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Exact formal solutions of the transport equations which govern the flow of current in a mosaic
crystal set at a Bragg condition are given. These solutions are applied to a crystal cut in the shape
of a parallelepiped. A formula is derived for the extinction coefficient for this crystal shape. We call
this result the “4B-extinction formula™. It will provide the experimentalist with an approximate

method to correct for anisotropic extinction resulting from a crystal shape anisotropy. It is suggested
that the exact results of the dynamical diffraction theory for slabs should be used to correct for
primary extinction. The mathematical and conceptual errors in the theory given by Zachariasen are

pointed out.

I. INTRODUCTION

Extinction is a central problem in the theory of dif-
fraction in real crystal. It is a direct consequence of
multiple Bragg scattering. One knows the fundamental
equations which must be solved: the Schrodinger equa-
tion for neutron and electron diffraction and Maxwell’s
equations for x-ray diffraction. However, difficulties
arise on two levels in developing a rigorous mathemati-
cal attack on the problem. First, a description of the
type and geometrical array of imperfections which lead
to incoherence of the waves emanating from various
macroscopic regions of the crystal must be given; and
then, once a model of the imperfections is assumed, a
boundary-value problem must be solved.

There is known to be a manifold of imperfections that
occur in real crystals, and their effects on the diffracted
intensity is, in general, difficult to estimate. In addi-
tion, detailed information on the imperfection structure
of a given crystal is generally not available. A method
which has been widely used, and which has some experi-
mental foundation, is the mosaic crystal model original-
ly proposed by Darwin.! The idea is essentially that a
real crystal is composed of many small perfect crystal
regions, called mosaic grains, which are misoriented
with respect to each other by small angles. The scat-
tering cross section of each grain can be calculated
using kinematical diffraction theory (Born approxima-
tion). Since it is assumed that there are many such
randomly oriented grains in any macroscopic region of
the crystal, the scattered waves can be added inco-
herently at any point distant from the region in which
the scattered waves originate. The extent to which the
basic physical requirements of this model of an “ideally
imperfect” crystal can be relaxed to include primary
extinction is not known. We will investigate this briefly
in Sec. IV. The method by which coherent effects be-
tween relatively large adjacent grains is to be included -
in the theory is also not known.

An attempt to derive a general formula for extinction
in real crystals which encompasses the entire range of
crystalline perfection was made by Zachariasen.?:3
Unfortunately, there are a number of conceptual and
mathematical errors in those papers, some of which
have been pointed out by Werner* and Zigan. ®* The pur-
pose of this paper is to place the theory of extinction in
mosaic crystals on firmer physical and mathematical
ground; and in particular, to give the first exact solu-
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tion to the extinction problem for any finite three-di-
mensional crystal. For completeness and clarity we
review the general mathematical techniques developed
previously (Werner and Arrott, ® Werner, Arrott, King,
and Kendrick”) in Sec. II. The exact solution for a
particular case is given in Sec. III. The significance of
this result, and the primary extinction problem are
discussed in Sec. IV. Suggestions for the extension of
the theory presented here, along with various conclu-
sions, are given in Sec. V.

11. BASIC EQUATIONS

We assume that a real crystal is adequately described
by Darwin’s mosaic model. The derivations given here
are intended for neutron diffraction; however, the
results apply equally well to x-ray diffraction.

A. Differential equations

Consider a crystal of arbitrary (convex) shape (as
shown in Fig. 1) immersed in a nominally collimated
and monoenergetic beam of neutrons of uniform incident
intensity J,. J, is the number of neutrons/cm?/sec/unit
volume in k space incident on the crystal. We define ¢
as the probability per unit path length for Bragg
scattering. The bar indicates it is an average quantity.

