leads to a set of v-nodes T. Each w, in SourceSet is charac-
terized by the fact that Att(n(w,)) constitutes a key for the attribute labels of 7. We will
refer to “ALGORITHM 1" [LOZI 80] as Algorithm GetSource, and to “ALGORITHM 3-Stage
B” [LOZI 80] as Algorithm GetNearestSource. Also, Lozinskii’s “‘ALGORITHM 2" [LOZI 80
determines the link from a given w-node w; to a given set of v-nodes T. However, a back-

ward pass must be added to this latter algorithm to avoid the inclusion of superfluous

59

branches. Further, Lozinskii’'s algorithm does not handle potential cycling problems created
by ‘“‘self-reachability” (of the type V; > V;, for some V; C V, other than trivially). An easy
cure to this problem is to prevent any node from being a candidate, for addition in the link
under construction, more than once. However, a link constructed by the algorithm would
then be incompatible with Lozinskii’s definition of a link, where it is possible to have
v € n(w) and v € o(w) for some v-node v and some w-node w. Our definition of a link does
not allow for the representation of self-reachability, and is compatible with Lozinskii's algo-
rithm once this algorithm is corrected as discussed. Finally, note that even if no self-
reachability exists in an F-graph, Lozinskii's algorithm (augmented with a backward pass)
constructs a sub-graph which may still be incompatible with Lozinskii’s definition of a link.
The reason is that a link, in Lozinskii’s sense, is really almost the same as a proper link in our
sense (it may include additional w-arcs). It is our contention that our definition is not detri-
mental to the generality of the proposed approach. We will refer to the corrected version of
“ALGORITHM 2" [LOZI 80] as Algorithm Getlink. Any envelope in K must be embedded in

a link L(w,,T), obtained for some node w, in SourceSet.

Algorithms GetSources, GetNearestSource and Getlink follow. In GetSources,

NoPredec(y) stands for the number of predecessor nodes of y.

ALGORITHM GetSource: (adapted from ALGORITHM 1 [LOZI 80]) /* Find all the w-

nodes which lead to a set of target nodes T */

SourceSet == 0
TargetNodes .= T
for all w € W do
ReachAll

end GetSources.
ALGORITHM ReachAll: /* Find all the v-nodes reachable from w */

begin
ReachNodes := n(w)
NeztNodes := { v : (w,v) € A, }

60

for all y € Wdo
NoPredecly] := |n(y)|
while NeztNodes 5 @ and TargetNodes % 0 do
begin
Generate == @
for all z : z € NeztNodes
and z ¢ ReachNodes do
begin
for all y : (z,y) € A, do
begin
NoPredec[y] := NoPredec[yf - 1
If NoPredec[y] = O then
Generate := Generate |) {v:(y,v)€E A, }
end
end
TargetNodes := TargetNodes — NeztNodes
ReachNodes := ReachNodes |) NeztNodes
NeztNodes := Generate
end
If TargetNodes = @ then Source := Source | {w}
end

end ReachAll.

Algorithm GetSource is of time complexity O(|A, | + |Ay]).

ALGORITHM GetNearestSource: (adapted from ALGORITHM 3-Stage B [LOZI 80}) /#

Find the nearest subset of the set of source-nodes for a set of target nodes T &/

NearestSource := @
for all w € SourceSet do
begin
SourceSet := SourceSet - {w}
for all @ € SourceSet do
begin
ifw } then
NearestSource := NearestSource | J {w}
end
end

end GetNearestSource.

Algorithm GetNearestSource is of time complexity O(]Source|?).

The basis for Algorithm GetLink is formalized in Proposition 8.

61

Proposition 8: Let <Z E> be a relation scheme,
let D = {<X,{h.}>, -, <X, ,{ha}>} be a database subschema and H = {h,, - - - ,h, }
be the set of corresponding FDs defined as in the statement of Corollary 1. If D satisfies the

lossless join property with respect to <Z,E>, then for any set of atiributee X C Z, there

- _ A %
ezists a subschema D C D, D = {<X‘1’{h‘1}>’ ce ,<X,~*,{h,»k}> b X= X;, and o
1=

set of FDs H C H, where X C X C Z, such that D satisfies the lossless join property with

respect to <f,f7>.

Proof: This is a trivial consequence of Theorem 2, Assertion (2). e

In GetlLink, Forlink is a link from w, to v-node z, generated by a forward pass.
CurrentTarget is a set of current target v-nodes. CurrentNodes is a set of nodes. To each
z € CurrentNodes a F ovrlink which contains 7(z) has already been constructed, and z has not
yet generated, i.e. no one of its outgoing arcs is contained in the current Forlink. Successors
is a set of nodes succeeding the nodes of CurrentNodes. Envelope is a set of FDs that would
be used to access z. Predecessors is a set of w-nodes preceding the nodes of CurrentTarget.
Backlink is the initial link in a backward pass, before deletion of extra arcs and nodes.
LinKw, , T) stands for the final link from w, to T. Outlink and Inlink are sets of intermediate
w-nodes. “ALGORITHM 2" of [LOZI 80] was shown to be of complexity O(|A,| + [44]),

and therefore so is the complexity of Algorithm GetLink.

ALGORITHM GetLink: (corrected version of ALGORITHM 2 [LOZI 80])

/* Forward pass to generate a link from w; to v-nodes T */
Forlink .= 0
CurrentTarget == T
CurrentNodes := {w; }
Successors 1= @
for all y € W do Count|y := |r(y)|
for all z € CurrentNodes while CurrentTarget 7% @ do
begin

forall y:(z,y) € A

and y ¢ W () Forlink do

62

begin
ify ¢ Successors then
begin
Outlink := {y}
Successors := Successors | J {y}
end
else Outlink := @
if y € W then Count|y] := Count|y} - 1
if(y € Vor(y € W 8 Count|y] = 0)) then
begin
CurrentNodes := CurrentNodes - {z}
CurrentNodes := CurrentNodes | J {y}
Forlink := Forlink | J Outlink | J {(z,4)}
Successors := Successors — {y}
CurrentTarget := CurrentTarget — {y}
end
end
end
/* End of forward pass */
BackPass

end GetLink.

ALGORITHM BackPass:

/* Backward pass to identify the final link from w, to T */
EzplicitFD .= §

CurrentSource := {w; }
CurrentNodes := T
Linw, ,T):= 9

Backlink := Forlink
Predecessors := @
for all y € W do Count|y] := |o(y)|
for all z € CurrentNodes while CurrentSource 5% @ do
begin
for all y : (y,2) € Backlink do

begin
ify ¢ Predecessors then
begin
Inlink := {y}
Predecessors := Predecessors | J {y}
end

else Inlink := @
Count|y] := Countly - 1
if(y € Vor(y € W 8 count|y] = 0)) then
begin
CurrentNodes := CurrentNodes - {z}
Liniw, ,T) := LinKw,,T) | Inkink | {(y,2)}
if y € W then EzplicitFD := EzplicitFD |) {A(y,2)}
CurrentNodes := CurrentNodes | J {y}

63

Predecessors := Predecessors — {y}
CurrentSource := CurrentSource - {y}
end
end
end

Link{ws,T) := LinKw,,T) U m(w,)
end BackPass.

As an example, the link L(w,,{v,, vg, vp, vs}) obtained by the application of Algorithm

Getlink on G (Figure 4.6. i) is shown in Figure 4.6. ii.

Note that if the original F-graph happens to be lossy, then for some given T, it may not
always be possible to find a source w; . Thus, if a set SourceSet can be determined for all the
scheduled queries, then it is perfectly allright to use the original F-graph rather than a lossless

version of it.

In the next section, a typical, but so far un-addressed, sub-problem of the distributed
database design problem is identified. It is the envelope optimization problem (EOP) for a
query, to enhance distributed query processing performance. An original formulation and
solution of the problem is proposed. Problem EOP is first introduced in the form of a
“brute-force” integer program (Section 4.4.2). Section 4.4.3 provides some useful ideas to
solve EOP heuristically. EOP is given a more elegant model and solution in Section 4.4.4.
Section 4.4.1 provides us with some useful relation-size estimation techniques from [ROSE 81,

CCA 80]+.

tAlso see [CHUN 83| for some possible refinements in relation-size estimation techniques.

64

—

(iv)

Figure 4.1. An example of F-graph reduction

65

PREDECESSOR (W) = {V, Vg ,V, }
Vo —P Vg
<’ (Vg , W) EXTRANEOUS

Figure 4.2. Another example of F-graph reduction

Figure 4.3. Yet another example of F-graph redaction

66

Figure 4.4. An illustration of LR-minimality

67

Figure 4.5. A lossy F-graph (i) and its lossless version (ii)

LINK L for T = {V,,Vg,Vp.Vg }
(ii)

Figure 4.6 A link

69

4.4. Step-3: The envelope optimisation problem (EOP)

Given a query and its target nodes T in an F-graph, a set of sources, SourceSet, can be
determined as discussed earlier. For each node w; of SourceSet, a link L(w;,T) can also be
determined (Section 4.3). The set K mentioned earlier is the set of all envelopes embedded in
those links. Thus, any one of those links can safely be used to produce an envelope for the
query. However, even if a node w, in SourceSet is chosen arbitrarily, many options to select
a valid envelope are still available. Indeed, the explicit FDs depicted in the link L{w,,T) can
obviously be retained, but some other combination of implicit FDs in L could be retained as
well, provided that they feature some join dependency. Thus, optimization can be used to
select a ‘‘good’’ query envelope among all the possible ones in K. With this latter objective in
mind, we state the advantages of working with a lossless F-graph in the sense of Corollary 3.
() The explicit FDs of any sub-link that contains T can directly be used to produce an
envelope of T. If the F-graph were arbitrary, we would be forced to check for the satisfaction
of the lossless join property for envelopes that may contain explicit FDs as well as implicit
FDs. (ii) Each of the sub-links under consideration has one single w-node for source. Since
there are less sub-links of the form L(w,,T) than of the more general form L(W,,T), where
W, is a set of w-nodes, we are restricting the domain of possible envelopes in K to a reason-
able size. Finally, note that in the optimization stage, we can still take advantage of the
implicit representation of FDs in a sub-link, to discard extraneous attributes, by applying the

tfansitivity inference rule (i.e. X — Y and Y — Z yield X — 2).

In a distributed database environment, the following properties of a query envelope are
desirable: (p-1) The number of distinct attributes is minimum. (p-2) The FDs contain as few
common attributes as possible. (p-1) will tend to minimize file-to-file communication in query
processing sessions. Because of (p-2), semi-joins between relations will feature high reduction
capability and hence will lead to more benefit in terms of data-volume elimination. Further-

more, the overhead incurred by updates will tend to be minimized. The problem under con-

70

sideration is identified as the envelope optimization problem (EOP). Before tackling EOP, we

will digress momentarilly to review some relevant tools for estimating the size of relations.

4.4.1. Relation-size estimation techniques

Some useful relation-size estimation techniques previously reported in [ROSE 81, CCA
80] are indicated. Although some more accurate, but more complex, techniques have been

reported in [CHUN 83|, we will only consider the first referenced techniques for simplicity.

The size of an FD, f{w,,vy) (here, we really refer to the size of the largest relation in

I <5, 1>), or any relation, includes the number of tuples, |f] (the cardinality of f), and the

width, f. The width is simply: [= Y. Aty(v) + Att{vy), where @ stands for the width (in
v € 7(v,)

bytes) of attribute a. If {w,,vr) is implicitly represented by a link L(w, vy), the number of

tuples in flw; ,vr) is the number of tuples in the relation obtained by joining all the FDs

explicitly represented in L, and by projecting over Y = [U {Att(v)}] U {Att(vr)}.
)

v € 7(v,
To estimate this number of tuples, the same assumption as in [ROSE 81}'s is made, namely,

Assumption Join [ROSE 81] : For each value z € DOM{X) of some attribute X, the number
of tuples of <Y,> such that {X] = z and X C Y, determines a random variable n,(X). For
some other relation scheme <W,> such that ZC W, for some Z, and
DOM(X) = DOM(2), n,(Z) is defined similarly. n,(X) and n (Z) are independent. Further-

more, all the relation schemes <Y, AY]|> ezplicitly represented in a link L are such that

n () = YL

From [ROSE 81] and Assumption Join, given two relations R[X] and ${Y], such that
XYCU and XM Y=2 the cardinality of their join R[Z]S is given by
|R[Z]S] = |R] X |S]|/|POM(Z)|. From [CCA 80], given a relation R|X], the cardinality of its

projection over Z C X, R[Z), is given by: If Z = {A}, |R[Z]| = |R|A]|, for some A € U,

71

elseif T |RA]| <|R|, then [R[Z] = II |Rl4]| else R[Z] = RI

The first formulation of EOP follows.

4.4.2. A brute-force approach to solve EOP

The purpose of this section is not to solve EOP, but rather, to get a feel for possible

heuristic solutions for it. To tackle the envelope optimization problem, it is assumed that the

following items are given:

SourceSet

Yw,,T)

kh:

I
/
el

a

|DOM(a)|

A set of source w-nodes for a set of target v-nodes T.
Link from w-node w, to T for every w, € SourceSet.

(In Sections 4.4.2 and 4.4.3, and only those sections, it will be assumed that
a single node w, is picked from the set SourceSet, and that the link L(w,,T)
rooted in w, is selected. How to determine such a w, will be discussed in
Section 4.4.4.1).

1 if v, is adjacent to w; in L,

0 otherwise.

Number of tuples in any base-FD f of the F-graph.
Number of bytes per tuple of any base-FD f of the F-graph.

Number of distinct values of attribute a belonging to the attributé-scheme of
any base-FD f of the F-graph.

Width in bytes of attribute type a.
Number of distinct values of attribute type a.

The following notation is used:

Jy

A base-FD in H* which is implicitly represented in L, by w, and v, such

that: f, = (Y {Atv)} — Ate(v;).

vE 1(10,)

The following 0-1 variables are to be determined:

Uy,

Uyu

1 if w; € W, is associated with f;
= . ¥
{ 0 otherwise.
1 if f, <]fy is a semi~join to be included,
= { 0 otherwise.

+Algorithm GetAllFDs, to follow, determines if U, can be equal to 1.

72

The problem of envelope optimization for a query is initially addressed as follows:
EOP: Given the above information, determine an envelope K(T) so that:
(A) The number of attributes contained in K(7) is a minimum.

(B) No FD in K(T) is extraneous. In particular, no FD in K(T) can be inferred from other

FDs in K(T) by transitivity?.

(C) An objective function which is a function of the data-volume flow is minimized.
Note that possible advantages associated with the sequencing of semi-joins for query
processing are not considered. This is to keep the overhead of the solution techniques

for EOP to a minimum.

In this section, the following assumptions are made to evaluate the cost of item (C):

Assumption EOP-cost-1: Query processing startegy: Each FD 1s assigned to a CRDU. The
CRDUs are first locally processed to eliminate unwanted tuples. All pairwise semi-joins are

evaluated.

Assumption EOP-cost-2: Since the flow of data-volume corresponding to the answer i3 gen-

erally small compared to the file-to-file data-volume flow, only the latter i3 considered.

The symbol Z,;, is defined to be the ‘‘worst-case’’ overhead cost of semi-joins

A
fy <Xfu, and fyy <X, , where X = §f;) () SUfu) as:

A
Zyy =m1n{ 27w 5, Z }

where,

27 = lfy[X x X *

{The idea is to avoid unnecessary increase in semi-join occurence and therefore of cost. See properties (p-1)
and (p-2) for (A) and (B).

73

+ Ju leulx% !
b T X X X il
i DL

The terms with a 1"’ superscript stand for the assembly flow costs, and the terms with a “}”

superscript stand for the reducing flow costs.

By Assumption EOP-cost-2,

fu X X |fu X
|DOM(X)]

The overhead cost of semi-join fy; <X|f;; , or Z* ;;y, is defined similarly.

= X x | X +

An integer program for the envelope optimization problem is stated as follows:

EOP:. Minimize Y Ziu Uy
v, 9 € WL (eOP'O)
Uj, "I € VL

Subject to:

Assure the covering of the target nodes.

W |

u;, 21 (eop-1)
1=1 .
V jiy €T

The attributes of the source are covered.

il
Y oy 21 (eop-2)

j=1

V 1:w € SourceSet

If a semi-join is retained, then the FDs involved in it must be included in the envelope.

74

kpuy +kpuy -Uyy <1 (eop-3)
V 8,4, kL

Transitivity-redundancy is undesirable.

uy kv =0 (eop-4)
V ik

Connectedness: For all v-nodes v, such that u; = 1 for some w-node w,, there exists a

chaint (Algorithm CheckConnect) from SourceSet to v; .

Connectedness. (eop-5)

This integer program can be solved with a branch-and-bound algorithm. General guide-
lines to design such an algorithm are discussed below. Specific details of implementation are
however omitted because although an optimal optimization technique can be applied and is
manageable in the context of solving EOP, it is obvious that it would incur a large overhead
in processing time because all queries must be considered individually. Therefore a heuristic
approach to solve EOP will be proposed later. The branch-and-bound solution would proceed

as follows.

EOP-ip-1: Solve EOP without constraints (eop-4) and (eop-5). This is an assignment
problem, therefore the Hungarian method [MURT 81}, may be used to com-
pute lower bounds. If (eop-4) and (eop-5) happen to be satisfied in the solu-
tion, then the problem has fathomed. If the problem has fathomed and this
step is being visited for the first time, then we are done. Else, if the cost of
the fathomed problem is less than the cost of the incumbent, where sncum-
bent is initialized to be @ and its cost to be co, then the current problem
takes the place of the incumbent. Otherwise it is pruned. We then go to

EOP-ip-2.

tA directed path.

75

EOP-ip-2: Branch on a variable u,; (set u;, =0, or u; = 1) to generate two new can-
didate problems. A LIFO search may be used. Pruning occurs when a candi-
date problem is infeasible, or when its lower bound is larger than the
incumbent’s. If there are still some dangling candidate problems, then go

back to EOP-ip-1. Else, go to EOP-ip-3.
EOP-ip-3: The optimal solution is the incumbent.

Given a link L{w,T), to find out which are the acceptable variables u,,, the following

algorithm may be used.

ALGORITHM GetAllFDs: [+ Given a link L(w,,T) of G, find all the FDs, with a single

attribute on the right-hand-side, which are explicitly or implicitly represented. */

Wstart ;= SourceSet

FDset .= @

Vinter .= §

for all w, € Wstart while Wstart £ 0 do
begin

/* Find the v-nodes V, reachable from Wstart */
TargetNodes ;= V
V, := ReachAl{w,)
for all new v, € V,
FDset := FDset | J {uy}
Wstart := Wstart - {w; }
Vinter := a(w,) -
for all v, € Vinter do
Wstart := Watart | J o{v;)
end

end GetAllFDs.

Algorithm GetAliFDs is of time complexity bound O(|4, | + |A,, |).
To check the connectedness condition (constraint (eop-5)), the following algorithm can
be used:

ALGORITHM CheckConnect: /* Given a set of FDs explicitly or implicitly represented

in a link L, determine if they satisfy the lossless join property. */

76

Valid := true
Veurrent =9
Weurrent := 9

Wstart .= {w, € W, : u; =1 for some v; € V| } - Wsource
for all w, € Wstart while Valid = true do
begin
for all v, € n(w,) and v; ¢ Veurrent
while Valid = true do
begin
Veurrent := Veurrent | J {v;}
if V k u, = 0then Valid := false
end
end

end CheckConnect.

Algorithm CheckConnect is of time complexity O(] W]?).

In the next section a heuristic approach to solve the envelope optimization prolem EOP
is suggested and discussed. The primary purpose of Section 4.4.3 is to motivate the final for-

mulation and solution of EOP in Section 4.4.4.

4.4.3. A first heurlstic approach to solve EOP

There are two immediate reasons for considering a heuristic technique rather than
mathematical optimization for solving EOP. (1) The exact closed-form objective function is
almost impossible to obtain because the partitioning of the query envelope is to be known in
advance before the distributed query processing strategies can be determined. (2) It is not
worth using a mathematical programming technique such as branch-and-bound because it is
too expensive. Further, looking for a ‘‘true” optimal solution is arguable after making

Assumptions eop-cost-1 and eop-cost-2. The heuristic approach is now discussed.

Given is a link L(w,,T) where w, is a source of T the set of target nodes. There is no

redundancy** and no extraneous information}. Furthermore, the link is the shortest possi-

¢sBecause the link was extracted from a minimum F-graph.
{By definition of a link.

7

blet. The goal, in Step-3, is to get 2 minimum cost lossless FD-coveringtt of X.

One possible approach is proposed below and discussed.

APPROACH 3-a: A first heuristic for (EOP).

A
Step-3-a-1: Given the link {w,,T), define Wy = J [o(vr)) W.]. For each pair
vp €T

of nodes w,, w; in Y = Wr | {w, } $} find all the proper links from w; to
m(w,).
Step-3-a-2: Augment the proper links to create proper links which explicitly represent the
FDs which were previously implicitly represented (by exploiting transitivity).
Step-3-a-3: Construct a graph (Y,L) such that any edge in L is associated with a proper
link. Find a minimum spanning out-tree (also referred to as arborescence) of

graph (Y,L).

The steps of Approach 3-a are discussed below.

4.4.3.1, Step-3-a-1: Proper link distinguishing

Algorithm Distinguish, which follows, finds all the proper links between a w-node w;
and a v-node vy. Algorithm Distinguish branches backwards through the link from vy
(Backtrack). It pushes in STACK the branches traced from a current set of w-nodes, VISIT.
Branching is interrupted whenever a v-node v, is found to feature more than one w-node
predecessors. When this condition is detected, a “$’’ character is pushed in the stack, v, is
labelled DANGLE, and the link is branched through another live branch starting from any
w-node in LiveW[v, | (where LiveW[v, | is the set of predecessors w-nodes of v, which can

still be back-tracked from, at this stage in the algorithm). When the source of the link, w, , is

1By virtue of Algorithm GetNearestSource.
11With FDs which are either explicitly or implicitly represented in the link under consideration.

HWe assume for the time being that each node vy of T has at most one successor Wy in L. This assumption
will be relaxed in section 4.4.4.

78

reached by all the branches generated in Backtrack, one new proper link L* is found. The
stack is popped until a § is retrieved, and if some v-nodes are still labelled DANGLE, a new
branch can be traced back to create a new proper link. The algorithm proceeds in this

manner until all the possible combinations are exhausted. Algorithm Distinguish follows:

ALGORITHM Distinguish:

k =1 [* Number of proper links */
LiveW := 9

L* = {vr}
PUSH(UT)
it |7(vr)| > 1 then
begin
DANGLE := {vr}
wo = 7{vr)

Suc{wg) := vp
end
else do begin
DANGLE .= 9
PUSH{(§)

LiveW]vr] := n(vr)
wo:= w, € LiveW]vr]
Sucwo) := vy
end
Backtrackw)
while DANGLE # ¢ do
begin
Retract(w,) /* Where w, is outputted by Retract */
Backtrack(w,
end

end Distinguish.

ALGORITHM Backtrack(w,):

ifk>1thenk:=k+1
for all w, 7 w, € VISIT while VISIT% {w, } do
begin /* Backtrack terminates when w; is found and there
is no more dangling branch */
I_’_USH(wJ_)'
L* :=L" Y {w, <w, Sucqw;)>}
for all v, € n(w,) do
begin
PUSH(< vy, ,w, >)
PUSH(v,,)

79

Lt =1L* U {<tm,wi>, va}
if |7(vm)] > 1 then
b

eg
PUSH($)
LiveWvy, | := (vp)
VISIT := VISIT |J (v, : w; € n(vy))

Suc{w,) := vn
DANGLE := DANGLE |} {vm}
end
else do begin
VISIT := VISIT | {w; = 7(vs)}
Sucw,) 1= vy,
end
end
VISIT := VISIT - {w, }
end

[t =1t U”(ws) U (v:ws)
v € Predecessor(w,)

end Backtrack.

ALGORITHM Retract(v,)

Item := t [* Dummy character */
while Item # $ and STACK # @ do
begln /* Have to find at least one $ */
POP(Item) [+ Retrieve a character from the stack in Item */
L= 1% — {Item)
if Item = § then
begin
vm = ReadTop(STACK)
if LiveW]v, | = 0 then
begin
DANGLE := DANGLE - {v,, }
Item .= 1
end
else begin
VISIT = VISIT | {w; : v, € LiveW|v,]}
LiveWlv,, | := LiveWlv, | - {w, }
PUSH(§)
L= [U {<w vy >,uw}
end
end
end

end Retract.

80

We now show that Distinguish accomplishes what it is supposed to.

Proposition 9: A sub-link L(w, vy) is proper, if and only if any v-node in it has at most one

predecessor w-node.