INCIDENT J,
BEAM

FIG. 1. Schematic diagram of a crystal of arbitrary (convex)
shape. The coordinates (x,s) of an arbitrary point inside this
crystal are given in the oblique coordinate system shown here,
where 26 is the scattering angle. The incident beam enters the
crystal through the boundary between A and B on the left, and
the diffracted beam leaves the crystal through the boundary
between C and D on the right.
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The macroscopic region over which this average is
made is assumed to be small in comparison to the size
of the crystal. We assume ¢ is independent of position.
If a neutron of initial wave vector k is Bragg scattered
in a given mosaic grain, we assume that the diffracted
wave vector is exactly k+ G, where G is the reciprocal
lattice vector. That is, we neglect refraction and finite
size broadening effects. In addition, we assume the
probability per unit path for this diffracted neutron to
be rediffracted somewhere along its exit path is
identical to o. That is,

(k)= ok + G). (1

v will, of course, depend on the angular distribution of
mosaic grains, commonly called W. It is clear that
there will be dynamic interchange of neutron current
between the incident and diffracted beams inside the
crystal. If we define J; as the current density in the
incident direction and J, as the current density in the
diffracted beam direction at an arbitrary point (x, s) in
the oblique coordinate system shown in Fig. 1, the
balance relations are®

a -
D=5, 450, (2a)
) _
FJsi =-GJ,+ 5, (2b)
Here
0,=0+4p, (3)

where u is the probability per unit path for attenuation
by all non-Bragg processes, i.e., true absorption, in-
coherent and inelastic scattering. These equations were
first written by Hamilton® as a generalization to the
total current equations of Darwin.! (Hamilton solved
these equations numerically for certain special cases.)
These equations must be solved subject to the boundary
conditions

J;=J,, on the boundary between A and B (4a)
J,=0, on the boundary between C and D. (4b)
Combining Eqs. (2a) and (2b) we have
3%Ja (aJ,, aJd) 2 =av;
3% 35 5z 35 ) T80, =0. (5)

This is the equation that must be solved. An identical
equation holds for J,.

For the coordinate system in which Zachariasen wrote
Eqgs. (2a) and (2b), an additional term must be added to
the left-hand side. The coordinates used there were

L =% =x,(s), (6a)

(6b)

where x,(s) is the value of x at the boundary point b, and
s,(x) is the value of s at the boundary point a. That is,
%,(8) or s,(x) are the equations of the boundary. From
the usual rules for chain differentiation, the balance
relations in this coordinate system are

t,=5—5,(x),

ot -t et 5 45, (7a)
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The second term on the left-hand side of these equations
was neglected by Zachariasen.

B. Integral equations

We now rewrite the pair of coupled differential equa-
tions (2a) and (2b) in integral form. This can, of course,
be done in a strictly mathematical manner; however, we
will do it in a more physical way as was done previously
by Werner and Arrott. ® Consider the line connecting the
point a on the boundary and the point (x, s) in Fig. 1.
Neutrons arriving at the point (x, s) and traveling in the
direction of the diffracted beam originated by diffraction
from the incident beam at any of the points (x, s’) along
this line, but with a probability attenuated by the factor
exp[ G,(s-s)]. Thus,

A%, s)_f Ji(x, s") exp[- 0,

Consider now how neutrons which contribute to J,(x, s)
arrive at the point (x, s). The probability that a neutron
arrives directly at the point (x, s) from the entrant point
b is simply exp{- 0,[x - x,(x)]}. Neutrons traveling in
the incident beam directlon arrive at (x, s) by diffraction
of the diffracted beam at any point (¥, s) along the line
connecting b and (x, s). Thus,

[x=x,(s)]}

(s=¢")]ods’. (8a)

J(x, s)=J,exp{- o,

+f A s)exp[-o,(x-x")]odx.  (8b)

Inserting Eq. (8b) into (82) we have the integral equation

J A, s)=Joj:(x) exp{—0,[x - x,(s’) + s~ s’ ]} Gds’
a
+j:,,<x)6d8’ j;b(s,)ﬁdx'Jd(x’,s’)

Xexp[-0,(s -5 +x-x)). (9)

A similar equation can be written for J,(x, s).

C. Gengral solution of differential equations
We seek a solution of Eq. (5) of the form
J (%, )= exp[- T,(x + )] f(x, 5). (10)

Inserting this into (5), we find that we have a simpler
equation to solve:

fa

.
5x0s ~C Ja=0-

(11)
This equation is separable. If we denote the separation
constant by K, the general solution is

f{x, 8)= [ dK F(K) exp[KGx + (1/K)5s], (12)

where the amplitude function F (K) is to be determined
from the boundary conditions. Since J, satisfies an
equation identical to (5) we must have

fi(x, 8)= [ dK F(K) exp[K&x + (1/K)&s), (13)
where

J (%, s)=exp[- o (x + s)]f,(x, s). (14)
Equations (2a) and (2b) require

F{K)=F (K)/K. (15)
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FIG. 2. Mosaic crystal cut in the shape of a parallelepiped. A
typical path by which neutrons enter and leave the crystal after
making three Bragg reflections is shown,

The contour of integration in the K plane is to be
determined. Rewriting £, in the form

fhx,8)= f dKF (K) exp{ o(xs)'/?[K(x/s) /2

+(1/K)(s/x)! 2]}, (16)

and using the expansion

exp[y(u + %) =§}” urI(2y), am
we have

© n/2 —

Fix,8)= n'é)” a”(g) 1,[20(xs)*/?]. (18)
Here

a,= [ dKK"F(K), (19)

and the I, are the modified Bessel functions. Thus, the
general solution of Eq. (5) is

J(x,s)=exp[- 0 (x+s)] i a"<§>n/21n[26(x3)1/2]. (20)

n=-

The expansion coefficients a, are to be determined from
the boundary conditions. Note that the result given by
Zachariasen® in his Eqs. (14a) and 14(b) is not the
general solution.

D. Formal solution of integral equations

We look for a solution of the integral equation (9) in
the form given by Eq. (10). Equation (9) then becomes

fx,s)=08J, j;x) ds’ exp{F,[x,(s") + s’ ]}

- S X , ,
+szsarx)ds f,,,.,:, dx'f (', 8"). (21)

This equation can be written in operational form as
f4=08,+ T*Lfy (22)

where L is the linear integral operator defined by
S 7 x 7 4 ’
Li= fsamds j;b(s,)dx i, s7), (23)
and g, is the known function

8

g,=J, fs“m ds’ exp{o [x,(s")+ s ]k (24)

Equation (22) is of the Fredholm type. The solution is
fd'—— (1- EZL)-lggd
=0g,+0°Lg,+G°Leg,+0 Leg,+ «-. (25)

Thus, the diffracted current density at any interior point
(x, s) is
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J x, s)=exp[-0,(x+5)] EO gElpng.. (26)
L"g, means n successive applications of the operator L
to the function g,. The interpretation of this solution is
straightforward: The first term in the series gives the
contribution to the diffracted current density at (x, s)
due to once-reflected neutrons, the second term gives
the contribution to J, from three-times reflected neu-
trons, and so on.

Equations (20) and (26) must be equal. We therefore
have two mathematical prescriptions to calculate the
diffracted current density and subsequently the extinc-
tion coefficient for a crystal of any geometry. Detailed
calculations based on both techniques are carried out in
Sec. III.

I1l. QUARTER-SPACE PROBLEM

Consider a mosaic crystal cut in the shape of a
parallelepiped as shown in Fig. 2. The dimensions of
the crystal are taken to he AXBXC. We illustrate the
application of the solutions (20) and (26) by calculating
the extinction coefficient for this crystal geometry.

A. Application of general solution of differential
equations

The boundary conditions (4a) and (4b) require
J,(0, 8)=d,,, (27a)
J{x,0)=0. (2'Tb)
Using Eqs. (13)—(15), we find that the boundary con-
dition (27a) requires
exp(-G,s) [ dK[F(K)/K]exp(ds/K)=4d,. (28)

Using Eqs. (10) and (12), we find that the boundary con-
dition (27b) requires

J dK F ,(K) exp(K&x) =0. (29)

Expanding the exponentials in Eqgs. (28) and (29), and
using the definition of the expansion coefficients a,
given in Eq. (19) we find
a,=0, forn=0
= (E/Et)mle
Thus, according to Eq. (20) the diffracted current den-
sity at an arbitrary point (x, s) is

for n <O, (30)

s n/2

J %, 8)=d, exp{— T (x + s)] .,Z:E (%—’->H<;> I"[ZE(xS)l/z].