Proof: Let l—:(ws ,ur) be a proper link. We proceed by contradiction. Assume that there
exists z€ Vi and X, Y C V; and two w-nodes wy and wy, such that 7{wy) = X and
n(wy) = Y. Then there exist two sub-links of length one, Ly (wy,z) and Ly (wy,2) and thus,
any one of the arcs (wy,z) or (wy,2) is extraneous. The latter conclusion contradicts the
assumption that L is proper. Conversely, given a sub-link L{w ,vy), if for any v-node z there
exists at most one predecessor w-node, then by branching backwards froﬁ vr in L, while
preserving reachability, all the nodes and arcs must be retained to depict the relationship

n(w;) > vp. Therefore L satisfies the definition of a proper link. e

It is obvious that Algorithm Distinguish finds all the sub-graphs of L(w, vy) which are
“rooted" in w, and which include vy. Since they all satisfy the condition of Proposition 9,
therefore they are proper as well. Since the algorithm enumerates all the possibilities by
exploiting the condition of Proposition 9, therefore it keeps track of all the proper links
between w, and vy. The number of proper links generated by Algorithm Dist.ingm'sh is
larger than P*? where P is the average number of w-nodes in 7(v,) over all v-nodes v,, and d
is the length of the link under consideration. It is a non polynomial algorithm, but can be used

as long as P¢ is not too large.

4.4.3.2. Step-3-a-2: Proper link augmenting

For each FD flw,v) implicitly represented by a pair (w,v) in a proper link L(w,,vr), a
new FD can be explicitly represented by adding a new arc (w,v). Since L is proper, therefore
L(w, ,vr) U {(w,v)} - L(w,v) is also proper. In Step-3-a-2 the idea is to create new explicit

FDs (exploiting transitivity on L—) while deleting intermediate links. Note that since each vy

81

of T is considered individually in this manner, whether another target node, say vy, belongs

to the link L(w,v) being dropped or not, is irrelevant.

4.4.3.3. Step-3-a-3: Spanning out-tree

In this step, an algorithm to find a spanning out-tree rooted at one node may be used.
Such an algorithm is described in [LAWL 76]. In general, the algorithm must be able to
detect the existence of cycles in a graph, which makes it inefficient. However, in this context,

it will be shown in Section 4.4.4.2 that drastic simplifications can be made.

4.4.3.4. Remarks on the Initial heuristie

Several remarks can be made about Approach 3-a. (1) The problem of finding all the
proper sub-links between a pair of nodes is np-complete because it can be restricted to the
well known path distinguisher problem |[GARE 79]. However, this problem may still be
manageable for many practical queries because redundancy has been eliminated in Step-1,
and because the link under consideration has been shortened to a maximum in Step-2. (2)
Any query envelope must be determined on an underlying sub-graph of (Y,L), such as an
out-tree, which is rooted in w,. This comes from the fact that any envelope must satisfy the
lossless join property (see also constraint (eop-2)). (3) The sub-graph must at least be a tree,
i.e. it must be connected, because there must exist a link from the root node, w,, to any
other node, even if this link is not represented by a single edge in (Y,L). This also follows
from the lossless join property (see also constraint (eop-5)). (4) The sub-graph may be more
than an out-tree, but this would add unnecessary ‘‘access paths’’, and thus increase data
redundancy. This remark agrees with requirements (A) and (B) (see also constraint (eop-4).
Note, however, that constraint (eop-4) is extraneous in problem EOP for it tends to decrease
the objective function). (5) Requirement (A) is obviously satisfied, further, all the target

nodes are covered (see constraints (eop-1) and (eop-3)). (6) A spanning tree may be more

82

than needed since the initial link may or may not be proper. Eventually, some branches of
the spanning tree may be thrown out. We will formalize those remarks in the next section
(Proposition 16).

Since the first heuristic avoids the penalty of using branch-and-bound by introducing
some potential curse of cardinality implied in Step-3-a-1, as well as some substantial overhead
in Step-3-a-2, a more direct solution approach to problem (EOP) is obviously called for. It is

presented in the next section.

4.4.4. Final solution of EQOP

An immediate simplification to the first heuristic is to restrict the types of proper links

to be determined in Step-3-a-1 and 3-a-2. This suggests the following heuristic approach.

APPROACH 3-b: A refined heuristic for (EOP)

Step-3-b-1:

Select w, in SourceSet such that it yields the shortest proper link
- A -
LH(w,,T) = (V;, U Wi, ’AV[.UAW[.) to T. Construct the Metagraph (Y,L) of L+

as outlined through the following algorithm.

ALGORITHM Metagraph:

/* Note that the only nodes and arcs considered are those
of L+, and that 7 and o are restricted to L+ */
L:=0 /% Arcs */
Y = {<n(w;), w, >} [* Nodes */
for all v; € T do
begin
if U(UT) # ﬂ then
begin
for all w € a(vy) do
Y=Y {<n(v), v>}
end :
else Y :=Y | J {<{vr}, nll>}
end
for all <V, ,w,> and <V,,w,> € Ydo

83

begin _
if L#(w,,V,) exists, then
L:=L Y {I<Vi,wi>, <V;,u; >}
If L¥(w,,V,) exists, then
L:=L{ {I<V;,u,>, <V,,u>]}
end _ _
if there exists <V,u> €Y and<Viu>€eY:VCV
then add the arc [< V> , <yw>] toL.

end metagraph.

Step-3-b-2:
For each arc e = [<V,u>, <17,t'u'>] € L, estimate the size of the FD j(w,l—/)
induced by L¥(w,V). Define the weight of ¢ to be the size of {w,V). In particular, if

V C V, then the weight of e is zero.

Step-3-b-3:

Find a minimum spanning out-tree of graph (Y,L).

Each step of Approach 3-b will now be discussed. Note first that remarks (2) through
(5) of Section 4.4.3.4 still hold for Approach 3-b with the new definition of (Y,L). However,
remark (6) can be changed as follows. (6) A spanning tree is needed because the initial link is
a proper link, and therefore no node can be thrown out of Y. (This is consistent with pro-

perty (p-2) of an envelope, Section 4.4).

4.4.4.1, Step-3-b-1: Minlmum proper link

Algorithm MinPropLink which follows, finds all the minimum length proper link
between w, and vy € T. It is very similar to the classical shortest path algorithm of Dijkstra
[MURT 76]. The algorithm labels each v-node of the initial link as UMNLAB, PERM or
TEMP+*. At the beginning, TEMP is empty, while UNLAB contains all the intermediate v-
nodes of the link (V; - n(w,)), and PERM contains n(w,). The link is branched out from w;

in search of a minimum length proper link that leads to vy. Nodes of UNLAB are branched

sThey stand for unlabelled, permanently labelled and temporarily labelled.

84

from one by one, and transferred into TEMP. A v-node v; in TEMP is always a candidate
for branching until vy is reached. When a minimum branch from PERM to TEMP is
selected, the v-node y which is at the end of the branch is transferred into PERM and is
never visited again. When vy is found, the algorithm traces back the graph from vy using
the Predec labels. The same process is repeated for every vy in T. Algorithm MinPropLink

follows:

ALGORITHM MinPropLink:

for all vy € T do /* T is the set of target nodes */
UNLAB :=V; - n(w,)

PERM = n{w,)
TEMP := 9
for all v, € PERM do
begin
Predeclv, | := nil /* Initialize the predecessor pointers */
Length{v,| := 0 /* Length of the shortest directed path from PERM */
end
Lengthjw,] :== 0
for all v, € o(w,)do
begin

TEMP := TEMP | J {v, }
UNLAB := UNLAB - {v,}

Predec|y, | := w,
Lengthly,] := 1
end

/* At this stage, PERM and TEMP have been initialized */
while v; ¢ PERM do [* Quit whenever vy is reached */
begin
if TEMP 5 @ then
y :=v, : Length|v,] = min {Length(v;] : v, € TEMP}
t PERM := PERM | J {y} /* Add in PERM the node y from TEMP which
is nearest to PERM than any other node in TEMP. */
for all w, € o(y) do
Length|w,]| := max{Length{v;] : vy € n(w,)}
TEMP := TEMP - {y}
for all vy, € TEMP do [+ Update the labels of all the nodes in TEMP */
begin
If there exists w, : n(w,) C PERM
and v, € o(w,),
and w, # Predec{v,),
and Length{v,] > Length{w,] + 1)

then begin
Length|v, | := Lengthlw,] + 1
Predec|y,| == w

Length[uj]] = max {Length{v,] : v; € n(w,)}

85

end
end
for all v, € UNLAB do [* Update TEMP */
begin

Predec|v, | := w, such that:

Length{w, | = min {Length{w;) where n(w;) C PERM 8 v; € o(w;) }
Length[v,] := Length|w,)
UNLAB := UNLAB - {v,}
TEMP := TEMP | J {v, }
end
end /* of the while loop */
/* The minimum length is found by tracing back the graph from vy
using the Predec labels. */
Ly #:= {vr , Predec{vr), <Predec(vr),vr >}
for all w, € L1 * while not a link do
begin _
Lr+:=Lr+{J m(w,)
Ly*:=1Lr+ | <vuw>
vE 7(v,))
for all v, € n(w,) do
Ly #:= LT*U 7r(vj)
end _
Ly#:= Ly +*|J n(w,)
end [+ of the for all loop */
E* = U ET *
vp €T
TotalLength := max {Length|vr|}
vp €T

end MinPropLink.

We argue that Algorithm MinPropLink finds a minimum proper link. Indeed, L*is
more than a minimum proper link from w, to T, it is the union of the minimum proper links

from w, and every node vy of T.

Proposition 10: The sub-links I-:T * constructed by Algorithm MinPropLink are proper links.
Their unson, E*, 18 also proper.

Proof: By Proposition 9, the only way a sub-link L r + might not be proper is if it contains a
v-node v, with more than one predecessor w-node. But whenever a v-node y is added to
PERM, and to I:} #, only one w-node, Predec|y], is added as well (line “ + "’ in Algorithm

MinPropLink). Since y is never visited more than once, only one predecessor w-node is associ-

86

ated with it. Therefore E*T is proper. We now prove the second statement. Suppose
L*(w, ,vr) and [4'(ws ,vr) are distinct minimum proper links from w; to some vy and vp
respectively, where vy 7 Ur. If those two sub-links have no v-node in common, then their
union must be a proper link. Otherwise, suppose v, is common to both. The two sub-links,
from w; to v,, of L *(w, ;v) and I:*(w, ,vr) respectively, must be identical becaus;a in Algo-
rithm MinPropLink, the v-nodes which are possible candidates to be placed in PERM are
always examined in the same order. Therefore, v; must have the same predecessor in

L¥(wg,vr) as it does in L #(w, ,vr). Hence, since the previous argument applies to any node

v,, the union of the two proper links is proper, and by induction, L+is proper. e
The proof of minimality is very similar to the proof for Dijkstra's algorithm [MURT 81].

Proposition 11: A sub-link Ly *(w, ,vp) constructed in Algorithm MinPropLink is the shor-

test link from w, to vy, and Length|vr| is the length of the shortest link.

Proof: At some stage of the algorithm, assume that the link from w, to v; € PERM traced
by the labels on the nodes in PERM are the shortest links. By the manner in which the labels
Predec and Length are updated in each step, it is clear that for any v, € TEMP the link
from w; to v, traced by the current labels is a minimum length link from w, to 4v,- among
links from w, to v, which traverse only through nodes in PERM. The length of that link is
the distance in the current label Length[vj]. Let y € TEMP be the node made permanent
next in MinPropLink. Let the current distance in the permanent label of y be Length[y], and
the distance on the current label on v; € TEMP, v, # y be Length|v;|. Then by the choice

of y,

Length{y] = min {Lengthlv,] : v, € TEMP, v; 5 y}. 1
If the link from w; to y traced by the current labels is not the shortest, the shortest link from
w, to y must pass through some node v; € TEMP v, # y before reaching y. Suppose

v,,‘ € TEMP is the first such node on this shortest link. Let ¢ be the length of a shortest link

87

from v; to y. The length of the shortest link from w, to y is

Lengthlvy] + & > Lengthvy] > Lengthly],
by (%), which is a contradiction. Therefore the link from w, to y, traced by the current labels
Predec is indeed the shortest link from w, to y. By induction, and the above argument, the

assertions in Proposition 11 are valid for the set PERM after each stage of the algorithm. e

Note that Algorithm NearestSource finds a set of w-nodes SourceSet such that, for
every w, € SourceSet, m(w;) > T, and for any v, € m(w;), m(ws)~v, } T, whereas
MinPropLink explicitly identifies the shortest link from a single w-node w; to all the v-nodes
vr in T. Thus, given a source Wsource, MinPropLink can be executed for all the nodes
w, € Wsource, and thus the over-all minimum proper link f*(w, ,T) can be determined. The

computational effort required by Algorithm MinPropLink is O||V,|® x |T|).

Each node of the so-called metagraph, (Y,L), consists of a w-node and its predecessors
in L* if those predecessors contain at least one target node, or if the w-node is the root of L*,
w, . Additional nodes are accounted for target nodes which do not have successors. Each arc
of the metagraph depicts an implicit FD in L+, induced by a sub-link of L*. Each such FD
contains at least one target attribute on either side of its arrow. Note that, in Algorithm
Metagraph, since the starting sub-link is proper, all the sub-links are also proper, and there-
fore Algorithm GetLink (more efficient that MinPropLink) can be used to determine all the

arcs of L.

4.4.4.2. Step-3-b-2: Weight assignment on proper links

The size of the FD flw,,T), implicitly represented by link f#(ws ,T) cau easily be calcu-
lated after L# has been traced back in Algorithm MinPropLink. The following algorithm,
which estimates the size of flw,,T) is very similar to Algorithm ReachAll seen earlier, and of
the same time complexity O[|A,| + |A,]]. To minimize estimation errors, the FDs explicitly

represented in L * are joined from the source w, until U {Atvr)} is covered.
'JT €T

88

ALGORITHM SizeEstimate: /+ Estimates the size of f{w,,T) implicitly represented by a
link L* #/

TargetNodes := V}
f=0
Size =1
ReachNodes := n(w;)
NeztNodes := {v : (w,,v) € A7 }
for all w, € W; do
NoPredec[w, | := |n(w,)|
while NeztNodes £ & TargetNodes 3 @ do

begin
Generate ;= @
for all z € NeztNodes & z ¢ ReachNodes do
begin
for all w, : (z,w,) € A} do
begin
NoPredec|w, | := NoPredec[w;] - 1
if NoPredec|w, | = Othen do
begin
Generate := Generate | J {v; : (w;,v¢) € Af }
=1yl U {4y} - Ay)}
vEn(w,)
Give Size X |f,,|
O T [DoM{Au()]
v € 7(v,)
end
end
end

TargetNodes := TargetNodes — NextNodes
ReachNodes ;= ReachNodes U NeztNodes
NeztNodes := Generate

end
if
A
PROD = I1 17, [A]] X Vfir[Att{vr)]] < Size
{A € U Ay
v € (-J)
vy €T

for some j and s

then Size := PROD
Size(w ,T) := Size

end SizeEstimate.

In the next section some useful mathematical properties of (EOP) are established. A new

model is then proposed to capture the problem of Step-3-b-3. A detailed implementation of

89

Step-3-b-3 then follows.

4.4.4.3. Step-3-b-3: Matroid model and optimization

In this step, we extract an out-tree of (Y,L) which is said to depict an envelope K(T) in
the following sense; K(T) is the envelope that contains the FDs represented by the arcs of the
out-tree, and only those FDs. The justifications for this step will be provided later. We will
first prove three important properties of (Y,L). Those properties will later be used to design

a very simple and efficient optimization algorithm.

Property-1
Proposition 12: The metagraph (Y,L) of L*(w, ,T) does not contain any directed cycle.

Proof: If there exists a directed cycle in (Y,L), t.hen there exists a “link-cycle” in L* (the
notion of proper link in an F-graph is analogous to the notion of directed path in a regular
graph, therefore a link-cycle is the obvious extension of a directed cycle). Therefore, either
one v-node, in L* but not in 7(w,), has more than one predecessors, which contradicts Propo-
sition 9, since L*isa proper link, or some v-node, y, in #(w;) has a predecessor, z. That
latter possibility must be’ discarded since an arc (z,y) may not be a linking arc from w, to y

with respect to the set of arcs in Lt e

Property-2

A
Consider hypergraph M = (L,A) where L is, as before, the set of arcs of the metagraph,

A
and A is: A= {A, : A, is a set of elements of L, and A, is an out-tree* or a forest of

out-trees in (Y,L) } | J 0. As proved below, M is a matroid. (See [LAWL 76)).

Proposition 13: M = (L,A) is a matroid, i.e. :

*An oul-treeis a directed tree in which each node has at most one arc directed into it.

90

(i) forany A, €A, ifA; C A, then A; €EA. Also, P EA.

(i) If A? and AP*' € A, contain respectively p and p+1 elements of L, then there exists

L € APY - A? such that AP | J {L} €A.

Proof: (i) The proper subset of an out-tree is an out-tree or a forest of out-trees. Also, by
definition, @ is a member of A. (ii) Let A be a forest of out-trees with p arcs. Let A" be a
forest of out-trees with p+1 arcs. We proceed by contradiction. Let us suppose that for any
L={(ef) €A?-AP, AP|J {L} is not a forest of out-trees. Then, for all (e.f) € AP,
either both ¢ and f already belong to A?, or f is pointed at by an arc in A’ whereas ¢ is out-
side A (Of course, there must exist at least one arc (e,f) € A? such that e is not a node in
A/). Let us try to reconstruct A+, For each arc (g,h) in A, there exists an arc (e,h) in A/
(with e possibly identical to g). Therefore we can account for only p arcs in A,"’+ 1 This con-
tradicts the assumption that A,P * is a forest of out-trees with p+1 arcs. Therefore there must
exist at least one L € A" - A? such that A? [J {L} is an out-tree or a forest of out-trees.

Since M satisfies (i) and (i), therefore it is a matroid. e

All the subsets of L in A are said [LAWL 76] to be independent sets of M. A maximal
independent set is said to be a base of M. By definition of (Y,L) a base is a gpanning out-tree

in (Y,L). **

Property-3

A
Proposition 14: Any spanning tree in (Y,L) is rooted in ¢, = <m{w,),w;> €Y.

Proof: This follows from the fact that there exists an arc between ¢; and any other node of

Y, and from the acyclic property of (Y,L) asserted by Proposition 12. e

It is known that the matroid greedy algorithm [LAWL 76] finds a base of mazimum

weight. In this context, it is reasonable to define the weight of an arc

¢*We know that there is at least one such spanning out-tree by definition of (Y,L).

91

L =|<.,w;>,<V,.>]in L to be a large number minus the estimated size of the FD
Aw, V) implicitly represented by link L(w,,V) associated with L. The general matroid greedy

algorithm as described in [LAWL 76] is:

Choose the elements of the matroid in order to size, weightiest element first, rejecting an ele-
ment only if its selection would destroy independence of the set of chosen elements.

Although the construction of a spanning out-tree is usually not trivial because of potential

directed cycles, in this context, a very simple greedy algorithm may be devised for Step-3-b-3:

Assign to each arc in L a large positive number minus the size of the FD implicitly represented
by the corresponding link. Choose the elements of L in order of weight, weightiest element
first, rejecting an element only if it points towards the same node of Y a8 another already

chosen arc.
That this algorithm indeed finds a maximum-weight spanning out-tree of (Y,L) follows

immediately from Properties 1-3 and the theory of matroids [LAWL 76]. However, we

include a comprehensive proof below.

Proposition 15: The greedy algorithm finds the mazimum weight spanning out-tree of (Y,L).

Proof: First, let us show that at any step p of the algorithm, the current forest of out-trees
A/ is the weightiest among all other forests of out-trees with the same number of arcs. At
step p = 1 this is obviously true since the weightiest arc is initially chosen. By induction,
suppose A”! is the weightiest forest of out-trees with p—1 arcs. Two cases must be considered:

(1) A”! can be augmented:

Let A7 = {(e,.f,) i=1, - ,p-1}. If the next weightiest arc (g,h) is such t>at h = f,,,
for some f,, then it is not acceptable. Else it is acceptable (by Proposition 12 and the fact
that A" is an out-tree), and A = A?" | J {(g,h)} is an out-tree and we are done. Suppose

that A = f,,, for some m. Assume further that there exists an out-tree with p arcs:

A={EF5)i=1" 1} e

92
such that:

1 - 1
i Weight(e, .f,) + Weight(g,fn) > i Weight(e, .f,) + Weight(k,l)
=l

1=

for any acceptable (k). Since Weight(e ,f,) > Weight{(g,f,) therefore:

p-1 - - -1
Y, Weight(, f,)+ Weight(21,f1) > Y, Weight(e, .f;) + Weight(k,) ,

=2 1=2
which implies that:

Weight(,f,) > Weight(k,1).
But we know that f, 5 f, because if this were not true then A" U {(9./m)} would not be
an out-tree. Furthermore, A U {(?l,fl)} is an out-tree (using Proposition 12) weightier
than A" | J {(k)}. This last statement contradicts the assumption that (k,/) was the next
heaviest available arc for A,”!. Therefore, either an out-tree such as AP ! does not exist, or
A/ cannot be augmented further. In the first eventuality the original assertion is true. In

the latter, we have to consider case (2):
(2) A7 cannot be augmented:

Suppose that there exists an out-tree A’ with ¢ > p-1 such that Af is weightier than A 1
Therefore, there exists A C A, such that, by Proposition 13, L € A - A®" can be added to
A to create a larger out-tree. This contradicts the assumption that A’ can né more be
augmented. Therefore, A’ must indeed be the weightiest forest of out-trees at any step p.
Since there exists a spanning out-tree of (Y,L), and using the assertion of Proposition 14, the
greedy algorithm terminates when the maximum-weight spanning out-tree rooted in e, is

found. e

Step-3-b-3 may now be justified.
Proposition 18: An out-tree of (Y,L) depicts an envelope K(T) and not more.

Proof: As noted in connection with Theorem 2, there exists a query envelope which is

embedded in the link L{w,,T). It is easy to see that there is also an envelope K(T) embedded

93

in proper sub-link L# of L. Therefore, the metagraph (Y,L) depicts more than is needed for
such an envelope K(T). If a subgraph of (Y,L) is an out—trée, then by Proposition 6, it is an
out-tree rooted in <m(w;),w; >. Therefore, the F-graph I:, which has for explicit FDs the
FDs associated with the arcs of the out-tree, is a sub-link in the F-graph G*, where G+
denotes the F-graph that explicitly represents all the FDs of F'*. By Corollary 2 L is lossless.
Furthermore, since the out-tree spans all the nodes of Y, all the v-nodes of T are covered.
Therefore, the out-tree depicts an envelope K(T). The sub-graph extracted from (Y,L) may
be more than an out-tree, but it would then contain extraneous information. An envelope

depicted by such a sub-graph of (Y,L) would conflict with requirement (eop-2). e

The implementation of the greedy algorithm follows:

ALGORITHM OutTree: [* Finds a maximum-weight spanning tree in (Y,L) rooted in

e, = <.,u;> */

Arborescence := true
OutTree .= @
foralle = [<.,u>,<V,.>]€L
do Weight|e| := 8 - Size(w, V)
/* Size is given by SizeEstimate and S is a large number */
while Arborescence = true do
begin
a ,
e=(e,e):=(¢ €L:
Weight|e,] = max { Weight|e;], ex € L - OutTree}
and V € = (€,,€,) € OutTree , €5 5% €,)
if ¢ = @ then Arborescence := false
else QutTree := OutTree | J {¢}
end

end OutTree.
Algorithm OutTree is of time complexity O||L|j. Note that the total time complexity of
Approach 3-b is therefore

0[|Source5et| X Vi l2] + 0[|T| S IV;;,IZ]

94

+ 0flag) + 14,] + ofir].

If a proper link E(w, ,T) is given, and if the cost of the model of EOP in Section 4.4.2 is
changed to be the sum of the sizes of the FDs in the envelope sought, then Approach 3-b
solves exactly the latter model. For most practical cases the expression for the cost given in
Section 4.4.2 is unreasonable because of Assumptions EOP-cost-1-2 (page 72). Therefore, a
comparison of the solutions obtained respectively by Approach 3-b and an “optimal” algo-

rithm is not justified.

In the next section, some typical problems of FD-updating are considered. The seman-
tic constraints that support the FD-modeling structure control the processing of updates, not
unlike join dependencies control the correct processing of queries. Thus, a single update on an
individual FD may force, as a side-effect, a so-called cascade of updates on other FDs. The
cascade associated with one update is defined to be the set of FDs, which are the target of
this update. Section 4.5 addresses the problem of determining update-cascades to preserve

database consistency.

4.5. Consistency preservation in updates

When selecting a query envelope, the lossless join property was considered to be the
main factor to satisfy semantic correctness. Similarly, some criteria must be considered in
association with updates of ['Ds to preserve the integrity of the database. In the next section
definitions for simple practical semantic constraints on FDs are provided. These constraints
are to help understand how the update of a single FD may lead to a cascade of side-effects

(Section 4.5.2). In Section 4.5.3 three basic types of updates are considered in details.

95

4.5.1. Constraints on the antecedent and range of an FD

The notion of update-provoked side-effects will rely, in part, on the following defini-

tions. As explained in Section 3.1, each FD f, is derived from a function F; . Using the same
A
notation as in Chapter 3, A, = DOMA,)XDOMA ;)X - -+ XDOM(A,) is defined to be

a
the antecedent of f,, and R, = DOM(B,)XDOM(B,)X - - - XDOM|B,,) is defined to be

the range of f, . For some z € A; and y € R;, the notation y = f, (z) will be used.

(1) fi is partial with respect to A, if there exists z € A; such that z has no corresponding
image in R) with respect to f; . We write f, (z) = 0.