(31)

In order to calculate the extinction coefficient, we
must evaluate the fotal neutvon curvent leaving the
crystal across the exit boundary. We must integrate the
expression (31) for J ¢ along the line connecting the
corner points p, and p, (Fig. 2), that is

P,=Csin26 [* 7 (x, B)dx. (32)
Here, C is the height of the crystal, and the factor
sin26 occurs because the line connecting p, and p, is not
normal to the diffracted beam direction. This integral
is easily performed; we get
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_ © E 2m+1 _ _
P,=J,C 0}’ sin26 Zo (E_) H,(0,A)H,(0,B), (33)
m= t
where the function H,, is given by
1 u
H (u)= m[ v™exp(—v)dv
2 m
=1 - exp(—u) (1+u+';7+---+%). (34)

Before discussing the significance of Eq. (33) and calcu-
lating the extinction coefficient, we will apply the

integral techniques of Sec. IID to obtain the same result.

B. Application of solution of integral equations

For this problem the application of the result (26) is
‘straightforward. We have

x,(s)=0, (35a)
S,(x)=0. (351)
Therefore, the function g, is
g,=d, jos exp(G,s’)ds’
=J, 5, [exp(7,s) - 1]. (36)

Consequently, the diffracted current density at any
interior point (x, s) due to once-reflected neutrons is

JP =J, exp[- 7 ,(x + 5)](5/7,) [exp(T,s) - 1]. (37
Applying the operator L to g,, we get
Lg,=d,0;} fordx’ j:ds' [exp(o,s') - 1]

=J,0;{x0;{exp(o,s) - 1] - xs} (38)
Therefore, the diffracted current density at the point
{x, s) due to three-times-reflected neutrons is

JP =J expl-0,(x +5)] 525, {x5, [exp(7,s) - 1] - xs}. (39)
We find for (2m + 1)-times-reflected neutrons

JEmD = J exp[- 0,(x + s)| ®" 1 o
exp(a;s) -1 x™ & x™s” )
x( 7 ml T H miklor (40)
The second term is zero for m =0. To calculate the
diffracted neutron current leaving the crystal which
results from (2m + 1) Bragg reflections, we must inte-
grate J¢™! on the boundary from point p, to point p,
(Fig. 2). That is,

P@EneD - C 5in26 [ JZ™D (x, B) dx. (41)
We get '
P@EmL = J Co} sin26 (0/0,™H,(0,A)H (0 ,B), (42)
where H,, is defined by Eq. (34). Since the total dif-
fracted current is

Pd: Z P‘(’thl), (43)

m=0

we see that this result is identical to Eq. (33), as it
must be.

C. Extinction coefficient €

In order to calculate the integrated diffracted current,
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one must know (or assume) the functional form of the
mosaic distribution function W(A), and also make some
assertions on the extent of the primary extinction within
a mosaic grain. To start, we will assume that there is
no primary extinction, and that W as a function of the
mosaic grain orientation angle A is given by
W(a)=1/2V37n, for |A| <V3T
=0, for |A| > V3. (44)

This distribution was used by Hamilton. ® We call 7 the
mosaic spread. In the absence of primary extention

T=QW, (Ref. 1) (45)
where
Q=23| F4|?/V?,, sin26,. (46)

The symbols here have their usual meanings: A is the
neutron wavelength, F is the structure factor (including
the Debye-Waller factor), V., is the volume of a unit
cell, and 6, is the Bragg angle.