(2) fy is total with respect to A, if for any z € A, there exists y € R, such that
(@) =1y

(38) fy is partisl with respect to R, if there exists y € R, such that for any
z € Ay, H(2) # v

(4) fy is total with respect to R, if for any y € R,, there exists z € A, such that
@)=y
On an F-graph, the tail and the head of each w-arcs are labelled with either the letter P

(partial) or T (total) as shown on Figure 4.7. The need for maintaining such labels for each

FD is illustrated in the following example from [HOUS 79).

Example: A nation-wide organizatign keeps records of their MEMBERs and of their
SPOUSE records if they are married. The MEMBER and SPOUSE attributes are related by
the FD fy;s which stands for MEMBER — SPOUSE. Those MEMBERs who are not married
will not be part of FD fy,s. Therefore fy,s is partial with respect to its antecedenn MEMBER,
and is total with respect to its range SPOUSE. Only the SPOUSEs of known MEMBERS in

the organization appear in the database. We write MEMBER(P) — SPOUSE\(T). o

96

4.5.2. Deletion of attribute values

It is obvious that the deletion of an attribute value with respect to an FD can trigger a
cascade of deletions on related FDs. This ‘‘side-effect” phenomenon has been studied previ-
ously in [HOUS 79] and is addressed in Section 4.5.3. Typically, it is important to keep track
of the labels of any FD under updating. This is particularly true in the case of deletions of
attribute values or of FD tuples. The following example is to help understand why a single

deletion may require further deletions in cagcade.

Example: (a) Let FD f; which stands for MEMBER(P) — SPOUSE(T) be represented by the

following table:

h1

MEMBER | SPOUSE

M1 S1
M2 S2
M3 S3
M4 S4

If M1 is to be deleted from the database, then there is no use in keeping S1 around in the
database. If S1 is deleted then some other information related to S1 through other FDs may

have to be deleted too.

(b) Consider f, which stands for MEMBER_MICH(T) — US_CENTER(P) which relates
the members belonging to the organization in the state of Michigan, and all the centers that
the organization possesses all over the US. Every members in Michigan relate to some
CENTER, thus the label ‘‘T"’ assigned to MEMBER_MICH, but some other centers in the US
are obviously not present in f, thus the label P assigned to US_CENTER in f,. f,is

represented by the following table.

97

[z

MEMBER_MICH | US_CENTER

M1 Cl
M2 Cl
M3 C2
M4 C2

If center C1 is closed, then all the members assigned to that center are either re-assigned, in
which case the deletion is immediately followed by an update to write the new CENTER
information, or they are released, in which case M1 and M2, are automatically deleted from

the database. Some simple side-effects of deletions have thus be illustrated. o

In the next section another source of update cascades will be mentioned. It will then be
shown how to handle typical updates and how to identify the FDs affected by a cascade of

updates triggered by a single update on attribute values or a tuple of an FD+*.

4.5.3. Update cascades

Typical update side-effects are now indicated. Let H be the union of all the query

envelopes. If it happens that H+ = F*, where F is the user-provided set of FDs, then we are

done. Else, if H* C F*, then (H | Iyt = F*, where I i F¥_ H* H* and F* can easily
be derived by applying repeatedly the FD rules of Chapter 3 on H and F respectively. An
LR-minimum cover of I, I can be derived using [MAIE 80)'s algorithm or Algorithm Reduce
(Section 4.2.1). Let G be the final F-graph which depicts H U I. From now-cn, it will be
assumed that any update is specified with respect to G, and that all “P” and “T'' labels are

specified with respect with the explicit FDs of G.

slt is beyond the scope of this thesis, however, to address all the intricacies associated with updating. This sec-
tion only considers the most simple cases of updates. Obviously, the more complex the modeling of user views is, the
more delicate the update problems become.

98

The typical updates that are considered are:

(a) Add o tuple in the instance of FD f{w,v) for some arc (w,v) in G. If {Att(v,)}
v, € 7(v)

= {A,, ' ,A,}, and Att(v)= B, then the new inserted tuple is taken from
DOM(A,)X - - - XDOM(A,)X DOM(B). This type of update may inherently imply the

addition of a value in the antecedent of f, or in its image, or both.
(b) Remove a tuple in the instance of FD f{w,v) for some arc (w,v) in G.

(c) Remove a value under At{(v) for some v, or under | J {At{(v;)} for some w in G.
v, € r(v)

It was shown earlier that the semantic constraints represented by the “P" and “T”
labels could force a single deletion update of type (b) or (c) to trigger off some further
updates in cascade. Similarly, the first universal relation assumption (Assumption UR-1 of
Chapter 3), must always be enforced whenever an update of type (a) is made. This is a con-
sideration in the design stage, as well as in the operating stage. In the design stage, enforcing
Assumption UR-1 serves to identify the set of FDs affected by a cascade. In the operating
stage, it serves to define some actual data processing. Typically, the updates occurring in the
operating stage are predictablex, and therefore, the\designer is able to determine in advance
what the specific side-effects are. For non-scheduled or ad-hoc updating transa.étions, the
tedious task of enforcing the semantic constraints* must take place under the careful supervi-
sion of the database administrator. Obviously, if an updating transaction consists in a condi-
tional update, i.e. a potential update preceded by a question, then the ‘“question’ part of the
transaction may be analyzed individually with other regular queries. Each type of update is

considered below.

¢In particular the identification of all the specific updating operations implied by one update of type (a).

99

4.5.3.1. Adding a tuple In the Instance of an FD

Let flw,,v,) stand for { J {Atv;)} = Att{v,)} = A, A, -+ A, — A . Anew
Y E'(vl)

tuple of f{w,,v,) is added. It is of the form d, = (d,l, ceed 8), where d, € DOM(A,'k).
This type of update is the most laborious because of the potential disuption of the ‘“‘unique-
ness” assumption (Assumption UR-1, Chapter 3). More specifically, as a new tuple of
Alw,,v,) is added, the uniqueness assumption may be endangered whenever f{w; ,v,) belongs at
least to one doublet. The principle behind the correction of any trouble-shooting is rather

simple; it may be stated as follows:

Let (w,,v,) be the arc that corresponds to FD flw,,v,) for which a new tuple is to be added.
For each doublet (I-:]"",ITJ‘) each ending at node v, to which the arc (w;,v;) belongs, check if
for the tuple d, which is added in I-,;+, the image d; in DOM{Att(v;)) is the same along
l—,]*' and Ij,', and the snverse image relation, say r,, 33 the same along I;‘" and I-:J'. If not, the
update is not correct. If d; has an image d, and an inverse image r,, sugment EJ-' such that

the image of r; in DOM(Att{v;)) along EJ" 19 d; too.

Using the notation of Chapter 3, the translation of this action becomes quite laborious. It

appears below after some notational definitions.

A _ —
Let I' = (C,C) denote a cutset of proper link L,"'(ws ,v¢) which itself belongs to a doub-

let (L,*,L,”). We write:

Xci U {A(v)}
v € 1)
weEC

= U {Au()

VEE'

&
I

Il >

Xe U Xz

P
X, = U {Av)}

v, € 7(w,)

100

XCH= U {Au()

vE VL—+

_ A
E(L)+) = U J("“’)’
(wv) € A -
";+

In the following algorithm, the notation I .y, denotes the largest relation in [.y .

ALGORITHM AddTuple: /* Add a tuple of flw,,v,) */

ALTER := {T,}
Current := ALTER [+ Cutsets still to be visited */
[*T_=(w,,v,)if (w,,v,)is a cutset _
of L, *+ otherwise it is any cutset of L,"'
which contains (w, ,v,). */
for allT', € Current while Current 3% @ do
begin
Current := Current - {T', }
for all (L, +,L]') : L,"' contains I', do
begin

/* Trace forward in L;* +/
b = {1 oy ms] Xr, U (Ao}, #Xr) = 4] Hanto,)

if d; = @ then done

else begin _
/* Trace backwards in L, * */

r, = { Idm.ﬂ]»[& U Xc, #Xc) = d,(Xc.)] }[X,]

ifr, = @ then done

/* Now trace back from v, to w, on L,” */
k := 0 [* An index to identify cutsets on L;” */

dk = d¢|
rlk] == {ds }
X; = Att(v;)

X; = {Att(v) : v € n(w)
Swen(v)} L~

while X; # X, 8|l #0do
begin

k:= k + 1 [+ Next cutset to visit */
b 5={ 1<X(17,')-E(5,')>[Xk UXp Xp =4, 84, € ’M] }[Xkl
Xm:= Xk

Vig:=9
for all v, : At{v,) € Xip7

101

do Viy:=Viz U {v,}
X1 := {Att{v) : v _e__1r(w)
wernVipltN L

end

It r, € r[k] then done

else begin /* No antecedent for some cutset */
[* k = Length(L,") */

=,

Xk = X, -
X; = {Att{v) : v € o{w,)NL,7}
while X, 7# Att(v,) do

begin
k:=k-1

A = L g mgos| X UK X = & 84 € ld | 1]

for all A; € X7 do
begin
if ()[4,] = 0
then begin
8 = [- s
modify (w,v) : At{v) = A,
such that each tuple in oK
which features a @ value s
mapped to a tuple in glA.
[* ... User controlled */
ALTER := ALTER |J {T : (wy) €T}
Current := Current | J [: (w,v) €T}
end
end
end
end
end
end
end

end AddTuple.

Note that all the proper links may be determined with Algorithm Distinguish (section

4.4.3.1), as soon as the modified F-graph depicting H is completed.

The side-effects due to a deletion have been mentioned in [HOUS 79]. Typically, they
take place whenever an affected FD cdoes not feature a ‘P’ label for both its antecedent and
its image. Again, the translation of simple deletion cascades into pseudocode is quite lengthy.

The next two sections deal with deletion.

102

4.5.3.2. Removing a tuple in the Instance of an FD
A tuple d, = (d,i,d,- PR ,d;) is to be deleted from the database. The following

steps are taken:

ALGORITHM DeleteTuple: /* Remove a tuple of w,,v;) */

ALTER := {(w, ,v,)}
it LABEL|(w, v,)| = (T,T)
then begin
DeleteValud<d, , - - - ,d, >)
I VEE flw,,,) HAH(,) 7 d,
then Delete Value(d,)
end
else if LABEL[(w, ,v,)| = (T,P)
then DeleteValue{<d, , - - - ,d, >)
else if LABEL|(w, ,v,)] = (P,T)
then begin
if Ve fw,y), {AtHv,)) # d,
then DeleteValue(d,)
end

end DeleteTuple.

4.5.3.3. Removing a value In the antecedent or range of an FD

A v
ALGORITHM DeleteValue: /* Given d=<d, - ,d > €
DOM{A)X - - - X DOM(A,) and ALTER possibly empty */

Possible := @ [* Possible set of FDs in a cascade */
for all fw,,v): {4}, -+ A} = (J {A(v)} do
v € 7(v;)
begin /* Delete an image value %/ !
Possible := Possible | J {Aw,,v,)}
it (LABEL|{(w, ,v,)] = (T, T) or
LABEL|(w, ,v;)] = (P,T)) then
begin
i Vieflw,y)
for some k : {Att(v))) # d,_
where d, s the image of d in flw,,v;)
then do
DeleteValue(d,)

ALTER := ALTER |J {(x,,v,)}

103

end
end
end
for all (v, ,v,) € Possible do
begin /* Delete an antecedent value */
\f (LABEL(w, v,)] = (T,T) or
LABEL|(w;,v,)] = (T,P)) then
begin
for all ({w; ,v,) € Possible
1Ay, -+ ,A,] = d)do

begin
ALTER := ALTER \J {(w v,)}
Delete Value(d)
end
end

end

end DeleteValue.

For any update, all the FDs in H which are affected by a cascade are the FDs represented by

the elements of set ALTER.

In the next section the problem addressed in this chapter is summarized together with

the proposed solution methodology.

104

Figure 4.7. An F-graph with ‘“‘partial”’ and “total” labels

105

4.6. Summary of PART 1: From users’ FDs to envelopes

The design methodology of PART 1 for the distributed database design problem (as

defined in Section 3.3) is now summarized in the form of a design algorithm named Selection.

Each instruction in the forthcoming Algorithm Selection is numbered for easy referenc-

ing, and is of the form:

() Output list +— Algorithm|-+Algorithm - - - || Input list |,
where ‘(i) is the reference index. The items in an input or output list are separated by com-
mas. Symbols preceded by a double dagger sign ‘“‘}"” are understood to be user-provided
inputs. If several algorithms are used, they are separated by plus signs ‘‘+’’. Most of the algo-
rithms have been defined in pseudocode in the course of Chapter 4. Some other algorithms
will simply be defined in words because they involve actions which can be trivially realized.
Symbols which have not yet been defined will be defined following the presentation of Selec-
tion or will be defined in Chapter 5. Algorithm Selection is shown below and is followed by

specific remarks for each instruction.

DESIGN-Selection: /* PART 1 of the distributed database design */

begin /* Step-1: Initial processing of the user F-graph */
(0) Given § F and } U, construct Gp

(1) Gy +— Reduce+ReachAl]Gy |

(2) Ep ¥ NOLOSB[E;-F!
end

for all Q;; do

begin
/* Step-2: Extract the minimum information */
(3) Source +— GetSources|Gr *, t Ty]

(4) NearestSource +— GetNearestSource|Gy *, Ty, Source]
for all w, € NearestSource do

(5) L(ws,T) ¢— GetLin{Gp *, Ty, NearestSource]

/* Step-3: Find envelope */

(6) Qu 4 LocalProc[1Q,$ Cy
for all w, € NearestSource do

(7) L¥(w,,T) +— MinPropLinkL(w, ,T)|

106

w, : TotalLength(L*(w, ,T)) = min { TotalLength(L {(w, ,T))
V w, € NearestSource}

(8) (Y,L) & Mctagraph[L(w, , 7))
. Note that the original link is used, L rather than L* */
forsllL =|[(.,w)(V,.)] €L do
(9) Size(w,V) +— SizeEstimate|(Y,L), Q4 , Q]
(10) ACCy +— OutTree(Y,L), VL € L Size(L)]
(11) PARy, <— AllPartitionsOfJACCy)
(12) CLUP, +— AliClustersOflp € PARy)
end

(13) H <+ U[ACC,,]
Construct Gy ,the F-graph of H

for all @, do
begin /* Step-4: Find distributed query processing data-volumes */
for all p € PAR;; do
begin
(14) query £ +— QuerySpec|Q, V L € L, Size(L),
Cu, tva, ACCy, p € PARy, CLU?;]
V ¢q,r € CLU#,
(15) A2{, AP, APS +— Algorithm H [CHUNS83]|query 2}]
end
end

for all U, do
begin /* Step-3 Find cascade */

(16) DELg +— UpdateSpec|Gy, T
(17 WRTy, Vh € WRT, B}, +— AddTuple
+DeleteTuple
+DeleteValue
+ Distinguish
(G,
0,
tu
Vg t TYPE y DEL“]

end

end Selectlion.

The following comments apply respectively to every instructions in Selection:

(0) F and U are respectively the user-provided set of FDs and universe of attributes. Gy is

the F-graph which depicts the FDs of F.

(2)

(3)

(4)
(8)

(6)

107

Algorithm Reduce can be found in Section 4.2.1. Algorithm ReachAll has been seen in
Section 4.3. Note that ReachAll is used to determine the set Generate of reachable v-
nodes, referred to as V; in CONDITION 4 , in Reduce.

Algorithm NoLoss can be found in Section 4.2.3. It includes a covering algorithm such

as the one reported in [ETCH 77]. Gr * is a lossless fully reduced F-graph.

T, is defined in Section 3.2. Algorithm GetSources is shown in Section 4.3. It calls
Algorithm ReachAll.
See Section 4.3.

T stands for the set of target nodes which have an index equal to one in T . Algorithm

GetLink can be found in Section 4.3.

Q1 is a set of user-provided statistical informations and is defined as:

Q= { 1M, 7, MAll, A, |DOM(A)|, forall fEF 8 A€ U}.

All the notations have been defined in Section 4.4.2. Any query @y is expressed in a
query language with respect to the universal relation scheme <U, >. A query specifica-

tion is of the form:
Qu : FIND (Ay, -+ ,An)

|WHERE (A, = c,)|
[AND (Aiz = 012)]

[AND (A, = ¢,)]

where A, € U and ¢, € DOM(A,). The square brackets enclose an optional qualifica-
tion clause. All the attributes mentioned have an index equal to one in Ty . Cy is the
set of qualification clauses for query @, . ;4 is the statistical information for the
universal relation obtained from (2 after initial processing of the FDs in F in order to

satisfy the qualification clauses of Cy . Thus, LocalProc denotes the action of processing

(7)

(8)
(9)

(10)

(11)

(12)

(13)

(14)

108

the initial FDs of F by eliminating unwanted tuples.

a - —
Qu = {Vul, fu, fulA)), A, foroll fEF BAEU}

where f; is f processed under Cy; using the selection relational operation if it is possi-

ble to do so.

Algorithm MinPropLink can be found in Section 4.4.4.1. In this algorithm TotalLength

denotes the length of L+(w,,T).
Algorithm Metagraph can be found in Section 4.4.4.

Size(w, V) is the same as Size(w,,T) in Algorithm SizeEstimate in Section 4.4.4.1, where

w, would be equal to w and T would be equal to V.

ACCy (for ‘“‘access”) stands for the set of FDs in the envelope assigned to query Q,

where the notation will be carried on in Chapters 5 and 6.

This step and the next one will become clear in Chapter 5, where the sets PAR,, and
CLU}, are defined. In short, PAR,; is a set of indexes where each index corresponds to

a different partition of ACCy; .

See Chapter 5. CLU/, is the partition of ACCy, which corresponds to index p in
PAR,; . Each element of CLU/, is called a cluster and may be visualized as one single

relation.
Self explanatory.
Given a partition CLU?; of ACCy, let:

A
CLUtPL’ ={qlr"'rQM}E{RI;"'yRm}7

where each cluster ¢, is mapped to one relation R, . Each relation R, denotes a join of

!
FDs in ¢, C ACCy, ie: R, = || lf} for some cluster ¢, = {f,, - - ,/;} € ACCy,
j ==

m
Ua =ACC; and g g =8 foriz#j€ {1, --,m}. The input list includes

t==]

Size(L) for any L € L. Therefore the size of each FD in ACCy; is known. Hence, the

(15)

(16)

(17)

109

size of each relation R, may be computed using the technique of Section 4.4.1. Assum-
ing that relations R,, - - * ,R, are located at different sites of a computer network,
query Q; may be processed as a distributed query using [CHUN 83|'s Algorithm H.
query {; denotes the input file of Algorithm H [CHUN 83] which represents query @

to be processed as a distributed query on distinct relations R, - - - R, .

The symbols A7, A?" and A7 are data-volume rates and are defined in Chapter 5.

All data-volumes take into account the frequency vy of the query.

For an update U, UpdateSpec refers to the identification of the FDs in H which pos-

sess one or more attributes with an index of one in T'; .

The TYPE is either “ADD" or “DELETE”. The volume of one update message is
assumed to be p and the volume of one piece of data needed for the update of one FD A
is indicated in algorithms AddTuple, DeleteTuple, and DeleteValue in Section 4.5. Algo-
rithm Distinguish is shown in Section 4.4.3.1. WRT,, denotes all the FDs updated in
cascade by U, as given by set ALTER in AddTuple, DeleteTuple and DeleteValue.

B}, denotes the data and message volume required to update h € WRT,; .

Each FD in H can be mapped to a CRDU. The next chapter will address PART 2 of the

distributed database design problem; the distribution of CRDUs. This chapter is closed with

an example.

4.7. Example

Consider the MRDB (medical record database) of Appendix C. The set of user-provided

FDs is shown in Table C.1. It is shown below how to apply the design procedure Select for

MRDB. Only queries Q.5 and @, are considered. Design procedure Select is stepped through

instruction by instruction:

(0)

F is the user-provided set of FDs shown in Table C.1. GF is the F-graph which depicts

F (Figure 4.8). The set of attributes U is represented by the v-nodes in Gy .

(1)

(2

(3)

(4)

(5)

110

Applying Reduce on Gp:

e By RULE 1 w-nodes w,, wy, wy, w, w;s and wg are combined into one w-node w,.
Similarly, w-nodes w,, and w4 are combined into w,.

e RULE 2 needs not be applied.

e By RULE 3, w,y (v4,w1s), (v ,w1s) and (w v,) are deleted.

e By RULE 4 (see Figure 4.1-ii) all transitive redundancies are eliminated. Therefore,
(wy,v,), (v,wg), wo, (we,v) and (wy,v;) are deleted. Also by RULE 4, arc (v,,w,) is
deleted (Figure 4.2). Finally, and using the notation employed in RULE 4: Let
vr=v,, w, =uw,; w=uwy, Abo, V,={v}, V,={v,v0}
m(w;) = {v,, v, } and 7(w;) = {v;, vq, v, }. Hence, V, = {v} and 7, =@. There-
fore, are deleted: (w;,vp) = (wq,v,), wq, (v, ,w7) and (v,,w;). See Figure 4.3. At this

step the fully reduced F-graph is Gr displayed in Figure 4.9.

Since v-node v, (labelled with attribute ORDER) is such that: For any v € V, v, > v,

therefore Ep ¥ == (—;—p, i.e. the graph is lossless and there is no need to apply NoLoss.
Let query @;; be expressed as:

Q:s: FIND (ORDER, PATIENT_NO, NAME)

Ci5: WHERE WARD ="' Outpatient’ .

The target list of query Q.5 is {ORDER, PATIENT_NO, NAME, WARD}. The
corresponding set of target nodes is T = {v,, v;, v;, v; }. By applying Algorithm Get-

Source, it is found that Source = {w,}.

By applying Algorithm GetNearestSource, it is found that NearestSource = {w,}, ie.

w, = w,.
The link found by GetLink for @,y is:

L(w,T) = L(w,, {v,, v4, v;, v; }). Link L(w,,T) is depicted in Figure 4.10.

111

(6) The link found in (5) for query Q.5 depicts the following FDs:
f1s: ORDER —~ SERVICE
f1,0: ORDER — PATIENT_NO
fsy: SERVICE — PHYSICIAN
f12,: PATIENT_NO — NAME
f10k: PHYSICIAN — WARD
[15: NAME — WARD.
The statistical informations (1 are contained in Tables C.4, C.5, C.6 and C.7.

When the base FDs of Gy, and in particular the FDs depicted in L(w,,T) are res-

tricted by qualification clause C;5 (WARD ="' Outpatient') the statistics are modi-

FD | I !

Tuples | Bytes
fib 5075 9
14 5075 8
fay 49 20
Iy 84 19
10k 23 20
Sisk 84 20

‘Table 4.1. Cardinalities and widths of the FDs in the envelope of query @,5.”

112

fied and become those of Tables 4.1, and 4.2 (where only the base-FDs of L(w,,T) are
kept). The process of calculating or estimating this new set of statistical informations
2,5 has been referred to as LocalProc in Select. Typically, LocalProc can consist in
actually performing the relational algebra operation “Selection” implied by Cig
directly on a centralized version of the MRDB database, or it can consist in multiply-
ing the original statistics by an estimated user-provided ratio associated with Cis.
Appart from | DOM{WARD)| = 1, the remaining statistics on widths of attributes and

cardinalities of domains are not affected by LocalProc.

(7) There is only one possible source node w; = w,, therefore this step leads to the

proper link L*(w,,T) of Figure 4.11.

FD | ORDER | SERVICE | PATIENT_NO | PHYSICIAN | NAME | WARD

fip 140 48

fid 140 84

fay 48 20

f1z, 84 84

S10. 3 1

[1s8 12 1
Table 4.2. Cardinalities of FDs, in the envelope of Q.5 projected on each referenced at-

tribute.

113

(8) Applying Algorithm Metagraph and MinPropLink on L(w,,T), the metagraph of Fig-

ure 4.12 is obtained.

For this metagraph, the arcs are defined as follows:

A
Ly = |<vg,w,> ; <vg,wyp>]

= {v,, (Ua ,wl)y wy, (wbvd)v vd}

a
L= [<v,wp>; <v;,w>|

= {vd! (vd :w12)v Wig (wl2ivi)1 vi}
A
L23 = [<vt ;w15> ’ <vk ;o>]
= {v,, (v;,w1s), w1s (W15¥:), v }
A
Ly = |<v,,w;> ; <v;,ws>]
= {v,, (v5,w1), wy, (wy,94), v, (v4,W12), Wrg (w120), v}
A
LSS = [<UG ,w1> ’ <vk ,0>]
= L¥(uw,,T)
A
Ly =[<vg,w12> ; <vi §>]
= {vdv (Ud ,w12)r Wiz (wl21vl)) vy, (U,' waG)v Ws, (wlbka); Vi }~
Further, the arcs in L are associated with implicit or explicit FDs as follows:
Ly~ f1,4 : ORDER — PATIENT_NO
Lis" fig,: PATIENT_NO — NAME
Loy ™ [is4: NAME — WARD
Ly~ f1, : ORDER — NAME

Lss - fl,k : ORDER — WARD

(9)

114

Ly~ fis: PATIENT_NO — WARD.

It is understood that all FDs have been restricted by LocalProc by virtue of qualifica-

tion clause C;5. The sizes of the FDs in (8) are calculated by SizeEstimate as follows:
Size(wl,vvd) = 5075 X 8 = 40,600 bytes.

Size(w1o,v,) = 84 X 19 == 1,696 bytes.

Size(w5,v;) = 84 X 20 = 1,680 bytes.

Size(wy,v,) :

|f1,4 [PATIENT_NO|/ 15, |

_ [5075 X 84

= les.
126] 3,383 tuples

/1., |ORDER)| X |f12, [NAME}| = 5075 X 84 > 3,383,

therefore |(f1,4 [PATIENT_NOJf,, ,)|JORDER, NAME)]
= 3,383 X (4 + 15) = 64,277 bytes.
Size(wy,vg):

[(£1,4 [PATIENT_NO}f s,)| NAME\S 15.: |

5075 X 84
126

] . 12
156 == 322 tuples.

|f1.0 |ORDER]| X |f154 |WARD)| = 5,075 X 1 = 5075 > 322,

therefore |((f1,¢ [PATIENT_NO|f 15,)| NAME\f 15 ;)| ORDER, WARD)|

= 322 X (4 + 5) = 2,898 bytes.

Size(w 19,v;):

84 X 12

196] = 8 tuples.

|f 12, [NAME]f 15, | = [

(10)

(11-12)

(14)

(15)

115

|f 12, INAME)| X |f1s4 [WARD]| = 84 X 1 =84 > 8,
therefore Size{w5,v;) = 8 X (4 + 5) = 72 bytes.
Metagraph (Y,L) is shown in Figure 4.13 with the weights of all the arcs. (Note that

the weight of an arc in L is kept to be the size of the FD that L stands for, rather

than a large number minus that size).

The application of Algorithm OutTree on (Y,L) is straightforward, and the result is
shown in thick lines in Figure 4.13. Note that arc L, representing FD
ORDER — PATIENT_NO must be included in any feasible solution because of the

lossless join requirement.
The envelope for Q;; is:

ACCis = {f1,4) f12s J124 }-

All the feasible partitions of ACC,5 are shown in Table 4.3. PAR,; = {1, 2, 3, 4, 5}
and, for example, g¢=2 € CLU®; corresponds to relation scheme
<{PATIENT_NO,NAME,WARD} ,

{PATIEN T_NO — NAME, NAME — WARD}>.

For each partition of ACC,; adistributed query processing algorithm such as [CHUN
83]'s is run. In Appendix F, input file query,%, the input file for "Algorithm H”

[CHUN 83] corresponding to partition p = 2 of ACC;z is shown.

Algorithm H” [CHUN 83] is then run with respect to relation schemes

< ORDER,PATIENT_NO,NAME, > and <PATIENT_NO,WARD, > since Table

4.3 indicates that these are the clusters to consider for partition p = 2.
For this example, the output is:
A%y = 88.936 kilobits X vy

A>§ = 0864 kilobits X v,y

116

p | g€ CLU? PAR;;
1 1 < ORDER,PATIENT_NO,NAME,WARD >
2 1 < ORDER,PATIENT_NO,NAME>
2 <PATIENT_NO,WARD >
3 1 < ORDER,PATIENT_NO>
2 <PATIENT_NO,NAME,WARD>
4 1 <ORDER,PATIENT_NO,WARD >
2 <PATIENT_NO,NAME>
5 1 < ORDER,PATIENT_NO>
2 < ORDER,NAME >
3 <PATIENT_NO,WARD >
Table 4.3. Possible partitions of the referenced attributes for query Q.

A% % = 0.464 kilobits X vy,

Xt'z, 2= A2 = A2 =0

For example, if site 3 is the origine of the query, then ¢t = 3, and from Table C.3
veg = 3 (1/minutes). Therefore:

Ad g = 266.808 kilobits/ minutes.

Ad E = 2.592 kilobits/minutes.

AdE = 1.392 kilobits/ minutes.

3)

(4)
(5)

(6)

(7)

117

Let steps (3) through (12) be repeated for query Q;,.
Query Q7 is expressed as:
Q.7: FIND (RESULT, ORDER, TEST)
Ci;2 WHERE NAME ="' Rowlandd
AND DATE ="' 06-20-83' .

The target list of Q7 is {RESULT, TEST, ORDER, NAME, DATE}. The set of tar-
get nodes is T = {v,, v,, bc, v, v, }. By applying Algorithm GetSource, Source is

found to be {w,}.

w, = w, since this is the only source node that leads to all the nodes in T.

GetLink produces L(w,,T) = L{w,, {v,, v., v,, vy, v;}). Lw;,T) for query Q. is
shown in Figure 4.14.

The link for @, depicts the following FDs:

f1,.: ORDER — TEST

f1,4: ORDER — PATIENT_NO

f1,.: ORDER — DATE

fu,: TEST,PATIENT_NO,DATE — RESULT

f12,: PATIENT_NO — NAME.

When those FDs are restricted by the qualification clause Cy;
(NAME ="' Rowlandd AND DATE ="' 06-20-83') the statistics of 1 are modi-
fied by LocalProc as shown in Tables 44 and 4.5. Also
|DOM(DATE)| = 1, |[DOM{NAME)| = 1, and

|DOM{TEST,PAT_NO,DATE)| = 150.

This step is not relevant.

118

FD | |1 f
tuples | bytes

i 5075 14

fia | 5075 8

fie 318 12

fu, | 324 | 44

Fiz 1 19
Table4.4. Cardinalities and widths of the FDs belonging to the envelope of query Q.
|714]] tuples where A is ...
FD | ORDER | TEST | PAT_NO | DATE | RESULT | NAME
fie 5075 76
fid 5075 84
fie 5075 632
fi1g 70 15 1 5432
Sz, 1 1
Table 4.5 Cardinalities of the FDs, in the envelope of query @.;, projected on each

referenced attribute.

(8) The metagraph of Figure 4.15 is obtained.

119

The arcs are defined as followed:

A

Ly = [<vg,w;> ; <{v,,vq,0 },wp>]

= {v,, (vs,w1), wy, (wy,vc), (wy,va), (wy,0.), v, v4, v, }
a

Lo = |<v,,w,> ; <vg,wp>]

= {vc) (va rwl)r wy, (wlrvd)r vd}
a

L= [<{vc 1V Ve },wu> ; <Yy ,w12>]

= {vy}
A

Lis = [<{v.,v4,0.}>; <v, B>]

= {Uc » Udy Ve, (Uc ;wu): (vq ,wu); (ve W), Why, (wu,vg), U;}
A

Loy = l<Ud WD <Yy ,¢>]

= {vq, (vs,w12), (w120), v}
A

LSS = [<U¢ ,w1> ’ <Uy ,a>]

= {var (va »wl)r wy, (wl:vc)r (wlvvd)! (whve)r Uy Y4, ¥,

(vc rwll)» (vd :wll)’ (vc »wll): Wiy (wllvvg)r vy}

A
Ls4 = [<va:wl> y <vl ’G>]

= {v,, (va,w1), wy, (w1,v4), va, (v2,W12), Wra (Wi %), v,).
Further, the arcs in L are associated with implicit or explicit FDs as follows:
Ly~ fi.: ORDER — TEST

[1,4: ORDER — PATIENT_NO

f1,: ORDER — DATE

Le "™ f1,4 : ORDER — PATIENT_NO

(9)

120

Lis” fua: TEST,PATIENT_NO,DATE — PATIENT_NO
Ly~ fu,: TEST,PATIENT_NO,DATE — RESULT

Ly~ fiz.: PATIENT_NO — NAME

Ly~ fi,: ORDER — RESULT

Ly~ f.,: ORDER — NAME.

The sizes of the FDs in (8) are calculated by SizeEstimate as follows (the scripts

(t,k) = (t,7) are omitted in the notations):

Size(w,{v; ,vq,v, }):

5075 X 5075
|f1,: |ORDERf, 4| = — 5075 tuples.
|(f1.. [ORDER)f, ;)JORDER]f, ,| = %"—‘ﬁ = 318 tuples.

|((f1,. [ORDER]f, ;)| ORDER]f,) ORDER,TEST,PAT_NO,DATE]
=318 X (4 + 10 + 4 + 8) = 8,268 bytes.

Size(w,,v3) = 5075 X 8 = 40,600 bytes.

Size{wy,v4) = 0 bdytes.

Size(wqy,v,) = 324 X 44 = 14,256 bytes.

Size(wub12,v,) = 1 X 19 == 19 bytes.

Size(w,v,):

(£, |ORDER]f, ;) ORDERf, ,)| TEST,PAT_NO,DATEf, , |

_ 318 X 324

150 = 687 tuples.

\f1,. [TESTY| ‘X |f1,4|[PAT_NO}| X |f,.|DATE]|

= 76 X 84 X 632 > 318, and 318 X 5432 > 687 therefore:

121

Size(w,,v,) = 687 X (10 + 4 + 8 + 22) == 30,228 bytes.
Size(w,v;):

5075 X 1

V1.4 IPATIENT_NO| 5, | = =22

= 40 tuples.

If1,4 |ORDER]| X |f12,|NAME}| = 5075 X 1 > 40
therefore Size(w,,v,) = 40 X (4 + 15) = 760 bytes.

(10) Metagraph (Y,L) is shown in Figure 4.16 with the weights (sizes) of all the arcs.
The envelope for @7 is:

ACCy = {1, fx,d; fuerfuygs Sy fizi)

Strictly speaking, fy,, f1,4 and f,, are three distinct FDS, however, since they have
the same key they may be combined into their natural join over attribute ORDER.
f1.c,4. denotes the join of f, ., f,, and f,, over ORDER. Note also that f,, ; is a
"dummy” FD, and therefore the envelope of @7 really is:

ACC{J = {fl,c,d,e ’ fll,y ’ f12.x’ }

(11-12) All the feasible partitions of ACC;; are shown in Table 4.6. For example,

g=23€CLU®,; corresponds to relation scheme

<{PAT_NO,NAME},{PAT_NO — NAME}>.

An update example is now worked out. Let the update order be:
Uso: ADD <PATIENT_NO,NAME> = <7785,Smith,45>.
This is identical to update 2 in Appendix C without reference to attribute AGE.
Suppose the following information has previously been added:
<ORDER,TEST,RESULT,DATE> = <18,Glucose,70,06-21-83>, and

< NAME,WARD> = < Smith,Outpatient>.

122

p | g€ CLU!, PAR,;
1 1 <ORDER,TEST,PAT_NO,DATE,RESULT,NAME >
2 1 <ORDER,TEST,PAT_NO,DATE RESULT >
2 <PAT_NO,NAME>
3 1 <ORDER,TEST,PAT_NO,DATE>
2 <TEST,PAT_NO,DATE,RESULT,NAME >
4 1 <ORDER,TEST,PAT_NO,DATE,NAME>
2 <TEST,PAT_NO,DATE,RESULT>
3 <PAT_NO,NAME>
Table 4.6 Possible partitions of the attributes referenced by query Q7.

Assume that the F-graph of Figure 4.9 depicts the final FDs to be distributed, i.e. the FDs of

H the set of all the query envelopes.

(16) DEL.y = {(w1zv,)}, since (wys,v,) represents FD PATIENT_NO — NAME which

itself features the attributes referenced by U,.
(17) Initially, ALTER = {(w2,v)}.

Lt = {vg, (ve,wy), wy, (w,v4), v4, (vg,w1a),

Wiz, (Wiz,0), v, (vi,w1s), wis, (w1is,0e), v }-

L= {v., (va,01), wy, (wy,0), v, (vs,ws), ws,

(wa,vr), vy, (v7,w10), Wao, (W1o,08), ¥ }-

Note that both L,* and L, are proper links from w; to v;.

123
{(wyvi)} C L*
4 = {1 <ORDER,PAT_NO,NAME,WARD, >

[PAT_NO,NAME, WARD, {PAT_NO,NAME| = d, = <7785,Smith>] }

[WARD)] == Outpatient.

rs, = { I <ORDER.PAT_NO,NAME,WARD, >

[ORDER,PAT_NO, {|PAT_NO| = 7785] }IORDER]
= {18}.
k=0, d,= Outpatient, r[0] = {Outpatient}.

X5 = WARD, X, = PHYSICIAN.
1] = { I <ORDER,SERVICE,PHYSICLAN,WARD>

[PHYSICIAN, WARD, WARD = Outpatient] }[PH YSICIAM

= {Dr. Akers}.

M2 = { I <ORDER,SERVICE,PHYSICIAN,WARD, >

[SERVICE,PHYSICIAN, PHYSICIAN = Dr. Alcers] }[SERVICE]

= {51, 5-3}.
"[3] = { 1<ORDER,5EHVICE,PHYSCIAN,WARD)

[ORDER,SERVICE, SERVICE € {$-1, S—3}] }[ORDER]

= {05, 07, 10, 15}.

rs, = 18 ¢ {05, 07, 10, 15},
therefore, there is no antecedent for some cutset in l—,,-'.

s3] = {18}, Xs= ORDER, X;= SERVICE.
3[2] = { 1 <ORDER,SERVICE,PHYSICIAN,WARD, >

[ORDER,SERVICE, ORDER = 18] }[SER VICE]

=@,
q2] = {S-1, 53}, therefore ORDER = 18 should be assigned SERVICE = $-1 or
SERVICE = $-3. Suppose Mr Smith is in service S§-1, then the tuple

< ORDER,SERVICE> = <18,5-1> must be added to the database.

Thus ALTER := ALTER | {(w,,vs)}. Hence, for this particular update, the cas-

cade is indicated by:
ALTER = {(wlg,v,), (wl,vb)}.

Any update of PATIENT_NO -+ NAME is to be followed by an update of

ORDER — SERVICE.
WRT,, = {f12,: PATIENT_NO — NAME, f,,: ORDER — SERVICE}.

If the user site is site = 4. From Table C.3 v, = 2 (1/minutes). Therefore:

1
By = (4+ 15 byt 2 byt 2
2= (415 ben + 2 byer) X minutes ’
_ bytes
minutes
Similarly, BY4 = (4 + 5+ 2) X 2 =22 l{ytes _
minutes

(It was assumed that g = 2 bytes. The widths of the attributes are provided by

Table C.6).

125

SERVICE 8 PHYSICIAN

Figure 4.8. An F-graph depiction of the Medical Record Database

126

SERVICE 8 PHYSICIAN

Figure 4.9. A minimum F-graph for the MRDB

127

SERVICE PHYSICIAN

Figure 4.10. The link of query Qs

128

ORDER . PATIENT_NO 12 NAME 15 WARD

O—O—O—O—O—0—0

Figure 4.11. A proper link for query Qs

129

Figure 4.12. The metagraph for query Q:s

130

2,898

Figure 4.13. The weighted metagraph for query Qs

131

TEST

Figure 4.14. The link for query Q;7

132

Figure 4.15. The metagraph for query Q7

133

13,992

14,256

Figure 4.16. The weigthed metagraph for query Q.7

CHAPTER §

A MODEL FOR DATABASE DISTRIBUTION

The cross-referencing data units (CRDUs) contained in all query envelopes are to be dis-
tributed (with possible duplication) over the nodes of a computer network. In this chapter, a
CRDU-distribution model is proposed. The objective is to minimize the communication cost.
It is assumed that all the transactions will be processed according to distributed query pro-
cessing strategies that feature the cross-referencing of relations as explained in Chapter 2. For
a single distributed query processing session, some flow is produced by file-to-file communica-
tions, and is associated with the reducing operations. Some flow is produced by file-to-user
communications, and is associated with the assembly operations. It is assumed that the
assembly node, the node where the answer of a query is assembled, is the user node itself.
The sizes of the initial CRDUs are estimated as demonstrated in Chapter 4. For each query
Q1+ , an envelope can be determined as shown in Chapter 4, and the set of CRDUé mapped to
the FDs of the query envelope is denoted ACC, . The sizes of the CRDUs contained in
ACCy , after local processing, may be obtained by applying the ‘‘selection” relational opera-
tor implied by the user-provided qualification clauses contained in Cj . Furthermore, it is
assumed that an appropriate distributed processing algorithm can be applied on each feasible
partition of the set of CRDUs ACC) to determine the data-volume flow rates which will
serve as inputs for this part of the distributed database design. Each feasible partition p of a
set of CRDUs ACC}; consists in a set CLU?; of clusters. Each cluster can be visualized as

one individual relation. Therefore, a query @, can be solved as a distri-

134

135

buted query over the distinct relations of CLUP,. After distribution, a synthesis algorithm
such as [KAMB 78] can be used to combine FDs in third normal form relational tables.

Assumptions regarding the model are summarized in Appendix C.

The next section contains a notation list with concise definitions. In Section 5.2 a so-
called “naive’ distribution model is developped. This naive model is to enlighten the reader
as to the difficulties of distributing CRDUs. Typically, the clustering-effect discussed in
Chapter 2 is at the source of the problems that arise when the modeling of data-volume flow

rates is attempted.

5.1. Notations

U Universe of attributes.

H Set of CRDUs to be distributed.

N Set of nodes, or sites, in a computer network.

A Set of arcs, or network links, in a computer network.

¢, Communication cost for arc (1,5) € A.

<y Communication cost corresponding to the shortest path from i to j in net-
work (N,A).

K, Flow capacity of link (3,7) in network (N,A).

¢ Usually stands for a single user-node, { € N. At the same time { denotes a

sink node for some flow.

Q. Set of queries originated at user-node ¢.

a
= {Qu :1 < k < K;} for some K, .

Qu k™ query originated at user-node ¢.

Sk

Stk

qr

AP

par
Atk

136

Set of nodes in N thaj user-node ¢ needs access to before answering Qy .

Only used in the naive distribution model.

Subset of Sy such that there exists a reducing flow from s € S, to all the
nodes of 5,, and possibly to the user-node ¢{. Only used in the naive distribu-

tion model.

Usually denotes a source node for some flow.

k™ update originated at user-node ».

Envelope of query @y, i.e. set of CRDUs needed to process Q .
Cascade of update U,;, i.e. set of CRDUs to be updated by Uy .
Set of feasible partitions of an envelope ACCy; .

One feasible partition of ACC) corresponding to a partitioning label

p € PAR, .
Denotes a partition label, i.e. one element of some PARy; .

Denote clusters in some set of clusters CLU/?, . Each cluster ¢ or r stands for

some relation obtained by joining CRDUs of ACC; .

Data-volume flow rate corresponding to the shipmbent for assembly of relation
¢ to a user-node (sink-ﬁode) t after all the local processing and all the reduc-
ing operations have been completed. ¢ is some relation, or cluster, of CLUY,
which is itself the p™ feasible partition of the envelope ACCy

(» € PAR,) of some query @, originated at user-node ¢.

Data-volume flow rate corresponding to the shipment of all the reducing data
sent from relation ¢ to relation r of CLU/; in the context of some critical

file-to-file cross-referencing strategy.

As above, but strictly for the noncritical reducing operation from relation ¢

to relation r.

fy

2
Rtk (fg)

AfY

h
Bsk

atgks

' J
ks

137

Number of relations ¢ that contain CRDU A& € H over all clusters, partitions,

and queries.

Denotes a CRDU held by a source node with respect to some flow. Only

used in the naive distribution model.
Attribute scheme of FD f.
Covering of some envelope ACCy; such that f, € ACCy; sends reducing data

A
(semi-joining columns of relations) to it. = {h:h € ACCy -{f;} &
CRDU f, sends reducing data to CRDU h }. Only used in the naive distri-

bution model.

Data-volume flow rate corresponding to the shipment of CRDU f, € ACCy,
from some source-node 2 to node ¢ after all the local processing and all the
reducing operations have been performed. Contributes to the assembly flow

for query @;; . Only used in the naive distribution model.

Data-volume flow rate corresponding to the shipment of some reducing data
from CRDU f, € ACCy to CRDU f, € ACCy . Contributes to the reducing

flow for query @ . Only used in the naive distribution model.

Data-and-message-volume flow rate corresponding to some updating informa-

tion sent from user-node s to CRDU f, € WRT,; for some update U,; .

Flow rate which corresponds to the shipment, for assembly, of a processed
copy of CRDU f, € ACCy; located at source-node s € Sy, to user-node ¢,

the sink-node. Only used in the naive distribution model.

Flow rate which corresponds to the shipment of reducing data from CRDU
f, € ACCy located at s € Sy, to all the nodes in S, holding CRDUs

involved in cross-referencing with f,. Only used in the naive distribution

model.

z tgks

ASM,,

RDC,

UPD;

XP

tilcqx

wy

138

Flow rate corresponding to the total reducing and assembly flow rates
corresponding to the shipment of some data of CRDU f, € ACCy; located at

8 € Sy . Only used in the naive distribution model.

Assembly flow-rate value at node ¢, due to the total assembly flow with

source node s.

Reducing flow-rate value at node 3, due to the total file-to-file flow with

source node s.

Update flow-rate value at node 3, due to the total update flow with source

node s.
Total flow-rate with over all the flows with source node .

a {1 if CRDU h € H is located at node s € N
= 10 otherwise.

5y

1 =1

A {1 if node 1 holds a copy of h € H for Q,;,

0 otherwise.
Only used in the naive distribution model.

1 if partition p € PAR,, is chosen,

Il >

0 otherwise.

1 if node ¢ holds cluster g for query @
and partition p € PARy
0 otherwise.

Il

1ifi=¢
0 otherwise.

o

g o(1,j) where z(1,7) denotes any type of flow rate from node i to node j.
1=1

139

The next section deals with the ‘‘naive” distribution model.

5.2. ‘“Nalve"” distribution modeling

The following “naive’”’ modeling approach is to stress the difficulty of capturing the

clustering effect discussed earlier in Chapter 2. Each user-node ¢ is associated with a set of

queries @ i {Qu : 1 < k < K;} for some K; . For each query Q, corresponds an envelope
ACCy C H. Let Sy C N denote the unknown set of nodes in /N that user-node ¢ needs to
communicate with in the context of a distributed query processing session aiming at answer-
ing Q. Let 8 € S;; be the node that holds a copy of CRDU f, € ACCy.. Further, let
S (s) € Sy be such that for any node 7 in Sy () there exists some file-to-file communication

from s to 5. Two types of flows resulting from the access of CRDU f, may be considered:

(1) An assembly flow, denoted a/,,, taking source at node s and terminating at node ¢,
such that for any s € Sy, where s carries a copy of CRDU f,, the following flow

equations hold:

- of1 (V) + o4 (NJ)
= - A/, forj = s,
= 0 for any j ¢ {s} |J {t},
= A/ forj =1t
It was assumed that s 5 ¢.
(2) A reducing flow, denoted i/;,, taking source at node s and terminating at nodes of
Sy (s). For all ¢ € S such that s carries CRDU f, and such that the set of nodes
with which s communicates for cross-referencing is Sy (s), the following flow equa-

tions hold:

= 5 (N) + 4 (N)

=- Y A4 fj=s,
h € Ry ()

140

= 0 for any j ¢ {s} U S (2),

= Af} for any j € S (s)

and j carries a copy of f, € ACCy

This is so assuming that all the CRDUs in ACCy; are held in different nodes, i.e. that

|5 (s)] = |ACCy | - 1.

The assembly and reducing flows may be summed up. It is meaningful to do so as long
as only the flows with identical sources are dealt with. Thus for a distributed query processing

session aimed at answering a query @, the total flow is such that:

= 28k (3,N) + 2{y

= "‘Atyl"‘ b qukh vakswsx

&Ld
l € Ry (f))

+ Afp wy

+ Y Aél 2k, 28, forany i € N.
/‘ € RM‘U’)

Given a source-node g, all such flows may be added up over all user-nodes ¢, all queries @,
and all CRDUs f, € ACCy;. However, the development of the naive distribution model is
interrupted at this point to point out a difficulty that brings up the need for a more complete

model.

Example: Consider Figure 5.1. Suppose that node s which holds a copy of f, needs to seek
access to h; and h, to perform semi-joins f, [A>h, and f,[A>h,, both over attribute A.
Assume that both CRDUs h, and h, are placed at node j. Let A7 and Af? be the data-
volumes corresponding respectively to semi-joins f, [A> h, and f, [A> h,. It is clear that the
shipment of Af;" + A¢/2 units of data-volume from node s to node j would be quite ineffi-
cient. Indeed, this strategy would imply that a column of A values is sent {wice from & to j.
This problem may be summarized thus: The placement, at the same site, of two or more
CRDUs which contain common informationa result in drastic nonlinearity in data-volume

flows. Earlier in Chapter 2, this problem was identified as the clustering effect. It is

141

therefore quite inappropriate to deal with individual CRDUs such as f, in a flow model.
Rather, clusters of CRDUs must be considered to allow the input of meaningful data-volumes.

In the next section, the effect of clustering is taken into consideration as well as the

quality of semi-joins operations, i.e. whether they are critical or not.

5.3. PART 2: A model for the distribution of CRDUs

The CRDU-distribution problem is captured in the form of a mathematical optimization
model. The assumptions on which the final model for the combined distribution and materi-
alization of CRDUs is based are as follows. (1) The underlying communication network of the
distributed system has a fixed topology. (2) Appropriate distributed query processing
sequences can be determined for all possible clustering configurations of CRDUs. An thimiza-
tion algorithm, which will be part of the query processing subsystem during the operational
phase of the distributed database, is readily available [CHUN 83| (see Sections 4.6 and 4.7).
(3) The distributed query processing strategies are based on the principle of static materializa-
tion. (4) Directories, programs and materialization look-up tables are available at each site.

(5) Effects of concurrency control mechanisms are not considered.

The following are assumed to be given:

(MA) The underlying directed graph of a computer network.

¢, = ¢ Communication cost for arc e, = (i,j) representing a communication link.
Cy Communication cost corresponding to the shortest path from i to j.

K, = K, Flow capacity of communication link e, = (i,j).

H Set of CRDUs to be distributed.

Qu Denotes a query k sent from site t.

ACCy

WRT

PAR,,

CLUy,

Ny

Al

pqr
Al

h
Bsk

142

Subset of H to be accessed by a user identified with a site t € N, and a query

issued at t identified by an index k.

Subset of H to be updated by a user identified with a site s € N, and an

update issued at s identified by an index k.

Set of possible partition indexes for ACCy , where p € PAR, denotes the

index corresponding to the choice of one partition or clustering configuration.

p** partition of ACCy; .

Number of clusters q that contain h € H , over all queries.

Volume of data and messages obtained from cluster ¢ € CLUy, after all the

reducing operations have been performed.

Sum of the volume of data and messages sent from cluster ¢ € CLUy, to
cluster r € CLUy, corresponding to the combined critical reducing opera-

tions from q to r.

Volume of data and messages sent from cluster ¢ € CLUy, to cluster
r € CLUy, corresponding to the noncritical reducing operation (if any) from

qtor.

Volume of data and messages sent from site s to update CRDU h € H.

The following variables are to be evaluated:

Flow variables:

2, (44)

Total message and data volume flow on arc (i,j) for queries and updates with

s as the source site.

Allocation variables:

143

Yh {lithHisatiEN
' =1 0 otherwise.

Partition variables:

1 if ACCy is partitioned according to
Xp, == configuration p of PAR,;,

0 otherwise.
Materialization variables:

1 if cluster q corresponding to partition p € PAR,;
)(,p:, = for query Q; is accessed at node i

0 otherwise.

The following notations are also used:

1 if node i € N is identical to node t,
Ya = { 0 otherwise.
B s
Y -5y
) =1
AN = S a6

1

The assembly flow value, at any node i, corresponding to the total assembly flow with

source node s is:

ASM,, = Z E Z Atp: tp:s [wy —wy, |

Qi PEPAR, 4E€ CLU“,,

forall ¢ € N,i € N.

P9 PO . .
where A, .X, ps i8 the assembly outflow value for source node s, and the assembly inflow
value for sink node t (the user node). For any node which is neither s, the source node, nor t,

the destination node, this flow value is equal to zero.

144

The reducing flow value at any node i, corresponding to the total file-to-file flow with

source s is:

RDC, =Y, Y, ¥y Y [Aepkw‘" /"1':’:'(1 - ‘tit’t)]

Qu PEPARy ¢ r€CLUy, JENsH#s

pr X
X [Wy — Wy letk) Xrtks
forall s€ N, 1 €N,

The term [1- X,p;, | is zero for any npncritical semi-join r[>q in the query processing
sequence, and cluster r is located at user node t. It is equal to one otherwise. This means that
cluster r need not be reduced any further since no other cluster outside t would benefit from
this reduction. X, X; s = 1if and only if i = t. Therefore X1, Xege = Xy 1, -
Hence RDC,, can be rewritten as:

pgr TP

RDC, =Y, % Y ¥y [Au: + A (1-w,)]

Qi PEPARy r€CLUy, JEN #s

pr Pq
X[ws:—w]i]‘xtkj tks-

The update flow value at any node i, corresponding to the total update flow with source
s is:
B A b
UPDS,=E z Bsklywﬂ—}/l]
Uy he€ WRT,

forall € N, i€ N.

Following is the general optimization model:

minimize [= Z c,‘j E z, (%J)a
(i) € A sEN

145

subject to:

Flow conservation:

“z,(i,N) + z,(N,i) = -ASM,; - RDC,; - UPD,; (mip-1
forall s € N,i € N.

Flow capacity:

0 < ¥, < K (mip-2)
8

for all (i,5) € A.
Partitioning: Given a query @y, a set of CRDUs to access, ACCy;, only one clustering con-
figuration p € PAR; must be selected.

E tik = 1 ;
p € PAR, (ip-1)

for all Q.
Materialization: Any cluster ¢ € CLUy, must be associated with exactly one node in the

network.

N|
lZ tikqi = X (ip-2)

1 =1
fOl’ all Q“-, 4 € PARtk, q € CLU”p.

Allocatlion: For each cluster, the CRDUs contained in it must be available.

2 2 Y XA < Nhyp L,
Qu pE PARy q € CLUy, (ip-3)
where h € ¢

forall i€ N, b €H.

The mathematical model presented above is a (min-cost multi-commodity flow) linear

mixed-integer program.

146

Example: Let the following CRDUs be defined with respect to the relations displayed in
Appendix B.

h, = R1[NAME, AGE],

h, = R2|[NAME,PHYSICIAN],

hs = R2[ORDER,NAME].

Let the target list of a query issued at site t be {NAME, AGE, PHYSICIAN, ORDER}. In the
following notation the subscripts ‘‘tk’’ will be dropped since we are considering one user site
and one query originated at that site. The set of CRDUs to access is: ACC = {h,, hy, hs}.
There are five possible clustering configurations for ACC, therefore PAR = {1, 2, 3, 4, 5}.
The clustering configurations that ACC may assume are: CLU, = {<h,>,<h;>,<hss},
CLU, = {<hy>,<hshs>}, CLUy = {<h1h>,<hy>}, CLU, = {<hhs>,<hp>},
CLUg = {<h,hshs>}, where <h, h > stands for h, clustered with h,.In CLU let ¢ =1
refer to <h,;> and ¢ = 2 refer to <h,hs>. For this query only, let ¢t be the user site, let
site 1 hold a copy of 4, and site 2 hold a copy of A, and a copy of A4 (Figure 5.2). Then le
=1, X:z =1, sz = (0, X:l =0. The volume of messages and data A " corresponds to
the column & |[NAME], and the volume of messages and data A21 corresponds to one column
ho| NAME} (M h | NAME]. Herice it is evident that because different possible clustering confi-
gurations of CRDUs are considered, and not the CRDUs individually, the problems of redun-
dancy are taken care of, i.e. there is no need to send one column ho{NAME] and another
column A3 NAME] to site 1. The volume of messages and data Al corresponds to
h\[NAME,AGE] after the semi-join h, < NAME|(h[NAME]k,) occurs at site 1. Similarly, A’
corresponds to (ho{NAME\h4)|[NAME,ORDER,PHYSICIAN] after the semi-join

b [NAME> (ho[NAME|h,) has taken place at site 2. o

When the flow capacity of the communication network is virtually infinite, constraints

(mip-1) and (mip-2) are omitted and the objective for the uncapacitated model becomes:

147

minimize E { E Z E [(Atpqutpkqa

s €N Qu p € PARy q € CLUy,

,

+ Y, AP XELXP)Ty
fE CL'U“P
r# 4

bS8 (AR AR XA XE 1 7]

r€ CLUy, i €N
rgq 1F#¢

h hy =

+E E E(BakYi)cai ’
U; h€ WRT,, 1€ N

subject to (ip-1), (ip-2) and (ip-3). In this case, the optimization model is a quadratic 0-1

integer program.

One might want to ask whether we need to include a constraint which states that two
different FD-clusters in the same partition cannot be accessed at the same node to prevent
the shipment of redundant data? For instance, if two CRDUs present in two different clusters
located at the same site s, are submitted to semi-joins with CRDUs outside s, on an identical
domain, say D, then values of D will be sent twice out of & (and into 8). The answer to that
question is that if an optimal solution is sought, more favorable partitions can be chosen.
Therefore such an additional constraint needs not be enforced because it will be satisfied if it
helps to decrease the cost. Similarly, a constraint which states that it is useless to consider a
partition containing m clusters in a network with n nodes if m is larger than n is unneces-
sary. Indeed, the remark made above applies also to this case. It is nevertheless up to the
designer to decide whether for some query @, and its envelope ACC};, a partition p associ-

ated with a set of clusters CLU/; is useful or not.

The next chapter will be devoted to computational considerations and techniques to

solve the large-scale optimization models proposed above.

148

Figure 5.2. A distributed query processing scheme

CHAPTER 6

COMPUTATIONAL TECHNIQUES

When the constraints over the total flow of information on each channel, due to finite
capacity limitations, are omitted, the mathematical model for the distribution of cross-
referencing data units becomes a 0-1 integer program with quadratic cos£ and linear con-
straints. If the capacity constraints are included, the model assumes the form of a mixed
integer program with a linear cost in real (flow) variables and with linear constraints that
include both the real variables and the integer 0-1 variables. The first model will be referred
to as the uncapacitated model, and the second model as the capacitated model. An algorithm
which seeks an optimal solution, and an algorithm which systematically generates improved
feasible solutions for the uncapacitated model will be described and discussed. Further, a
heuristic technique which seeks near-optimal solutions for the capacitated model will also be

described and discussed. Numerical results and comparisons will follow.

8.1. Solving the uncapacitated model by integer programming

If plenty of computer money and time is available, and if the size of the problem per-
mits, then it may be desirable, and indeed it is possible, to find an optimal solution. Classical
integer programming techniques such as Branch and Bound (BNB) can be used to accomplish
that goal. In the next section we show that the BNB method can be applied conveniently
because only a subset of the 0-1 variables actually need to be considered for branching. The

method is then applied successfully to a 350 variables problem in Section 4.1.2. In Section

149

150

4.1.3 it is explained why more efficient techniques, even though non optimal, must be con-

sidered.

8.1.1. Description of a branch-and-bound algorithm

For some not-so-large problems, optimal integer programming techniques can be applied

on the uncapacitated model.

It is now shown that there exists some dependency among the O-1 variables of the
uncapacitated model. The results of the following proposition will be used in the application

of the BNB algorithm.

Proposition 17:

¢ pyge he pe
Let X =(- Xjg, -5 Y, - X4, «++) be an optimal solution

Ae pe
of the uncapacitated model, such that all the Y, and X ¢ variables are 0 or 1, and such that

Py pqe
all the variables)(, pi salisfy: 0 <)(, ti S 1; then there exzists an optimal solution

Pq ke

_(”“ cee s YI ...;...)(:;...) such that)(“'____.0 if

-—pqe

’ pqe P pge
X =0X,,, =1 X/, =1ad X, =00r1ifX;, iefractional.

P

proof: Suppose that, under the conditions of the proposition, there exists at least one Qu , P
pq e
and ¢ , and some 8, 85, ...,8, € N such that:)(“s)(“,,i ,X'“,,. are all dif-

ferent from zero, and constraints (ip-1), (ip-2) and (ip-3) are satisfied, and such that the cost

is optimal. The expression for the cost contains a term of the form:

AM__ pq A
thCs Xeps + "+ AgsTyy tks + -

par par
+E[Atkcts th, "'+Aucs:-X¢ X]
17#49

par pr par P' ?4q
ZE[(A“' +Agk)CJSXH'Jstl ...+(A¢g +A¢g)C}, tky “,-s']
1 r#

151
= E{ [ZAN" tkt cts + EZ(AP” /Ttp:)ij cjs}X’tp:s,
= EE tks--

Let s’ € { s,,aAz, ...,8, } besuch that:

u+2(Atp:'+Au) X, uc,a'*'ZEA”' u,cs. iE.

and E* < E' foralli = 1,---, n. Then, let us set: ‘th' =1 and)(,p:s. = 0 for
any 8, € {8y, ...,8 }- {8'}. Equations (ip-1), (ip-2) and (ip-3) are still satisfied after

) ’
the substitution. Yet, EE ')(::s,, > EE)(,p:s‘_ =F .Z)(,p:,‘_ =F ‘ =F ..X,p:s. .
s; s;

sl
Therefore after the substitution a solution is obtained that is at least a8 good as the previ-

ously found solution. This type of substitution can be extended to other variables of the type

g
)(, ¢, that are still fractional. e

The BNB algorithm written in pseudocode follows. It is self-explanatory. The branch-
and-bound technique of partial enumeration has been reported in [MURT 76, SALK 75,

CHEN 80).
ALGORITHM Branch_And_Bound:

Incumbent := @ [+ Current problem feasible all integer */
List :== { CP°} [* List of candidate problems */

Branch

If Incumbent = @ then NoSolution

else Optimal:=Incumbent

end Branch_And_Bound.

ALGORITHM Branch:

while Lists#£ @ do
begin »
List :== List - { CP' }
/* Use a LIFO search */
CP'®:= Brancho(CP")
[* Set a fractional variable to 0 */

152

CP'! := Branchl(CP")
/* Setit to 1%/
LB'® := LowerBound(CP'")
LB'! := LowerBound(CP"")
Updatelncumbent(CP'°)
K, ;= Dangle
Updatelncumbenf{ CP ')
if (" K, and " Dangle) then return
/* CP'!is still good */
if ° K, then
begin
List == List|) { CP'*}
Branch
end
else begin
if ~ Dangle then [+ CP'® still good */
begin
List := List| J { CP'°}
Branch
end
else begin /* CP'° & CP"!
are still good for further branching */
if LB'°<LB'! then
begin
List := List| § { cp't}
List := List| J { CP'°}
end
else begin
List := List| J { CP'"}
List := List| J { cP'}
end
Branch
Branch
end
end
end

end Branch.

ALGORITHM Updatelncumbent (CP'):

LBIncumbent :== oo
Dangle := true
LB' := LowerBound(CP")
If Fathom then [* CP' is solved all integer */
begin
if LB' < LBIncumbent then
Incumbent := CP' [+ Update incumbent */

153

/* also prune the CP’s in List that have higher cost */
Dangle := false
return
end
if Infeasible then [* No more branching */
Dangle ;= false
if LB' > LBIncumbent then Dangle := false
/* No need to branch since no hope of improving
incumbent along that branch */

end Updatelncumbent.

Note that in accordance with Proposition 17, only the variables of type Y,»h and)(,p,,
are considered for possible branching; i.e. they are the only ones which are deliberately fixed
to 0 or 1 in the BNB algorithm. This constitutes a numerical asset as will be shown below in
Section 4.1.2 where a problem which normally requires 350 0-1 variables needs only be

branched over 99 of those.

To compute the cost of a candidate problem, (LowerBound(CP')), the choice of a
method for large scale optimization is crucial, because in the uncapacitated model, the
number of variables can easily exceed one thousand. It appears that algorithms based on gra-
dient projection methods and reduced gradient methods [HIMM 72], are best suited to our
model because they take advantage of the linearity of the conmstraints; for that reason the
optimization package MINOS [MUR 77, MUR 78] which is based on such techniques was
chosen. MINOS is a program that solves large scale, bounded variable, linear or nonlinear
programming problems with linear constraints. It performs very well and can handle models

with several thousand variables.

The BNB algorithm described above has been implemented in FORTRAN. The Lower
Bound procedure is realized with a call to MINOS. One problem was solved numerically. The

results are discussed in the next section.

154

6.1.2. A practical problem

A practical problem which can be modeled using the uncapacitated model is solved
optimally. The MRDB of Appendix C is continued (see also Section 4.7). Although there is
no constraint as to the amount of information flow in the network, the organization wishes to
distribute the data that will be subject to scheduled transactions in such a way that the total
communication cost is minimized over all the queries and updates issued at all the sites. The
user-provided FDs are listed in Table C.1, but after the application of Algorithm Reduce
(Section 4.7) an LR-minimum cover of the FDs is as shown in Table 6.1. Attribute TEST
includes the TEST_TYPE and CODE_NUMBER and the TECHNIQUE used. RESULT
includes the actual numerical result for a test, the PRECISION, the ACCURACY, the COST
and the amount of TIME spent. The types of queries and updates which are commonly asked
are listed in a simplified form in Table 6.2. Table 6.3 shows what queries and updates are

being initiated at each site. Each query and update index is followed by the corresponding

Functional Dependencies for MRDB
ORDER — SERVICE
ORDER — TEST
ORDER -— PATIENT_NO
ORDER - DATE
TEST <+—-— TEST_TYPE,CODE_NO,TECHNIQUE
TEST,DATE,PATIENT_NO — RESULT
RESULT <+—— TOTAL,PRECISION,ACCURACY,COST, TIME
PATIENT_NO — NAME
PATIENT_NO — AGE
SERVICE — PHYSICIAN
PHYSICIAN — WARD
NAME — WARD

Table 6.1. Some functional dependencies for the MRDB.

155

estimated frequency (preceded by a " X” sign) expressed in 1 / minutes units. For instance,
site 4 which stands for the main hospital laboratory, is only concerned with queries 4, 6, 9
and 7, and is the only site to perform updates on the MRDB. After processing the initial FDs
as discussed in Section 4.4.4 (see also Section 4.7), each query is assigned an envelope of
CRDUs as shown in Table 6.4. The derived FDs are denoted A,, ...,k s, or simply 1,...,13.
At this point it is possible to calculate a distributed query processing sequence for each possi-
ble clustering situation of the CRDUs belonging to the envelope of a specific query. (See
steps (14) and (15) of Algorithm Select in Section 4.6 and 4.7.) This is displayed in Table 6.5
where only the information pertinent to site 2 is shown: Query 3 needs to access CRDUs 4, 5,

and 6. There are five possible clustering situations to be considered (Table 6.5 column 3). The

Typical scheduled queries for MRDB
Number Given attributes Target attributes
1 ORDER PHYSICIAN,WARD
2 ORDER RESULT
3 DATE,PATIENT_NO,TEST [ORDER
4 WARD PATIENT_NO
5 ORDER NAME WARD
6 PHYSICIAN ORDER,PATIENT_NO
7 NAME DATE, TEST RESULT
8 ORDER SERVICE
9 PHYSICIAN SERVICE PATIENT_NO

Typical scheduled updates

Number New attributes

1 ORDER,TEST RESULT,DATE
PATIENT_NO,NAME ,AGE

Table 6.2. Typical user-provided transactions for the MRDB.

156

Usage of MRDB transactions
Site Query Update.
1 1X22X1,3x1,5X1,8X1 none
2 1X1,3X29x%x1 none
3 5X3,7%X48X4 none
4 4xXx1,6X1,9X17X%X3 1X1,2X%X2

Table 6.3. Typical frequencies for the MRDB transactions.

157

CRDUs accessed for query processing
Query | CRDUs Possible partitions of CRDUs
. h1=ORDER— PHYSICIAN <h1,h2>
h2=PHYSICIAN— WARD <hl><h2>
2 h3=ORDER—RESULT <h3>
h4=ORDER—TEST <h4, b5, h6>
h5=ORDER—DATE <h4><h5> <h6>
3 <h4, h6> <h6>
h6=ORDER—PATIENT_NO <h4><h5, h6>
<h4, k6> <h5>
4 h7=PATIENT_NO—WARD <h7>
5 h8=ORDER~—+NAME <h8> <h9>
h9=NAME— WARD <h8, h9>
6 h1=0ORDER—PHYSICIAN <h1><h6>
h6=ORDER—PATIENT_NO <hl, h6>
7 h10=PATIENT_NO,DATE,TEST—RESULT <h10> <hl1>
h11=PATIENT_NO-—NAME <h10, h11>
8 h12=0ORDER—SERVICE <h12>
h13=SERVICE—PHYSICIAN <h13, h12, h6>
h12=0ORDER—SERVICE <h13><h12> <h6>
9 <h13, h12> <h6>
h6=ORDER—PATIENT_NO <h13> <h12, h6>
<h13, h6> <hi2>
Table 6.4. All the FDs selected for distribution, and the possible partitioning configura-

tions, for the MRDB.

Gpr
matrix [A, d | (Table 6.5 column 5) is obtained, for each user’s site-query couple, after run-
ning a distributed query processing algorithm for each possible clustering situations of
CRDUs, and after adding up all the data volume flows taking place between each couple of

CRDU clusters. The entries are in kilobits . All the user’'s informations are inputted to the

158

BNB algorithm in the form shown in Appendix D.

The MRDB problem considers a network of 4 sites, with 3 to 5 typical scheduled query
types per site, 2 update types, and a total of 13 CRDUs to be distributed. The uncapacitated
version of the model may be used. The total number of 0-1 variables turns out to be 350 for

this problem. However, as was explained in the preceding section, since only the variables of

A ’ . o .
the types Y, and)(, ; , hamely the allocation and the partition variables, need to be con-

sidered by the BNB algorithm, the total number of variables is decreased to 99. There are a

Query profile of site 2
Query index | CRDUs Partitions Clusters Data volume flow
k ACCy; pEPAR ,; qgECLUS; r
[A%]
1={<1, 2>} 1=<1, 2> 450 - -

1 1,2 _ 1=<1> 400 5 -
2={<1>, <2>} 9=<2> 4 10 -
1={<4, 5, 6>} 1=<4,5,6> | 200 - -

1=<4> 600 0 0

2={<4>, <5>, <6>} | 2=<5> 0 80 0
3=<6> 200 200 200

_ 1=<6> 600 0 -

3 4,56 | 3={<4, 5>, <6>} 9=<4 5> 200 200 -

_ 1=<4> 500 0 -
={<1>, <5, 6>} 9=<5,6> |20 200 -
= 1=<5> 200 200 -
5=({<5>, <4, 6>} 2=<4, 6> 0 80 -
Table 6.5. An example of numerical input (corresponding to site 2 in the MRDB prob-

lem) to be provided to the distribution program.

159

total of 132 constraints for this problem, not including the constraints of the type 0< X<1

where X is any of)(,p:, , Y,h or ,p,, . The BNB algorithm was run with MINOS on the
Amdahl 470V/8 of the Michigan Terminal System to solve this problem. A final 0-1 optimal
solution was obtained in approximately 4 minutes* of CPU time after branching 22 times.
The optimal total communication flow was found to be 3390 kilobits/hour, and the
corresponding configuration of the CRDUs is as shown in Table 6.6, for a site 1 and its
queries, as given by the allocation variables. The non-zero materialization variables indicate
the optimal way to access the CRDUs for that query from the selected site (Table 6.6). For
query 5, it was found that X's = X2, = 1. rather than X 25 =1 found in the present
solution, there would have been no difference in communication cost since the total assembly
flow is equal to 100 kilobits/hour in both cases. Furthermore, CRDU <8> which stands for
(<ORDER — NAME>) sends no data-volume to the user node (node 1), whereas CRDU
<9> (<KNAME — WARD>) sends 100 kilobits/hour of data-volume to the user site; there-
fore, although site 1 would be expected to get access to two clusters <8> and <9> at dif-
ferent sites (refer to the remark, made in Section 5.2, and to the example also in Section 5.2
associated with Figure 5.1), in this particular example it is irrelevant wether CRDUs <8>
and <9> are accessed in one common relational table or two distinct relational tables
because the assembly flow is identical in both cases. (Of course, if CRDUs <8> and <9>
were positioned in distinct sites, we would have to account for an additional 100 kilobits/hour

of reducing flow.)

8.1.3. Practical limitations

The BNB algorithm allows the finding of an optimal solution for ine uncapacitated

model. However, there are well known disadvantages:

sThe package MINOS was available as a stand-alone program only, therefore the BNB algorithm was run
semi-manually. The total CPU time was obtained after compensating for repetitious calls to various initialization
routines and input-output operations.

160

Solution for the MRDB problem and the input data of Appendix D.
Only the results relevant to user site 1 are shown.

k | ACC,; PAR ; CLUS, site
1 {1, 2} 2= {<1>, <2>} 1=<1> 1
2= <2> 2

X121=1
X12111 = X12122 =1
Yll = Y22 =]

2] 8y | 1={<3>} | 1=<3> | 1
Xia=1
X2, =1
Yls =1

3] {456} | 1={<456>} | 1=<456> | 4
X113=
X11314=1
Y: = Y46 = Y‘G =]

5 {8, 9} 2= {<8>, <9>} 1= <8> 4

2=<9> 4

X12 =1
X12514 = X12524 =1
Y48 =1
Yf =

8] {123 | 1={<12>} | 1=<12> | 4
X118=
Xigy=1
Y412 —_—

Table 6.6. A partial solution for the MRDB problem.

(1) The classical file allocation problem is np-complete [ESWA 74|, so is, a fortiori, the

allocation of CRDUs [APER 80]. In practice the BNB algorithm may not be able to

161

overcome the curse of cardinality.

(2) Even if an optimal solution can be arrived at with BNB for a specific problem, the

price to be paid in CPU time and computer money may be unacceptable.

Therefore, although the BNB algorithm remains a possible option to fully solve the uncapaci-

tated model, clearly, other less expensive and faster algorithms must be considered.

In the next section, such an algorithm is described and applied to the MRDB problem.

The final section of this chapter deals with the solution of the capacitated model.

6.2. Improving feasible solutions for the uncapacitated model

Since it is not always feasible to seek an optimal solution to the uncapacitated model, a
more efficient, although non optimal, algorithm is proposed to generate ‘‘good” feasible solu-
tions for the uncapacitated model. How good those suboptimal solutions are will be discussed

shortly.

The forthcoming Algorithm XrefU is based on an adaptive search method developed in
[HOLL 75]. This algorithm can be applied to optimize a performance function evaluated over
a set of character strings with finite length and fixed representation. In particular, it can be
applied to unconstrained 0-1 integer programming models where a character string
corresponds to a vector of 0's and 1's, and the performance function is mapped to the cost (in
our case, the communication cost). Since the theory of adaptive algorithms has been studied
elsewhere [HOLL 75], the desirable properties that adaptive algorithms exhibit will be
reiterated without proof: (1) They can handle problems that feature high dimensionality and

many local optima. Says [HOLL 75]:

The algorithm’s power is most evident when it is confronted with problems involving high
dimensionality (hundreds to hundreds of thousands of attributes, as in genetics and econom-
ics) and multitudes of local optima.

(2) They feature intrinsic parallelism in the sense that the solution space is searched uni-

formly, and there cannot be a terminal entrapment on a local optimum. (3) They feature the

162

quality of a robust search in the sense that the number of trials allocated to the observed best

solutions increases exponentially with respect to the remainders.

The adaptive algorithm maintains a list of strings of finite length, called atructures.
String manipulation operations are used to improve the list such that the 0's or 1’s (or combi-
nation thereof), at specific positions, which tend to improve the performance of structures,
will persist consistently within the structures to appear in subsequent lists, whereas the 0’s or
I's which tend to deteriorate the performance of structures, will eventually recede. [HOLL 75

is entirely devoted to the treatment of adaptive algorithms.

If the structures are simply strings of 0's and 1's of length |, then any such string with
an arbitrary arrangement of 0's and 1's may appear in the list (after a repetitive application
of the string manipulation operations) at one stage in the execution of the algorithm, and thus
constitutes an acceptable structure. Obviously, this is not satisfactory in the context of solv-
ing a constrained integer optimization program of the type featured by the uncapacitated
model. Indeed if a structure is mapped to a vector of 0-1 variables, then only those vectors
that are feasible would have to be considered. Furthermore, if the list to be maintained by
the adaptive algorithm were to contain feasible solution vectors only, there would be no
guarantee that a repetitive application of the string manipulation operations on the 0-1
strings which represent those vectors, would not interfere with feasibility. Therefore, when
solving the uncapacitated model, the 0-1 strings of the list cannot simply be mapped in a
one-to-one manner to vectors of 0-1 variables.in the mathematical model. The structures of
the list must be defined in such a way that they represent feasible solutions (in an encoded
form), and such that they remain meaningful at all time in the course of the execution of the
algorithm, when submitted to any number of applications of the string manipulation opera-
tions. The adaptive algorithm used to solve the uncapacitated model is described in the mext

section.

163

6.2.1. Adaptive random search for the uncapacitated model

It is shown how feasible solutions of the uncapacitated model are encoded into structures

which can be used by an adaptive random search algorithm.

Any element of the list maintained by the adaptive algorithm will be a string of 0's and
I's of length v, such that it can be decoded and mapped to the variables #(1), ..., z(m) of

the uncapacitated model. (These variables correspond to the components of the vector

»
(-'-Xp,q, REEEEE AREEFEED, ¢ -+ +).) The code for a structure is as follows: A

structure is divided into detectors (numbered 1 through w, where w is equal to the total
number of couples (¢,k) in the mathematical model). Each detector has a fixed width (in bits)
which can either be equal to a constant widthl, width2 or width3; these constant widths are
sufficient to represent a partition index of CRDUs with respectively, one, two or three clusters
of CRDUs*. Widthl is defined to be the number of bits to be allocated to a detector which
corresponds to a query that needs to access only one CRDU. Therefore widthl is simply equal
to the number of bits required to identify one node in the computer network, when the nodes
are numbered in binary form (the length, in bits, of a node binary representation is referred
to as nodesize). For instance, if there are four nodes in the computer network, then widthl is
equal to 2 bits. Width2 is defined to be the number of bits to be allocated to a detector which
corresponds to a query that may access up to two distinct CRDUs. Therefore width2 is two
nodesize bits long (to account for up to two nodes to be accessed) plus one bit to indicate the
partition index (i.e if the two CRDUs are clustered at one node or located at different nodes).
Thus, for a four node network, width2 is equal to five. Similarly width3 is defined for queries
which may access up to three distinct CRDUs. Therefore width3 is three nodesize bits long
plus three bits (to indicate the partition index which can be 1 through 5). Thus, for a four
nodes network width3 is equal to 9. Figure 6.1 contains some useful notations. In Figure 6.3-i,

a structure with twelve site-query couples is shown. The encoding scheme is indicated in Fig-

#Obviously, if the simuitaneous access of more than three CRDUs is allowed at a time, for any query, then the

164

ure 6.2. In Figure 6.3-i the first row of the structure contains the partition indexes for each
query. The second, third and fourth rows contain respectively the node indexes for the first,
the second and the third cluster for each partition. Each column corresponds to a detector as
defined earlier. Note that queries @, and Q4 have only one CRDU in their envelope (m = 1).
Queries @, @, and Q4 have two CRDUs in their envelopes (m = 2) and so on. Figure 6.3
ii depicts the binary representation of the same structure, following the encoding indicated in
Figure 6.2-ii. Thus, query @, which has one possible partition and one cluster, is only
represented by the node at which the cluster is located, which for this particular case is node
4 (11 in binary form). Similarly, the node to which the unique cluster in CLUJ of query Q4 is
assigned, is node 3 (10 in binary form). Next, query @, is shown to be solved through the
access of its envelope in the form of partition 1. Thus, p, € PAR, is equal to 1 (0 in binary
form). This particular partition of ACC, results in CLUZ. The unique cluster in CLU} is
shown to be accessed at site 2 (01 in binary form). Since there is no other cluster in CLU,
therefore the entry for the node of cluster 2 is A\ which means "don’t care”. Other detectors

are similarly represented.

An algorithm to decode a structure and extract the actual values of its corresponding

solution vector follows:

ALGORITHM EvalX:

Y,h =0
for all @, do
begin
pi=decodepar(r, (Qy))
tk =1
for all Y € PAR, :p' #p do
beglnp,
X & =0
forall g € CLU,’ ¢ do
begin
forp,a%l iEN
-X’t by =0

present representation needs to be extended accordingly.

165

end

end

tor all g € CLU/; do

begin
r;-_;slecodenode(p, (.p))

thr =1 A

forallh € gdo Y, :=1
forp?lli # rdo
X k) =0

end

end

end EvalX.

Using this decoding technique, the structures can be submitted to the string manipulation
operations without fear of interfering with the feasibility of solutions. Indeed, any string of
bits of length v, where

v =Y width(i) width(i) € {widthl,width2,width3},

s=]

maps to a unique feasible solution to the uncapacitated model.

166

A
r = (t,k) a site-query couple
A
{@ :]ACC,| < m}=2¢@Q"
A
Q, €Q™ = PAR, = P™ ={12, -8} (m=3),
7,:Q™ — P™ random assignment.
A

pEP™ = CLU? ~ R™ = {1,2,3} (m=3),
pi:R™ XP™ — N | {)} random assignment.

M == don' t care

Figure 6.1. Random search assignments.

167

<STRUCTURE> := <PORTION-1><PORTION-2><PORTION-3>
<PORTION-m> := <SUBSTR-m>|0
<SUBSTR-m> := <DETEC-m>|<SUBSTR-m><DETEC-m>

<DETEC-1> := <NODE>

<DETEC-2> := <PARTITION-2><NODE><NODE>
<PARTITION-2> := 0|1

<DETEC-3> := <PARTITION-3><NODE><NODE><NODE>
<PARTITION-3> == 000/001]010/100|110{101|011|111

<NODE> == 00/01{10{11

|<STRUCTURE>| = | Q| X nodesize + |Q% X (2nodesize + 1)
a
+ @Y X (3 + 3nodesize) = v

A
R +1Q%+1QY=w
]

Code for a structure when |N| = 4 and |JACC| <=3

0-1 representation of a <PARTITION-m> field in a detector
m Partition index | Binary representation partitioning
p=r1,(Q) of <PARTITION-m>
9 1 0 <AB>.
2 1 <A>
1 001 <ABC>
2 010 or 110 <A><BC>
3 3 011 or 111 <AB><C>
4 100 or 000 <AC>
5 101 <A><LB><C>
)

Structure definition for Algorithm XrefU when N = {1, 2,3,4}

Figure 6.2. Encoding scheme for the adaptive algorithm.

168

At stepi ...
m=1 m==2 m=3
Q, = 1 3 2 4 6 5 7 8 9 10 11 12
pp=1(Q)= [1]1[ft]2f2}s|2]1]4]5]4]3]
| I O T A I
ple)= |al3li2faf3][2]1]|3]4]1]4]3
oil2p,] = M| sl4allelrx][3]1]4]2
p 30,] = AIXMENMNINT 2 I N
i)
structure
(1110001--10010110110110101--0100000--__..]
fu)

physical binary representation

N={1,2 3 4}

Figure 6.3. A structure for the adaptive algorithm.

169

The adaptive algorithm used to solve the model follows shortly. At any step ¢ in the
execution of the algorithm, a list of u structures (structure|.]) is maintained. Perfli] denotes
the performance of structure structure|i]. Each structure is decoded using EvalX shown ear-
lier, and the resulting vectore is plugged into a cost-evaluation routine. Typically, the perfor-
mance decreases when the cost increases. Ptercur and ptercurdown are two pointers in the
current list of structures at step t. Pternezt is a pointer in the new list struenezt[.], which will
become the current list at step ¢t + 1. Procedure EvalOffspring evaluates the offspring of
each structure in the current list. Offspringli] is defined to be an integer function of

perfl)] | perf_ave where perf_ave is the average performance for the current list. If
Offspring|ptercur] is non-zero, then structure[ptercur] participates in string-manipulation
operations (OperateLeft, OperateRight) with another structure structure|ptercurdown] to pro-
duce one or several new structures strucnezt|pternez!] in the new list. The string- manipula-
tion operations include mutation, inversion and cross—over as defined in [HOLL 75]. They are

summarized in Figure 6.4. Algorithm XrefU follows:
ALGORITHM XrefU: /+ Adaptive random search to solve the uncapacitated model *#/

1:=0
ReadList [* Arbitrary list of structures */
for t<tmaz do [* Termination criterion */
begin
for i=1to u do
perfli):=eval(structure|i]) /* Performance of each structure */
Li=t+1
ptrnezt:=0
FEvalOffspring [+ Calculate the offspring of each structure
as a function of its performance */

ptercur:=1
while (ptercur<u) & (ptrnezt <u) do
begin

ptercurdown:==ptercurdown+1

while offspring|ptercur|#0 & pirnezt<u

& ptercurdowun<u do

begin

i offspring|ptercurdown]#0 then

begin
offspring|ptercurdown):=offspring|ptercurdown]-1
offspring|ptercur|:=offspring|ptercur]-1

170

ptrnezt;==ptrnezt+1
strucnezl|ptrnezt|:= OperateLeft(structure[ptercur),
structure|ptercurdown])
strucsecond:= OperateRight(structure|ptercur],
structure|ptercurdown))
if ptrnezt<u then
begin
ptrnezt.=ptrnezt+1
strucnezt|ptrnezt|:=strucsecond
end
end
else If ptercurdown=u then
begin
ptrnezt:=ptrnezt+1
strucnezt|ptrnezt]:=Operate(structure|ptercur])

offspring|ptercur):=offspring|ptercur]-1

end
ptercurdown:=ptercurdown+1
end
ptercur:=ptercur+1
end

if pirnezt<u then for i=pirnezi+1to u do
strucnezt|i]:=structure|u]
structure:=strucnezt

end

end XrefU.

1.1.1. Solving the MRDB problem with XrefU
Some properties of Algorithm XrefU are listed.

Algorithm . XrefU may be initiated provided that an initial list of structures (encoded
feasible solutions) is readily available. The length of this initial list is arbitrary, and so is its
content; i.e. any structures may be used to fill it in. The longer the list is, the more informa-
tion is generated in the course of the execution of the algorithm, however the performance of
the algorithm will tend to degrade. Algorithm XrefU was implemented in PL/1. Generally, it
was found that the list may contain between 15 and 40 structures for best overall results. Five
runs were conducted, for the MRDB problem, on the Honeywell 870 of the Rome Air Develop-
ment Center (via the Multics system). Each run was associated with a different, and com-

pletely arbitrary, list of structures. The results are shown in Figure 6.5.

17

Although the results obtained are not optimal, several positive remarks can be made: (1)
The algorithm quickly eliminates the feasible solutions which are too expensive. (2) Even
when the list is only 20 structures long, the algorithm is still capable of improving solutions at
a steady rate within an average of 21 iterations, or an estimated 6.69 seconds of the Amdahl.
Stagnation signs may only appear after the 30* iteration, or so. Refer to remark (5) for possi-
ble improvements. (3) The best cost obtained was 4360 kilobits/hour, observed after the 47*
iteration of run 1 (which used a list of 34 structures) after an estimated 24.15 seconds of the
Amdahl. This is relatively close to the optimal cost of 3390 kilobits/hour since the lowest cost
in the initial list was observed to be 12,900 kilobite/hour, and the highest cost was 52,200
kilobits/hour. Also, as can be shown in Figure 6.5, the difference between the optimal cost
and the best cost obtained with XrefU is 970 kilobits/ hour, which is of the order of magnitude
corresponding to the shipment of the volume of data for one query. (4) Although the best
feasible solution observed with XrefU, after a reasonable amount of CPU time, is not likely to
be the true optimal solution, XrefU generates low cost 0-1 feasible solutions that can be used
to a great advantage by a more conventional BNB algorithm as the one described earlier. In
other words, an algorithm such as XrefU can be used as a preprocessing tool to reduce the ini-
tial size of the enumeration tree in the BNB method. (5) It is still possible to further improve
XrefU by “refreshing” the current list periodically and by superposing some localized optimi-

zation based on greedy techniques.

Discussed in the next section is an optimization technique to tackle the problem of allo-
cating cross-referencing data units when the communication network has a finite flow capa-

city on each of its channel.

1.2. The capacitated model

When the flow in each communication channel of the network must be kept below a

fixed level, called the flow capacity for this channel, the constraints of type (mip-1) and

172

(mip-2) must be added to the mathematical model. The capacitated model is a mixed-integer
(0-1) program where the objective function as well as the constraints are linear. More specifi-
cally, the model assumes the form of a minimum cost, multi-commodity flow problem with
additional linéar constraints involving the 0-1 variables. The algorithm presented in the com-

ing section is based on the decomposition* technique for mixed-integer programs [MURT 76).

1.2.1. Decomposition of the capacitated model

The capacitated model, with fixed 0-1 variables, and its dual, are written in a con-

venient form for future calculations.

The mixed-integer program (MIP) was first presented in Section 5.2. When all the
integer (0-1) variables are fized, (MIP) assumes the form of a standard linear program (LP).

For clarity the model will be rewritten in the following form:

(LP): minimize Ye; Y2, (id)

(v) sEN
subject to:
-z, (4,N) + 2z, (N,3) = -ASM,; - RDC,; - UPD,, (1p-1)
0 < Ez,(i,j) < Ks’j (lp.g)
s

The only difference between (LP) and (MIP) is that in (LP) the variables to deal with are the
~ real flow variables. (LP) is indeed a capacitated minimum cost multi-commodity flow prob-
lem.

th

Let z") or simply z” denote the node-arc flow vector for the r* commodity (associ-

ated with a source s and a sink i) for r = 1 to p (p = |N|X|N]).

thus z,(f /)= Y zY¢ .7), forany (¢ 7)€ A.

IEN

Introducing these new variables, (LP) can be rewritten using the node-arc (na) formulation:

sAlso called projection or partitioning.

173

(NA-LP): minimize Ec.,- Ez'(z’,])
(w) '

subject to:
(i) Capacity constraints:
' 4224 o 42 4 - +2? < K (na-lp-1)
ri(a,:’) 8i €E N,
A a
where z" = (z/, - - ,z|’A|)T and K =(K,, - ;KIAI)T .

(K, is the flow capacity of arc j € A .)

(i) Flow conservation constraints:

Ez'" -¢q,V, =0 (na-1p-2)
r=1top
PN (na-1p-3)

A
where V, = -[ASM, + RDC, + UPD,] is the flow value of node-arc flow vector z*, E is a

A
(IN]| X |A]) node-arc matrix, g, is a (| N} X 1) node-arc vector corresponding to arc r = (3,i) :
A T
9 = (0,0, Ut 01110! e 0"'1!01 tee 0)
3]

The arc capacity constraints of (i) lead to the master program of (NA-LP) , and the flow
conservation equations of (ii) lead to the subprogram of (NA-LP). The subprogram breaks up
into p independent subproblems which do not have variables in common. For the r* sub-

problem, the constraints are:

Ez’ —q,V,.=0 2’ 20
Every basic vector for (na-lp-2) consists of flow variables associated with arcs in a spanning
tree in G. In the basic feasible solution corresponding to a feasible basic vector for (na-lp-2),
the flow value on all the arcs in the simple chain from s to i in the associated spanning tree is

equal to V, (V,,), and the flow on all the other arcs is zero. Thus the r ** subproblem can be

174

interpreted as a shortest chain problem from s to 5 in G. The arc-chain formulation of (LP)

(as opposed to the node-arc formulation above) makes use of the chains Di,D3, - - - Dy

from s to i , and decides how much to ship along each of these chains [MURT 81]. Following

the notation of [MURT 81, let z, represent the quantity of the r* commodity shipped along

th

the chain Dy (h=1,---,d, and r = 1, - - - ,p); the amount of flow of the r** commodity

on an arc (¢ 7)is:

4,

Y,
h==]
(? ./)eD]

2N 7)

d'
and V, = Zzh’.
=1
The master program corresponding to the multicommodity minimum cost flow problem

(NA-LP) stated in arc-chain formulation is:

d’
(AC-MLP): minimize z = f] Y Y s

re==l A==l u

¢, € Dl'
subject to:
IB)
7 < K,
o (ac-mlp-1)
¢ € DL'
u=1,---]A|
g,
Yu=v, (ac-mlp-2)
A=t
r=1--",p
z 20 (ac-mlp-3)

The number of constraints in the master program is |A|+|N|? , and hence the basic vectors of

the master program will consist of |A|+|N|? variables.

175

c'ED.'
" = (21, " ,z,,")T (d, X 1) vector
’ -
F a i 1 é ldv
B" = | &), . 84 (A} x d,) matriz
a : . r
A1 8)al,
L J
1 if arc u 48 on chain Dy
14 —
Buh 0 otherwise

b = (K, K, ~-'K|AI)T (JA]x1) vector

Qu
-
fl

(t11---1) (1Xd,) vector
V' = ASM, + RDC, + UPD, (1X1) scalar
T
Vo= (VY- VIMYT (IN2X 1) vector

r = (s,i) for some s € N,i € N

Table 6.7 Notations for the capacitated model.

After some further change in notation (Table 6.7), (AC-MLP) can be rewritten as:

(AC-MLP): minimize z=c'3'+ -+« +¢"3" 4+ -+ +¢?3?

subject to:

~-B%Z'- -+ -B'7" - -+ -B?P3? > -} (ac-mlp-1)

176

(ac-mlp-2)

P’ =V,
" 20 (ac-mlp-3)

There are |A| constraints of type (ac-mlp-1) and |N|? constraints of type (ac-mlp-2). Let 7 be
a (1X|A|) dual vector corresponding to constraints (ac-mlp-1) and g be a (1X|N}|?) dual vec-

tor corresponding to constraints (ac-mlp-2). The dual of (AC-MLP), which we will call (DL) is:

(DL): mazimize - 7b + pV

subject to:
7B + pld? < ¢!
' (d-1)

nB? +p’.d’ < ¢?
(d-2)

7 2 0 and p unresiricted.

(DL) has |A|+|N|? variables but has a very large number of constraints, namely }E_: d, con-
r=1

straints.
In the next sections an algorithm (XrefC) that generates improved feasible solutions for

the capacitated model is described and discussed.

1.2.1.1. Optimizing the capacitated model
A projection technique [MURT 76, SALK 75] is used to solve the capacitated model.

We have shown above that the capacitated model can be formulated as a minimum

cost, multi-commodity flow, arc-chain problem (AC-MLP), when all the 0-1 variables are
fixed. Its dual, denoted (DL), was stated. Furthermore, the domain

A -i { (m,p) : (d-1)and (di-2) }

177

is independent of the 0-1 variables and is convex.

Proposition 18: The domain A i2 a convez polyhedron.

proof: That A is a polyhedron is obvious since the constraints (dl-1) and (dl-2) are linear.
Next, if the dual problem (DL) is feasible, and its objective function is unbounded above (on
the dual feasible domain A), then the primal problem (AC-MLP) cannot have a feasible solu-
tion. (This follows from a corollary of the weak duality theorem). If A were to be concave,
then any feasible dual solution (7,z) would have an unbounded objective, which would mean
that for any value of the 0-1 variable vector, the corresponding primal solution (the flow) is
infeasible. But the flow is only infeasible in the particular situation where there is not enough
capacity to accommodate it for a specific repartition of data. We assume that there is enough
capacity in the network to satisfy the flow for at least one allocation of data, and therefore A

must be convex. o

For simplicity it will be assumed further that A is bounded. In practice this means that
for any value of the 0-1 variables X7, X7, and Y} there exists a feasible flow (although
not necessarily the flow that would have been obtained when the capacity constraints are
omitted). In the context of this thesis, this is a very reasonable assumption because the prob-
lem under study is the design and usage of a distributed database on an existing computer

network.

The maximum of -7b + pV over A occurs at an extreme point of A. We denote the

extreme points by (7' ,u') (¢ =1, - - - T). Therefore problem (DL) may be written as:
(DL): :na:gimiz; -t b+ pt V.

And thus (MIP) becomes a full integer problem (IP):

IP: _ ' '
(IP) minsmize { mazimum (-7*b + p'V) }

178

subject to: (mip-1), (mip-2), (mip-3) and (mip-4).
Algorithm XrefC follows:

ALGORITHM XrefC:

NoXtremePts := 0
X := X [# Denotes a feasible 0-1 solution,
where X stands for (- - X2 <~ XPp - Yoo) %/
UpperBnd := +0o0
while (z < UpperBnd - ¢) do
begin
<m,u>|NoXtremePts+1)] := Solve(DL)
NoXtremePts ;= NoXtremePts + 1
if UpperBnd >

max {‘77' b'H‘t V(X)}(t=l, - \NoXtremePts)
thenUpperBnd := max {-=‘ b+p' V(X))
X := Solve(IP)

end

Flow := Solve(AC-MLP).

/* Solve for z; forallr = 1top

andall h =1to d,.*/

end XrefC.

To generate the extreme points of A , the arc-chain formulation of the primal program
(AC-MLP) is solved rather than the direct program (DL). A cclumn generation version of the
revised simplex method with the product form of the inverse tableau [MURT 76, MURT 81] is
used. It is known that the computational effort involved tends to be smaller, and the numeri-
cal stability greater than would be the case in carrying out the same algorithm using the
explicit form of inverses. Furthermore the pivot matrices occupy very little storage space. The
dual solution (m,pu) is read directly from the inverse tableau. Therefore (AC-MLP) can be
solved optimally and very efficiently to find the dual solution (r,z) and the flow vector 27,
The main obstacle to finding an optimal solution for the capacitated model comes from the
difficulty of solving (IP) optimally in XrefC as was the case when solving the uncapacitated
model with BNB. For the uncapacitated model, an adaptive random search algorithm (XrefU)

was described that can handle the constraints on the 0-1 variables, and can generate good

179

feasible solutions in a relatively reasonable amount of CPU time. Of course it cannot be
guaranteed that XrefU will generate an optimal solution for the uncapacitated problem, but it
may be argued that looking for the true optimal solution is a luxury not worth paying for
anyway. In the context of XrefC, the problem of solving a large integer program (IP) still
remains, and the questions that must be addressed are the following. (1) In each main itera-
tion of algorithm XrefC, is it acceptable to use suboptimal values for the 0-1 variables X and
still preserve the meaningfulness of the underlying projection technique? (2) If the answer of
(1) is yes, and if an adaptive random search is used to solve (IP), how robust will XrefC be?
In the next section question (1) will be answered and the issue raised by question (2) will be

discussed.

1.2.1.2. Convergence and robustness of XrefC
It is argued that Algorithm XrefC features the robustness of an adaptive search.

Problem (DL) has a finite number of solutions (7,z). However, if (IP) is not solved
optimally within each iteration of XrefC, then a dual solution (7,s) may be produced more
than once. If (IP) is allowed to terminate whenever z*+' < z* — ¢, for some positive ¢, then
the incumbent objective z must be improved at each repetition of a dual solution. But since
the optimal value of (MIP) is bounded below, a dual solution can only be repeated for a finite
number of times. Therefore if the algorithm used to solve (IP) eventually converges, then
XrefC must converge too. If (IP) is solved with an adaptive random search, as suggested in
the previous section, nothing can be said about the convergence of XrefC, because it is known
that the adaptive search does not necessarily converge [HOLL 75]. However, each iteration of
the adaptive algorithm used to solve (IP) will generate improved solutions for (MIP). Finally,
it is interesting to remark that the convergence of the algorithm used to solve (IP) is a suffi-
cient condition for the convergence of XrefC but it is not necessary. Therefore the answer to

question (1) is: XrefC is still meaningful even though (IP) is not solved optimally during each

180

iteration.

Before discussing question (2) it is helpful to recall what is meant by the notion of
robustness in the context of a random search algorithm; as was mentioned in Section 2, a
random search is said to be robust if the number of trials allocated to the observed best solu-
tions increases exponentially with respect to the remainders in an observed sample. An adap-
tive search such as XrefU exhibits such a property. What can be concluded about XrefC
when an adaptive search is used to solve (IP)? In the following paragraph the notation shown

in Table 6.8 will be used.

Consider Figure 6.4 which helps to visualize the execution of XrefC with respect to a
discrete variable ¢, (j > 0) corresponding to the iteration process in the adaptive algorithm

used on (IP). On the axis of Figure 6.4, each interval [¢,-1,¢;) corresponds to one execution of

Structure-schema: The set of all stuctures that display a predefined pattern of 0's and 1's
at specific positions.

e.g.
[010110...0010]

is an instance of structure-schema:
[01X11)X..,)2010]

For each structure-schema ¢§:

M(t) Number of instances of £ in the list of structures, at step t.

N, (t) Number of trials allocated, from {, to t, to structures which are instances of
€.

n, (¢) Number of trials allocated, from ¢, to t, to structures which are not instances
of £

to Initial step.

Table 6.8. Additional definitions for the adaptive algorithm.

181

the main "do while” loop of XrefC, except for the line X := Solve(IP), whereas an interval
[t,1,¢,41-1) corresponds to one execution of line X := Solve(IP). Given a structure-schema ¢,

the following was proven in [HOLL 75]:

N (§) > M) 5O <t <t
In this context, for any ¢ the following can be written:
-1
Neft) =Y N (ta-1) + Ny ()

1 =0:
t <t

-1
> Y M(t)e D 4 N (o),

1 =0:
4 <t

In the course of algorithm XrefC, a new constraint is added to (IP) whenever a new dual solu-

tion is generated, therefore:

M(t)) = M(t,-1) - r(j)M(¢;-1)

where 0 < r(j) < land lim r(j) = 0. A lower bound for NV; (¢) can now be rewritten as:
PRt .

N(t) 2)= 3 mlty)e 55 4 Ny

1 =0
) <t

where N, (t) = M(to)ez° olhr)
a
and m(t,) = M(t;) - M(¢,-1).

Both an increase in j as well as an increase in t contribute in making m(¢,) decrease, so that

eventually:

Zn(t

N (9 >> Em(t Je s
in which case N; () > M(to)e Z0"df which indicates robustness. Informally, XrefC is said to
exhibit the same kind of robustness as does XrefU "in the course” of its execution.

In the next chapter some practical remarks are drawn from the usage of the CRDU-

distribution model.

182

OldStructureAIOlOlllIOl 1 1[
Old Structure B|11110/]0001]

Yield:

New Structure A|010110001]
New Structure B|{11110011 1]

[i] Cross-over at position 5

Old StructurelOlOlHOllHlOl

Yields:

New Structure[010111010]

[ii] Inversion between positions 5 and 7

Old Structure|011001101|

Yields:

New StructurelOLlOllllll

[iii] Mutation at positions 5 and 8

Figure 6.4. The string manipulation operations used in an adaptive search

183

x® 103
10
I
o
(V)
5
optimal -
0 T T T 1 [T T T T .
0 10 20 30 40 50 60 70 80 90

Iterations

Figure 6.5. The performance of Algorithm XrefU

184

t=to h t2 '3 te
T)

No Ny N2 N3 Number of trials
i=0 i=1 =2 =3 j=4

Figure 6.6. A schematic visualization of the execution of Algorithm XrefC.

CHAPTER 7

EXPERIMENTAL RESULTS

Some practical observations are made concerning the distribution of CRDUs in a com-
puter network. The effect of the reducing and assembly rates*, over the simultaneous
referencing of CRDUs is investigated (Section 7.1). Also investigated, the effect of the

updating rates over cross-referencing (Section 7.2).

7.1. Effect of the reducing rates over cross-referencing

A first experiment consists of investigating the effect of the reducing rates, in the
matrix | A7{"], over the cross-referencing aspéct in distributed query processing. The results
of such an experiment can be of practical interest for the designer of a distributed database.
Indeed, cross-referencing is acknowledged to be one cause for the need of restructuring stan-
dard file-allocation models. (See Chapter 2. The other cause being the clustering effect).
Hence, if it is observed that, beyond a certain threshold, the reducing rates become too large
compared with the assembly rates, then it can be concluded that cross-referencing is not a
viable alternative to CRDU duplication. In practice, this implies that any query envelope is
likely to be clustered at a single site rather than partitioned and distributed over several sites,
In this case, the CRDU-distribution problem becomes quite similar to a file-allocation prob-
lem, where each query envelope is a file. On the other hand, if it is observed that the reduc-
ing rates are not likely to impair the performance of transaction processing in the computer

network, then, data redundancy is not likely to supersede to the practice of cross-referencing.

¢[n this chapter, the term “rate” will generally be favored to the term ‘“‘flow”, since the former has 2 more nu-
merical connotation than the latter.

185

186

In the latter case, file-allocation techniques may not be applied since they do not satisfac-

torily capture the transaction processing environment of the distributed database.

Ten input data files, corresponding respectively to Problems 1-10, were set up for Algo-
rithm XrefU. Each input-file specified the MRDB problem as before (Chapter 6 and Appendix
D), but the entries of the type A/,", and only those, were incrementally decreased until they
were set equal to zero in the tenth input-file. All other parameters were kept constant, and in

particular the updating rates were fixed.

Some new definitions are made. It is assumed that the input-file of a problem is given
in the form of tables as shown in Appendix D. All the definitions below apply to the input-
file of a problem, and to the values of the variables appearing in a feasible solution of that

problem.
The measure of cross-referencing, £, is defined to be:
Number of non-zero variables corresponding to clusters

in the same partition but different sites
Total number of non-zero materialization variables

A

{=

The measure of redundancy, p, is defined to be:

2 Number of non-zero allocation variables
Total number of allocation variables

In the following notations, the subscripts ¢{, and s, which normally denote a user-site, are
omitted. For example, the symbol A/ will be written as A/’. In this context, we are
interested in the volumes of data associated with query processing sequences (entries in tables
3 and 5, Appendix D), not in the rates. The frequencies of occurence of queries are not con-

sidered. The total transaction volume, 7, is defined to be:

187

A -
r= Y, AP+ A"+ A"+ Y, Bl
k k
p € PAR, A€ WRT,
g€ CLU?

The assembly volume, a, is defined to be:

Y AN
k
PEPAR*
a | e
a = -

T

The reducing volume, B, is defined to be:

£ [are]

p € PAR,
a | secLyp
T T
The reducing volume ratio, n, is defined to be:
A B
n= a

Figure 7.1 displays the results of the experiment. The measure of redundancy, p, is
plotted with respect to the reducing volume ratio, n. Each one of the ten problems was run
with XrefU. The number of iterations varied between 9 and 19, and the CPU time varied
respectively between 27.83 seconds and 60.27 seconds on the Honeywell 870. For each prob-
lem, XrefU was initiated with the same list of 20 structures. In Figure 7.1, we cbserve that
redundancy tends to decrease with decreasing reducing volumes. This seems to confirm initial
expectations, namely, that decreasing the penalty associated with cross-referencing, reduces
the need for clustering query envelopes, and thus reduces the need for CRDU duplication.
Further, the cross-referencing is found to start at 22 % for Problem 10, and to plateau at

10 % for the first problems. Note that, when the reducing volume ratio becomes quite large,

188

we expect the cross-referencing to be quite small, and therefore, CRDU-distribution can be

solved with conventional file-allocation techniques.

The next experiment we conducted, was to investigate the effect of the updating

volume, to be defined, over cross-referencing.

7.2. Effect of updating over cross-referencing

A second experiment consists in investigating the effect of the updating volume over

cross-referencing.

As in Section 7.1, a measure of cross-referencing is provided by §. The measure of

updating volume, u, is defined as:

y, B
k

a | rewrT,

u
T

As before, the input-files of the test problems were set up for Algorithm XrefU. All
input-files had identical entries for the MRDB problem, but for the entries B}, and only
those, which were increased incrementally. Figure 7.2 displays the results of this experiment.
It shows that for small values of u, redundancy, as measured by p, increases. This is obviously
expected since, when updates are cheaper, it is practical to duplicate CRDUs at different
sites, and thus, the need for cross-referencing becomes insignificant. Indeed, whenever the
updating volume is small, it is probably quite appropriate to make use of file-allocation tech-
niques rather than CRDU-distribution techniques to solve the distribution problem. For high
values of p, duplications of CRDU copies becomes more expensive, and thus, p decreases. On
the other hand, cross-referencing becomes a practical aspect of distributed query processing
since the cost associated with the reducing flow can compete with the cost associated with the

updating flow. In this latter case, where updating rates are significant, file-allocation tech-

189

niques are certainly inappropriate to solve the distribution problem.

7.3. Lower and upper bounds for the communlecation cost

If all the constraints of the uncapacitated model are eliminated, then the lowest possible
cost is obviously equal to zero. For the unconstrained model the upper bound for the cost is
simply equal to r (page 187). For the problem solved earlier in Section 6.1.2 (page 159) this
upper bound r is equal to 187,920 kilobits/hour. However, the communication cost is never
allowed to attain the value of 7, since 7 corresponds to an infeasible solution for the CRDU
distribution model. In practice, setting all the zero-one variables to one leads to a possible but
highly unreasonable solution. Indeed, every query is solved through the simultaneous access-
ing of all the possible partitions of its pre-assigned query envelope. Further, since all the allo-
cation variables are equal to one, there is usually more CRDU duplication than is needed to

solve most queries.

With the constraints, the lower bound for the cost is of course the optimal solution
sought. The upper bound for the cost is, a priori, as hard to find as the optimal cost. How-
ever, we observe that a feasible solution with largest cost can be obtained as follows: (1) Set
all the allocation variables to one. (2) For every query @, select a partition p of the pre-

assigned set ACCy which maximizes Y} AZ¥ + AP + AF{". (3) Whenever possible,
qr € CLUS

for every set ACCy;, and for a chosen partition p of ACCy;, choose the materialization vari-
ables X7¢,, X/i, - - - so as to place cluster ¢ at site i different from ¢, cluster r at site j dif-
ferent from both ¢ and ¢, and so on... For most non-trivial models, i.e. when the computer
network contains at least three sites, finding the upper value of the cost is oimple. For the
problem solved in Section 6.2.2, this upper bound is found to be 94,960 kilobits/hour. Note
that the best feasible solution found by Algorithm XrefU (4,360 kilobits/hour, page 171) has
an error equal to ((94,960 - 3,390)/(4,360 - 3,390)) X 100 = 1.06 % when compared with the

optimal solution (page 159).

190

x 1071

2
1
° 1 v v T 13 T T T b
(o} 1 2 3 4 5 8 7 8 9
nx10"
Figure 7.1. Variations of the measure of redundancy p and the measure of cross-

referencing £ with respect to the reducing volume ratio 5

191

x101

H
1
o T T —— 4"
0o -5 1
"
Figure 7.2. Variations of the measure of redundancy p and the measure of cross-

referencing £ with respect to the updating volume ratio

CHAPTER 8

CONCLUSION

This research addresses the distributed database design problem. In this context, this
problem consists of selecting and distributing the building blocks of a database which will be
shared by the nodes of a computer network. No a priori data-files or relational tables are
assumed to be provided by the user. Section 8.1 restates the problem of interest and reviews
the objectives and accomplishments of the research. Section 8.2 discusses unsolved issues.
Section 8.3 outlines the main contributions of this thesis. Finally, Section 8.4 suggests some

possible improvements and issues which can be the subject of further investigations.

8.1. The problem
A summary of the problem follows. User provided inputs include:

(1) A universal relation scheme which consists of (i) a universe of data-items or attributes,
(i1) a set of semantic constraints, of the functional dependency (FD) type, holding on the
attributes, and (iii) a set of statistical informations for each attribute, the domain from

which the attribute gets its values, and for each FD.

(2) A computer network with tightly or loosely connected nodes. It is assumed that the
communication network has a fixed topology and that there is enough over-all channel

capacity. Communication costs, and channel capacities are assumed to be given.

(3) The user’s scheduled queries and updates. A query is assumed to consist of a target list

of attributes, a frequency of usage, and a set of qualification clauses holding on attri-

192

193

butes. An update is assumed to consist of a target list of attributes, a type, i.e. whether

the update is a "delete” or an "add”, and a frequency of occurrence.

The first phase of the design process, the selection, consists in identifying the data-units
which can serve as atomic building blocks for a distributed database, and which allow effi-
cient distributed query and update processing. The data-units are to be involved in cross-
referencing operations in the context of query processing sessions. They may be visualized as
relational tables or fragments therecof, and are referred to as cross-referencing data-units
(CRDUs). The CRDUs are mapped to functional dependencies holding on attributes. The
selection part of the design process involves the consideration of semantic issues, such as the
correctness of query strategies, and the consistency preservation of the database under updat-
ing. Since most logical accesses translate into data-volume flows due to cross-referencing and
assembling operations, optimization assumes a critical role in selecting CRDUs. The modeling
of semantic constraints using graphs and matroids results in efficient optimization algorithms.
At the end of this design phase, the CRDUs which can be subject to distribution are well

defined.

The second phase of the design process, the distridution , concentrates on the optimiza-
tion of the operational communication cost. Typical issues addressed in this stage are: (i) The
modeling of the cross-references of physically distant CRDUs. These cross-references are at
the origin of file-to-file inter-site accesses which add up to the usual file-to-user accesses. Typ-
ically, modern strategies of distributed query processing cannot be captured by classical file-
allocation models, and the inclusion of the "cross-referencing” ingredient in data-allocation,
changes substantially the structure of mathematical programming models. (ii) The clustering
of the CRDUs, e.g. whether they belong to a common relational table or not, and the result-
ing impact on the file-to-file and file-to-user flows of data-volume. (iii) The materialization ,
in the static sense, of the CRDUs, i.e. the choice of relevant instances of CRDUs to seek

access to, for each query session, when there are duplicates. (iv) The accessing routes in the

194

communication network, especially when flow capacity constraints must be accounted with.
The distribution of the CRDUs is modeled in the form of a manageable multi-commodity
mized-integer program, with quadratic cost and linear constraints. Branch-and-bound, adap-

tive random search and projection techniques are used to solve the model.

In addition to providing a complete procedure for distributed database design, this
research draws some practical conclusions as to the distribution of CRDUs in a computer net-
work. For instance, the effect of the file-to-file data-volume with respect to the file-to-user
data-volume over all queries, on the simultaneous-referencing of CRDUs is experimentally stu-
died. Also, the effect of the flow-capacity constraints over optimal distributions and material-

izations of CRDUs, and over optimal access routes is illustrated.

The consideration of semantic issues gives a new dimension to the classical data-
allocation problem. Indeed, the dependence of CRDUs, in this context, FDs, becomes explicit
through both query and update processing strategies. Thus, a CRDU-allocation model is

shown to necessitate more modeling power than classical file-allocation models.

8.2. Unsolved issues

Some issues, to be mentioned below, have been left unsolved because we believe that
existing techniques to solve them are appropriate, and therefore, expanding upon those issues
would not bring about an original research contribution. However, the designer of a distri-
buted database who wishes to implement the proposed design methodology, must be aware of

those issues and must address them fully.

Of importance to the designer of a distributed database is the following question: What
to do once the CRDUs, i.e. the FDs, have been distributed? Firstly, the designer must be
aware that after Step-5 of the design procedure, i.e. after the distribution of FDs, some redun-
dant FDs may have been allocated at any one site. Therefore, a nonredundant subset of FDs

must be identified at each site, and not just any nonredundant cover. This problem has been

195

addressed in the literature, e.g. refer to [KAMB 78]. Secondly, the synthesis of relational
tables in third normal form, or better, may be accomplished using Kambayashi's algorithm
[KAMB 78]. If, however, the local databases are to be physically implemented in the form of
network databases, then, techniques such as Housel and Yao's [HOUS 79] may be considered.
The implementation of distributed query strategies, using the principles of semi-joins for data
reduction, will then require the addition of network-to-relational interfaces at each node of

the computer network.

The problems mentioned above require some exercises of implementation. The contri-

butions of the research are now reviewed.

8.3. Research contributions
The main research contributions are now discussed.

In Chapter 4, a new algorithm, Reduce, is proposed to derive an LR-minimum cover
for a set of FDs. The algorithm is shown to be at least as good as Maier’s algorithm [MAIE
80]. Further, it is argued that because Algorithm Reduce uses exclusively a graph structure
during its execution, it can be more readily implemented, and is more direct in its approach,

than Maier’s algorithm.

A major contribution of this research, however, is the new dimension added to data-
allocation. This is so because the database distribution problem involves the distribution of
data-dependent CRDUs, as opposed to data-independent files. Data-dependence is at the ori-
gin of cross-referencing operations in distributed query processing, and of cascade operations
in update processing. Further, the problem of data distribution to enhance system perfor-
mance, is enlarged with the so-called emvelope optimization problem for scheduled queries,
and the problem of update cascades determination, in the first phase of the methodology
(Chapter 4). The envelope optimization problem is modeled with simple graph theoretical

tools which lend themselves to efficient graph processing algorithms. Similarly, the update

196

cascades determination problem is tackled through direct graph processing techniques. The

whole design methodology can thus be implemented as an automatic design package*.

In the second phase of the methodology (Chapter 5), in addition to the novelty of
addressing the problem of distributing data-dependent units, i.e. CRDUs mapped to FDs, we
managed to model the CRDU-distribution model in a compact form while adding important
features previously non existing in file-allocation models. Indeed, the distribution model
includes the modeling of (i) the flow associated with cross-references, and (ii) the effect, on
the data-volume rates, of clustering CRDUs at the same site; (i) is accomplished by setting up
the optimization program as a multi-commodity flow problem, and (ii) is handled by intro-
ducing zero-one partition variables. Note that without those latter variables, the distribution
model would be much more complex, i.e. highly nonlinear in terms of the allocation variables,
and therefore much harder to solve. The mathematical programming model assumes the form
of a quadratic program, i.e. the cost has a quadratic structure and all the constraints are
linear. This latter feature allows the usage of a wide variety of computational techniques.
Some of those techniques are discussed in Chapter 6. A problem of reasonable size is solved
optimally. Heuristic techniques are also discussed and implemented. Chapter 6 reports several
positive numerical results. Chapter 7 indicates how several useful experiments can be per-
formed, and suggests, through numerical experiments, that simplifying design decisions can be

made by looking carefully at the user-provided inputs.

In the next section, areas of need for further research are pointed out.

8.4. Improvements and further research

The proposed methodology can be improved if some issues are dealt with more

thoroughly. These issues will be discussed in the following paragraphs.

sWith some reserves for updates. Refer to Section 4.5.

197

One important notion in database theory is the notion of user views. In this thesis, the
semantic framework consists only of functional dependencies and join dependencies. Higher
level semantic notions may be introduced to capture wider updating features, such as the
independence of views with respect to updating [FEDA 80|. Those semantic notions may also
seek to control update cascades to simple and predictable ranges. In general, such semantic
considerations have as an effect to restrict the domain of possible CRDU distribution solu-

tions.

The notion of universal relation scheme is found to be somewhat controversial by some
researchers (e.g. see [AZKE 83]). However, this assumption is not central to the proposed
design methodology, and can be relaxed. The notions of query, link and envelope would have

to be specified with respect to a set of user-views and not only one universal relation scheme.

The concept of relation synthesis from FDs [BERN 76| is implicit in the proposed design
methodology. Non functional relationships can usually be handled by FD modeling techniques
[BERN 76}, and are compatible with synthesis algorithms [BERN 76, KAMB 78|. However,
the issue of handling non functional relationships needs to be captured in a more formal

framework than the one available in [BERN 76].

Another critical notion for database distribution, is the notion of distributed query pro-
cessing strategy. It has been shown that some types of database schemata are highly desirable
to simplify distributed query processing sequences [BEER 81]. Thus, some further restrictions
may be imposed on a distributed database and therefore feasible CRDU-distribution strategies

may be restricted accordingly.

It was pointed out that distributed query processing strategies are very related to data-
base distribution. Strategies based on static materializations have been assumed. This means
that the processing of a query starts after the access of a non-redundant portion of the data-
base, i.e. a non-redundant query envelopé. However, if parallelism is taken into advantage of

in query processing [WONG 81|, other distribution configurations may be sought as a result.

198

To optimize, other more efficient heuristics must be investigated. Indeed, if a network
contains hundreds of nodes, a large number of user-queries and CRDUs, then one may reason-
ably question the usefulness of the algorithms proposed for CRDU distribution. We claim that
the distribution model itself is practical, even for large applications, but solution techniques
may be improved to reduce storage requirements and to keep CPU time under reasonable
bounds. Larger and larger problems can now be solved optimally using standard optimization
techniques, and it can be expected that probiems with tens of thousands or even hundreds of
thousands variables will be solvable in reasonable CPU times. However, efficient heuristic
techniques, parallel algorithms and distributed algorithms may be considered to be possible

present alternatives for enhanced computing performance.

Finally, more thorough testing should be accomplished. In Chapter 7, the results,
although plausible and reasonable, are dampened by the fact that the distribution algorithms
are quite expensive to execute. We were therefore content to obtain good solutions for each
problem that was tackled, but the experiment would have gained to be based on closer-to-
optimal solutions, and on a higher sample of solutions. Also, the notions of cross-referencing
and redundancy are very input-data-dependent. Therefore, very careful experiments should be
based on the control of such parameters as, the noncriticality of cross-references, the average
size of query envelopes etc. In general, the dependence of various parameters should be
explored more thoroughly. In the same spirit, measures of performance as well as measures of
system characteristics should be studied in a formal way using stochastic modeling and sta-

tistical analysis.

APPENDICES

199

APPENDIX A

INDEX

Antecedent: The left-hand-side of a functional relation from a set of data values to another

set of data values, i.e. the ‘“domain’’ of the function (in the usual sense of the term).

Assembly flow: The files to be read during the querying of the database are processed
locally and reduced in an effort to eliminate unnecessary information. When this is accom-
plished the reduced files are sent to a common node in the network and assembled at that
node to produce a final answer. The flow produced by this latter process is called assembly

flow.

Attribute: In APPENDIX B, PATIENT and WARD are two different attributes (also called
“data-items’’).

Autonomous: Autonomous computers work in an ‘‘equai partnership” relationship. No

computer receives orders from another one.

Avallability: The availability of a file is the probability that at any instant of time, at least
one copy of that file in the network resides at a site which is accessible from all other sites in

the network [KHAB 80].

Centralized computing system: A computing system that operates under the sole supervi-

sion and control of a single selected computing center.

Centralized databases A complete database, located in one host computer, which features a

minimum amount of data duplication.

201

Computer network: A network that has computers for nodes, and communication channels

for edges. For large networks, the channels are usually telephone lines or satellite links.

Conceptual schema: The overall data model which captures, in a formal way, the informa-

tion relevant to an organization.

Data-unit: A non dissociable piece of data which will be copied at one or several sites of a

computer network.

Data-item: The atomic data object. In this work, ‘‘data-item” and ‘‘attribute’ are

Synonymous.

Decomposition: The application of formal rules on a data file to derive file fragments which

can be recombined to recover the original file. Data integrity is preserved.

Deletion cascade: A sequence of deletions of data, triggered by a single deletion. Deletion

cascades preserve database consistency.

Distributed database: The geographical distribution of a database among the sites of a
computer network. An important feature of distributed databases is data duplication for

increased data availability and parallelism.

Distributed computing system: A computing system based on the distribution of process-

ing and control functions over the sites of a computer network.

Distributed query processing: The concurrent access of distant files in a computer net-
work to provide an answer to a query. Distributed query processing leads to the transmission
of data between some of the files accessed in order to eliminate nonrelevant information. The

reduced files are then moved to one single site to be assembled.
Domain: In APPENDIX B, CHARACTER(15), is the domain of attributes NAME and PHY-

SICIAN. The domain of an attribute is the value set from which this attribute can pick its

values.

202

Envelope: A relevant portion of the database that is sufficent to solve a query, and that con-

tains no extraneous information to provide a correct answer to that query.

Externsal schema: A subset of the conceptual schema that is relevant to one user of an

organization.
Fragment: A file reduced through local processing at a computer site.

Functional dependency: Semantic constraints holding on some attributes. FDs are used to

identify data logical accesses and constitute a basis for data integrity.
Horizontal network: Network of autonomous, logically equal, computers (see Autonomous).

Integrity: The ability to disclose correct information when correct reading and querying

methods are applied.

Inter-file flow: The files to be accessed in a querying of the database are processed locally
and reduced by each other, whenever possible or advantageous, in an effort to eliminate
unnecessary information. This is accomplished by the transmission of common data between

each pair of files.

Join: A formal operation aiming at merging relations which possess common data. In
APPENDIX B, relation R12 is the join of relations R1” and R2’ over the domain of NAME.

We write R12 = R1”[NAME|R?2".

Logical database schema: A set of records (relations), each one identified by a heading or

list of data-items (attributes).

Loglcal design: The definition of clusters of data-items (attributes) to determine records
(relations), taking into consideration the cost, measured in data volume, of accessing a set of

data-items for every query.

Lossy: That causes the creation of misleading information due to the omission of relevant

initial information.

203

LR-minimum cover: A set of FDs F is LR-minimum, if:

(1) There is no set G with fewer FDs than F such that G+ = F'* (section 3.1.1),

(2) for every FD X — Y in F) there is no X properly contained in X with X — Y in
Ft,

(3) replacing FD X — Y in F by X — 7, with Y properly contained in Y, alters the
closure of F',

Materlalizatlon: A representative of data sought by a distributed query and chosen to take

advantage of data-redundancy and parallelism. In this work, a nonredundant representative of

data to be accessed for the solving of one query.

Normalization: Applied to relational tables in a relational database: It is the restructuring,

if required, of relations to force certain rules between attributes to be satisfied. The normal

form of a relation is defined with respect to the functional dependencies holding on the attri-

butes representing this relation (see Functional Dependency, Attribute, Relation).

Projection: In APPENDIX B, relation R1’ is a projection of relation R1 over attributes

NAME,WARD. We write R1'=R1|{NAME,WARD].

Query: A question to the database. In the general sense queries are represented by a set of

referenced attributes or target list.

Query optimization: The process of choosing a set of data and a strategy to process the

data so as to solve a query and minimize its cost.
Record: It is identified by a list of data-item names (see Relation).

Reducing operation: Query processing operation aiming at eliminating data that are of no
interest for a query result. Each reducing operation can be mapped to Projection, Selection or

Join (see Inter-file flow, Projection, Selection, Join, Semi-join).

204

Redundancy: One data element can have many duplicates in the actual database. In partic-

ular, in a distributed database, data may be duplicated at different sites.

Relation: A table of rows and columns. Each column is identified by an attribute name.
Each row, also called a tuple, contains one value from the domain of each column-attribute

(APPENDIX B; see Record, Logical database schema).

Relational algebra: A set of operations with which relations may be manipulated to achieve
any desired tabular representation, i.e. to “‘cut” them or to combine them whenever possible.

The three main operations are Selection, Projection, and Join.

Relational model: Two dimensional tabular representation of data. APPENDIX B shows
relations R1, R2 and R3 representing a database ixi the relational model. The relational
model was defined to enhance easy understanding by people with little or no training in pro-
gramming (nonprocedural), evolution (additions and deletions) without major logical restruc-

turing, flexibility of use of data (see Attribute, Domain, Relation, Tuple, Relational algebra).

Rellability: The network reliability is the probability that at any instant of time the net-
work is connected

Selection: In APPENDIX B, relation R2’ is a restriction of relation R2 based upon the clause

TEST=GLUCOSE.
Semantlc: Relating to the meaning of data.

Semi-join: The semi-join of relation R by relation S on attributes X, denoted by R<X]S is
defined as (R[X]S)[AttRl (see Projection, Join), where Allp denotes the attributes of R. If
R and S are stored at different sites, R<X]S can be obtained by moving S[X] to the site that

holds R. In APPENDIX B, relation R12’ is the semijoin of relation R1” by relation R2'".

Site: A node of a computer network. A site corresponds to a computing element, also called a

host computer.

205

Storage redundancy: The duplication of identical data at one site is not desirable if it leads
to extraneous information at that site. Storage redundancy at one site indicates that data can
be eliminated at that site without any loss in information, thus reducing storage cost. Other-
wise, storage redundancy in the network (see Redundancy) increases parallelism and decreases

communications.

Synthesizing: Constructing relational tables (in general, logical schemata), from a set of

functional dependencies (see Functional dependency, Relation).

Tuple: A list of data values corresponding to a row of a relation. Each component of the
tuple is a value extracted from the domain of a single column- attribute of the relation. In

APPENDIX B, any row of relation R1 is a tuple of R1 (see Attribute, Domain, Relation).

Update: A transaction on a database that involves some writing (or deleting) operations.

Data item values are added (or erased) to (from) the database.

View: Data needs of an organization or a user. In this work, a view is a set of functional

dependencies.

APPENDIX B

THE RELATIONAL DATA MODEL

A RELATIONAL DATABASE EXAMPLE

HOSPITAL DATABASE FOR BLOOD TESTS

PATIENT_NO NAME AGE WARD
4234 | Stout 63 | General Med.
5621 | Rohkemper 34 | Outpatient
1213 | Sawdon 46 | Outpatient
7784 | Litkovitk 58 | General Med.
2442 | Kraphol 55 | Intensive Care
3001 | Buck 61 | Intensive Care
6886 | Rowlands 62 | General Med.
2444 | Kostedt 42 | Ambulatory
3457 | Rogulsky 53 | General Med.
1972 | Winter 39 | Ambulatory

Relation R1

207

ORDER NAME TEST RESULT | PHYSICIAN
01 Rohkemper | Glucose 70 | Dr Newberry
03 Stout Sodium 112 | Dr Farah
05 Rohkemper | Potassium 2.5 | Dr Akers
07 Kraphol Glucose 50 | Dr Morehouse
08 Kraphol Sodium 160 | Dr Morehouse
10 Rowlands Glucose 80 | Dr Jagiela
11 Rowlands Chloride 25 | Dr Jagiela
15 Winter Glucose 100 | Dr Yee
16 Stout Glucose 60 | Dr Andersland
17 Stout Chloride 20 | Dr Andersland
Relation R2
NAME WARD

Stout General Med.

Rohkemper | Outpatient

Sawdon Outpatient

Litkovitk General Med.

Kraphol Intensive Care

Buck Intensive Care

Rowlands General Med.

Kostedt Ambulatory

Rogulsky General Med.

Winter Ambulatory

R1' = R1[NAME,WARD]

208

PATIENT_NO NAME AGE WARD
4234 Stout 63 General Med.
3001 Buck 61 Intensive Care
6836 Rowlands | 62 General Med.
R1” = R1[AGE > 60}
ORDER NAME TEST | RESULT | PHYSICIAN
07 | Kraphol Glucose 50 | Dr Morehouse
10 | Rowlands | Glucose 80 | Dr Jagiela
15 | Winter Glucose 100 | Dr Yee
16 | Stout Glucose 60 | Dr Andersland

R2’' = R2[TEST = Glucose]

209

NAME | AGE WARD ORDER | TEST | RESULT | PHYSICIAN

Stout 63 | General Med. 16 | Glucose 60 | Dr Andersland
Rowlands 62 | General Med. 10 | Glucose 80 | Dr Jagiela

R12 = (R1"[NAME|R2')[NAME,AGE,WARD,ORDER,TEST,RESULT,PHYS.]

PATIENT_NO | NAME | AGE WARD

4234 Stout 63 General Med.
6886 Rowlands | 62 General Med.

R12' = R1"<NAME]R2’

210

APPENDIX C

THE MEDICAL RECORD DATABASE PROBLEM

A large health organization possesses four geographically separated sites: A main hospi-
tal with its own laboratory, a clinical laboratory that can provide additional products and ser-
vices, a center for medical scientific research, and a department of health technology which
comprises a statistical center and a section for general medical organization and development.
The four sites of this organization are equipped with their individual computing facilities and
have permanent access to a public fully connected local communication network. The staff
members, at the four sites, share substantial informations about the medical records of the
patients in the hospital. For that reason the organization plans to design an integrated distri-

buted database, which will be referred to as the medical record database (MRDB).

21

User-provided FDs for MRDB

ORDER

ORDER

ORDER

ORDER

ORDER

ORDER
ORDER,NAME

TEST
TEST,DATE,PATIENT_NO,NAME
RESULT
PATIENT_NO
PATIENT_NO,NAME
PATIENT_NO
SERVICE

SERVICE
PHYSICIAN

NAME

Tyt
ERREARRRN

LELLLLd

SERVICE

RESULT

TEST

PATIENT_NO

DATE

NAME

RESULT
TEST_TYPE,CODE_NO,TECHNIQUE
RESULT
TOTAL,PRECISION,ACCURACY,COST, TIME
NAME

AGE

AGE

PHYSICIAN

WARD

WARD

WARD

Table C.1. The user-provided functional dependencies (FDs).

212

Typical scheduled queries for MRDB

Query i.d. Given attributes Target attributes
1 ORDER PHYSICIAN,WARD
2 ORDER RESULT
3 DATE,PATIENT_NO,TEST | ORDER
4 WARD ' PATIENT_NO
5 ORDER NAME,WARD
6 PHYSICIAN ORDER,PATIENT_NO
7 NAME DATE,TEST RESULT
8 ORDER SERVICE
9 PHYSICIAN SERVICE,PATIENT_NO

Typical scheduled updates

Number New attributes

1 ORDER, TEST,RESULT,DATE
PATIENT_NO,NAME AGE

Table C.2. Typical scheduled transactions for the MRDB.

213

Usage of MRDB transactions
Site Query ' Update
1 1X22X1,3X15,5X1,8X1 pone
2 : 1X1,3X29X1 none
3 5X37X48X14 none
4 4X1,6X1,9X17X3 1X1,2X2
Table C.3. Needs of each site in the MRDB computer network, and frequencies of

occurrence of all the transactions.

214

o] /

tuples | bytes
Sip 5075 9
S, 5075 14
f14 5075 8
Sie 5075 12
sy 49 20
Jox | 13|
fi,g 5075 44
f12,6 84 19
[124 84 6
f 15,k 810 20

Table C.4. Cardinalities and widths of the functional dependencies for the MRDB.

215

‘sajnquijye uo

padafoad wagm ‘GQIN Y3 o) ‘satduapuadap [euoljdun) ag) jo saneurpre) ‘gD Iqe
o1 8 11y
Sy ¥8 rely
8 ¥8 relf
1999 €9 ¥8 9L LY
o1 0z 101y
0z 8F T8y
€9 SL0S 1y
8 c108 Py
9L L0 2y
8¥ L0 "y
L1n- | NVIOI- ON~ ADIA-
advm | 3OV | GNVN | Sdd | SAHd | 41lvd | Lvd | 1SAdL yds | 4d4qyo ad
- 51y esoum ‘sapdny |[y]/]

216

A A
bytes
ORDER 4
SERVICE 5
TEST_TYPE | 3
TEST CODE_NO 4
TECHNIQUE| 3
NUMERIC |10
PRECISION |10
RESULT ACCURACY {10
COST 5
TIME 5
PATIENT_NO 4
DATE 8
NAME 15
AGE 2
PHYSICIAN 15
WARD 5

Table C.6. Attribute widths for the MRDB.

217

A IDOM(A)|
ORDER 5075
SERVICE 48
TEST 76
RESULT 6561
PATIENT_NO 126
DATE 632
NAME 126
AGE 45
PHYSICIAN 28
WARD 10

Table C.7. Cardinalities of the domains for the MRDB.

218

APPENDIX D

INPUT FOR THE DISTRIBUTION ALGORITHMS

Number of sites: 4
Number of CRDUs: 13

Uncapacitated

User site | Query index | Query frequency

teN v

‘ad
-

o (2O 1D [o [obn JCO QO IO |t [t |0 [QO |1t | s
QIO W WA ||~ || [Ov e |]OO]|0CO RO |~
bt Dt DD [t FCO fhst [b JCO | pmst [pmd 1RO [1=t | b | pust | pt

219

heg

11

12

10
11

10
12

13
12

13

13
12
13
12

lal

Query | Partition | Cluster | ## of FDs | FD 1 l FD 2 l FD3

220

User site | Update index

Update frequency

8 k Vst
1 1 0
1 2 0
2 1 0
2 2 0
3 1 0
4 1 1
3 2 0
4 2 2
Update index | FD | Update volume
k h B}
1 1 500
1 3 500
1 4 500
1 5 500
1 6 500
1 8 700
1 10 700
1 12 700
2 6 450
2 7 450
2 8 450
2 9 450
2 10 900
2 11 900

221

Query

g s
s |Z
s i vt | - it | ot | ot | et — O rt]] v | vt | v O| O] =] bl Kl o | o
=} LY
5 P~
Z
3]
g
> ot w) — [= (=} N =] =1 K=2 0] (=3 =] m (= [=] [=4
< bl B —t| ™™ -«] |] D i =] Q3 | o] =] - - — vt | =t (=]
m : b= -4
3
a
e
& .
M - vt | - QU vt | vt | vt [] LI K2 el R vt | O -t il O3]] | v [~] Y| N
(&)
[
3
M o | — O vt | ot | ot (5] il w]] | QU] vt] Q| - ot | - -
(&)
=
[=]
o]
> a, Ll 2\ QY| rd] v | D wy W] ™m M| NN [~} (2] Y] w— (]
d
[« 9
-2 —t] - QY| MMM o™ [l KR Kozl Ko2) MM ™m MNiM|MmI™m M= w W ©

222

—
S o
s =
WV
g |=
-
[
g
S - =] 8 8l3|8 S 88|88 8|8 S 2|8 8)|a
m] = - —t —
[
a
e
3
M [CI| wt | vt - vt | | - N ™ | M| i O] | N CY| vt | vt | @] vt
p—
(@]
[
3
W o QY| ot | ot [] vt | et | ot ot N Pl Rl Kl K KA v— QU] vt | vt | et] N
—f
(]
(-]
.2
= a NI o]]| - w w wlwlo|o|o|o -« w| || eaf e
d
[« 9}
nuu i =3 R o B § o3 - t~|]ool O (=] (=] oo jojlo|oo (=] (=20 Ro) No) Nl e
o

223

For the capacitated model:

[e,] (MNX N) ma.trix.

For all (i,j) € A.

[K,] (N X N)matrix.

For all (i,j) € A.

For both the capacitated and uncapacitated models:

[N*] (1 X |H|) matrix.

(6411010221444 411 10)

224

APPENDIX E

OPTIMAL SOLUTION FOR THE MRDB
(Corresponding to the inputs of Appendix D)”

All the following variables are equal to one (the other variables are all equal to zero):

2,1 2,2 1,1 1,1 1,1 1,2

Xin Xt Xipn Xige Xibe X X184’ X2,1,1,
2,2 1,2 y

X2,1,2, X234’ X294, X354’ Xs’u: Xs,’r,m Xa,s,m X444»

X2 X, X2 Y, Y& Y Y! Yr Y}
4,64 494’ 4741 1 1 2 4 4 4)
6 7 8 10 11 12 13 2

Y4 ’ Y4 ’ Y4 ’ Y4 ’ Y4 ’ Y4 ’ Y4 ’ Y4 ’ Xl,l»
1 1 1 1 2 1 1 2 1

X1,2’ X1,3’ Xl,Sr X1,8’ X2,l’ X2,3’ X2,9’ X3,57 X3,77
1 1 2 1 2

X3,8’ X4,4’ X4,6’ X4,97 X4,7'

BIBLIOGRAPHY

225

[AHOT7|

[APERS1]

[APERS3]

[FEDAS1]

[ARMST74]

[BEERS0]

[BEERS]|

[BERN76]

[BISK79)

[BOOTS]]

226

BIBLIOGRAPHY

Aho, A. V., Beeri, C., and Ullman, J. D., “The theory of joins in relational
databases”, Proc.29th, IEEE Symp., Foundations of Comp.Sc. 1977.

Apers, P. M. G., “Redundant allocation of relations in a communication net-
work”, Proc. of the 5th Berkeley Workshop on Distributed Data Management
and Computer Networks, Lawrence Berkeley Lab. 1981.

Apers, P. M. G, Hevner, A. R, and YAO, S. B,, *‘Optimization algorithms
for distributed queries”, IEE Trans. on Software Engin., Vol. SE-9, No. 1,
Jan. 1983.

Al-Fedaghi, S., and Scheuermann, P., “Mapping considerations in the design
of schemas for the relational model”, IEEE Trans. on Seft. Eng., Vol. SE-7,
No 1, Jan 1981.

Armstrong, W. W., ‘“Dependency structures of data bases relationships”,
Information Processing 74, North-Holland Publ. co., Amsterdam, 1974 pp
580-583.

Beeri, C., “On the membership problem for functional and multivalued
dependencies in relational databases”, ACM TODS, Vol.5, No 3, Sept. 1980.

Beeri, C., Fagin, R., Maier, R., Mendelzon, A., Ullman, J., and Yannakakis,
M., ‘“‘Properties of acyclic database schemes”, Proceedings of the ACM Sym-
posium on Principles of Database Systems, 29-31 March 1982.

Bernstein, P. A., ‘““Synthesizing third normal form relations from functional
dependencies”, ACM TODS, Vol.1, No 4, Dec. 1976.

Biskup, J., Dayal, U., Bernstein, P. A., “Synthesizing independent database
schemas”, ACM SIGMOD, International Conference on the Management of
Data, 1979,

Booth, G. M., The distributed system environment some practical approaches,
Mc Graw-Hill 1981.

[BUCKT9]

[CASET2]

[CHANT7]

[CHENS0]

[CHU73)

[CHUT9)

[CHUT6)

[CHUNS83|

[coDD79|

[CODDT72]

[CCAB80)]

[DATE78]

[DELO78]

[DORAT7)

227

Buckles, B. P., Hardin, D. M., ‘Partitioning and allocation of logical
resources in a distributed computing environment”, Distributed System
Design, Tutorial, IEEE Catalog No EHO261-1 1979.

Casey, R. G., ‘“Allocation of copies of a file in an information network”,
AFIPS Conference Proceedings, vol 41, part I, 1972.

Chandy, K. M., “Models of distributed systems”, Proceedings VLDB Confer-
ence, Oct. 1977,

Chen, P. P.-S., and Akoka, J. “Optimal Design of Distributed Information
Systems”, IEEE Trans. on Computers, Vol. C-29, No 12, Dec. 1980.

Chu, W. W., “Optimal file allocation in a computer network”, Computer-
Communications Network, N.Abramson and F.Kuo (eds), Prentice-Hall,
Englewood Cliffs, N.J., 1973.

Chu, W. W., and Hurley, P., ‘“A model for optimal query processing for dis-
tributed databases”, Digest of Papers, COMCON, Spring 1979.

Chu, W. W., “Performance of file directory systems for databases in star
and distributed networks”, AFIPS Conference Proceedings, Vol. 45, 1976
NCC.

Chung, C-W., A gquery optimization in distributed database systems, PhD
Thesis, The University of Michigan, 1983.

Codd, E. F., “Extending the database relational model to capture more
meaning”, ACM SIGMOD International Conf. on Management of Datas, p
161, 1979.

Codd, E. F., “Further normalization of the database relational model”,
Database Systems, R.Rustin, eds, Prentice-Hall 1972.

Computer Corporation of America, A distributed database management sys-
tem for command and control applications, Technical Report CCA-80-04,
Jan.30 1980.

Date, C. J., An introduction to database systems, Addison-Wesley 1978.

Delobel, C., “Normalization and hierarchical dependencies in the relational
data model”, ACM TODS, Vol.8, No 3, Sep 1978.

Doray, M., ‘Le teletraitement”, Societe Nationale des Chemins de Fer- Ser-
vice Informatique (Paris), Division IAT, May 1977.

[ESWAT4]

[ETCHT7]

[FAGIT77|

[FAGIS2)

[FISH80]

[FRY78]

[GARET79)

[HAMMT9)]

[HEVNT9]

[HIMM72]

[HOLL?75|

[HOUS79]

[KAMB78]

[KHABS0|

228

Eswaran, K. P., “Placement of records in a file and file allocation in a com-
puter network”, Information Processing 74, IFIPS, North Holland Publishing
Co., 1974.

Etcheberry, J. “The Set-Covering Problem: A New Implicit Enumeration
Algorithm”, Operations Research, Vol. 25, No 5, Sept.-Oct. 1977,

Fagin, R., ‘‘Multivalued dependencies and a new normal form for relational
databases”, ACM TODS, vol.2, no 3, Dec. 1977.

Fagin, R., Mendelzon, A. O., and Ullman, J. D., “A simplified universal rela-
tion assumption and its properties”, ACM TODS, Vol. 7, No. 3, Sep. 1982.

Fisher, M. L., and Hochbaum, D. S., ‘“Database location in computer net-
works”, Journal of ACM, vol.27, no 4, Oct. 1980.

Fry, J. P., and Teorey, T. J., “Design and performance tools for improving
database usability and responsiveness”, Databases: Improving usability and
responsiveness, Academic Press 1978.

Garey, M. R., and Johnson, D. S., Computers and intractability- A guide to he
theory of NP-completeness, Freeman 1979.

Hammer, M., and Niamir, B., “A heuristic approach to attribute partition-
ing”, Proc. ACM SIGMOD, Int. Conf. on the Management of Data, May
1979, pp 93-101.

Hevner, A. R., and Yao, S. B., “‘Query processing in distributed database
systems”, IEEE Trans. on Soft. Engin., Vol.SE-5, No 3, May 1979.

Himmelblau, D. M., Applied Nonlinear Programming, Mc Graw Hill 1972.

Holland, J. H., Adaptation in Natural and Artificial Systems, The University
of Michigan Press 1975.

Housel, B. C., Waddle, V., Yao, S. B., “the functional dependency model for
logical database design”, IEEE 1979.

Kambayashi, Y., “Equivalent key problem of the relational database
model”, Mathematical studies of information processing, Proceedings, Kyoto,
Japan 1978. Ed. by E.K.Blum, M.Paul and S.Takasu, Springer-Verlag,.

Khabbaz, N. G., A combined communication network design and file alloca-
tion for distributed databases, PhD thesis, The University of Michigan, Feb.
1980.

[LAWL76)

[LEVI7S|

[LOZ178]

[LOZ180]

[MAHMT6)

[MAIES0]

[MAIES3]

[MORG77]

[MURTT6|

[MURTS1]

[MUR77]

[MUR78]

[NAVATS)

[PALM79|

[RAMT79-a]

229

Lawler, E., Combinatorial optimszation, Holt, Rinehart and Winston 1976.

Levin, K. D., and Morgan, H. L., “Optimizing distributed databases-A frame-
work for research”, AFIPS Conference Proceedings, vol.44, 1975 NCC.

Lozinskii, E. L., ‘“Performance consideration in relational database design”,
Databases: Improving usadility and responsiveness, Academic Press Inc., 1978.

Lozinskii, E. L., ‘‘Construction of relations in relational databases”, ACM
TODS, Vol.5, No 2, June 1980.

Mahmoud, S., and Riordon, J. S., “‘Optimal allocation of resources in distri-
buted information networks”, ACM TODS, vol.l, no 1, Mar.1976.

Maijer, D., “minimum covers in the relational database model”, Journal of

ACM, Vol. 27, No 4, Oct. 1980.

Maier, D., and Ullman, J. D., *‘Maximal objects an the semantics of universal
relation databases”, ACM TODS, Vol. 8, No. 1, Mar. 1983.

Morgan, H. L., and Levin, K. D., *“Optimal program and data locations in
computer networks”, Communication fo the ACM, Vol.82, No 5, May 1977.

Murty, K., Linear and combinatorial programming, John Wiley and sons Inc.,
1976.

Murty, K., Network flow algorithms, lecture notes, Department of Industrial
Engineering and Operations Research, The University of Michigan, 1981.

Murtagh, B. A., and Saunders, M. A. MINOS A Large-Scale Nonlinear Pro-
gramming System- User's Guide, Technical Report Sol. 77-9 Feb. 1977, Sys-
tems Optimization Lab., Department of Operations Research, Stanford
University.

Murtagh, B. A,, and Sauders, M. A. ‘‘Large scale linearly constrained optimi-
zation”, Mathematical Programming, Vol. 14, p. 41-72, 1978.

Navathe, S. B., and Fry, J. P., ‘“Restructuring for large databases: Three
levels of abstraction”, ACM TODS, Vol.1, No 2, Jun 1976.

Palmer, D. F., “Distributed computing system design at the subsystem-
network level”, Conf. VLDB, IEEE, 1979.

Ramamoorthy, C. V., and Wah, B. W., “Data management in distributed
data bases”, Proc. National Conf., AFIPS Press, 1979.

MICHIGAN

I,

3 9015 03483

[RAM79-b)

[RISS77]

2454
230

Ramamoorthy, C. V., and Wah, B. W., “The placement of relations on a
distributed relational database”, The st International Conference on Distri-
buted Computing Systems, Huntville, Alabama, Oct. 1-5, 1979.

Rissanen, J., ‘‘Independent components of relations®, ACM TODS, Vol.2,

'No 4, Dec 1977.

[ROSES1]

[SALK75|
[TANES]]|
[ULLMs0]

[ULLMs2)

[WANG?75)

[WONG77|

[WONGS81]

Rosenthal, A. S., “Note on the expected size of a join”, SIGMOD Record,
Vol. 11, No. 4, Jul. 1981.

Salkin, H. M., Integer programming, Addison-Wesley 1975.
Tanenbaum, A. S., Computer networks, Prentice-Hall 1981.
Uﬂman, J. D., Principles of database systems, Computer Science Press, 1980.

Ullman, J. D., ““The U.R. Strikes Back”, Proceedings of the ACM Symp. on
Principles of Database Syst., Los Angeles, California March 1982.

Wang, C. P., and Wedekind, H. H., “Segment synthesis in logical database
design”, IBM J. Res. Dev., Vol. 19, No 1, Jan. 1975.

Wong, E., ‘‘Retrieving dispersed data from SDD-1: A system for distributed
databases”, Proc. of the 2nd Berkeley Workshop on distributed data manage-
ment and computer networks, Lawrence Berkeley Lab., May 1977.

Wong, E., “Dynamic re-materialization: Processing distributed queries using
redundant data”, Proc. of the 5th Berkeley Workshop on Distributed data
management and computer networks, Lawrence Berkeley Lab. 1981.