The integrated diffracted current is defined by
R=[dk, [ daP, (47)

In the kinematical limit, where ¢,A and 0, B are small,
the integrated diffracted current is

Ry,=1,QV, (48)

which is independent of the functional form of W(A). I,
is the total curvent density incident on the sample,
namely

L= [ &'kyd,. (49)
V is the sample volume. For our problem, it is easy to
establish ‘Eq. (48) using Eq. (42). For our problem

V=ABC sin20. (50)

If we make the additional assumption that p is large in
comparison to o, then the integrated diffracted current
can be modified by an absorption coefficient

) =(1/V) [ exp(ut) dv, (51)

where { is the path length from the entrant point to the
exit point for diffraction from the volume element dv.
For our problem

v(k)=1{1- exp(- pA)][1- exp(- uB)|/u®AB,
and

(52)

Ry=v(u),QV, for small 0A and 0B, and u > g. (53)
We should point out two facts which result from these
rather simple considerations:

(i) Factoring-out of an absorption coefficient ¥ which
depends only on absorption (i.e., u) and not on scat-
tering (i.e., o) can only be done under the restrictive
condition that p > ©. This condition is seldom met in
neutron diffraction in single crystals.

(ii) A calculation of the integrated diffracted current
using only once-reflected neutrons gives a somewhat
more accurate result than the kinematical formula (53),
since it includes attenuation due to Bragg scattering.
The result for our problem is
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FIG. 3. Contributions to the extinction coefficient € from
once-, three-, and five-times-reflected neutrons as
given by Eq. (64). The abscissa z2=gA=0B.

RMW =1, Csin26 [ da(o/0%) (1 - exp(~ 0,4)][1 - exp(- 0,B)].

(54)

If we assume that the mosaic distribution is given by
(44) and call

0, =Q/2V3 7,
then, the integral in (54) is simply
R® =2V3 I C sin26[o,/ (1 + 0,)]
x{1 - exp{— (1 + 0 )A]} {1 - exp[- (n + 0;)B]}.  (56)
Note that when o,/u <1 we recover Eq. (53).

(55)

By definition, the extinction coefficient € is the ratio
of the observed integrated diffracted current to that
which would be observed if there were no absorption and
no multiple Bragg scattering. Thus,

e=R;! [ d’k, [ dAP,. (57)

The integration over the distribution of incident wave
vectors cancels in this expression (as long as the in-
cident beam is nominally monoenergetic and collimated).
Thus, if we simply set J,=1 in all of the equations of
Secs. IIM A and III B, the definition above reads

e= [ dAP,/QV.

A sound method for computer calculation of € is to
calculate the individual contributions to ¢ from once-,
three-times-, five-times-, ..., (2m + 1)-times-re-
flected neutrons, and then form the sum. That is

(58)

€= Z g@me :(Qv)-l E f dAPz(izmd). (59)
m=0 m=0

For our problem, the first two terms of this series are

€D =52 A"B[1 - exp(- 6,A)][1 - exp(0,B)], (60)
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€ =072A" B (02/0,)[1 - exp(-G,A) (1 +7,4)]
x[1-exp(G,B)(1+0,B)]. (61)
The mth term is
e2m) =52 A1 Bl (5, /5,)*"H,(0,A)H (0,B). (62)

We will call Eqs. (60)—(62) the “AB-extinction” formu-
las. In these equations 0,=p +0,. If one makes the
common assumption that W(A) is a Gaussian function,
namely,

W(a)=[1/(2m)"/%n]exp(— A%/2n?), (63)

then the integrations in (59) should be done numerically.
1t is, of course, possible to expand the exponentials,

and do the integrations over A term by term analytically;
however, we do not pursue this here.

IV. DISCUSSION

In this section we discuss the significance and poten-
tial usefulness of the AB-extinction formulas. We also
give a brief account of the derivation of the formula for
7 [Eq. (45)] in order to provide some physical insight
into the assumptions which underlie the validity of the
basic transport equations [(2a), (2b), (8a), and (8b)].

A. AB-extinction formulas

If A=B, and the absorption is negligible, Eq. (59)
takes on a particularly simple form:

where
z=G5,A=0,B. (65)

This function is shown in Fig. 3. The contributions to
¢ from once-, three-times-, and five-times-reflected
neutrons are also shown. Note that for z <2 (or for

€= 0. 3), the first three terms give a very accurate
(better than 1%) approximation to the sum. For z <0.2
(or for €= 0. 8), the simple linear formula

e=1-2, for 2<0.2, p=0 (66)

is accurate to about 1%.

We would like to suggest a potentially very useful
possibility. Since the dimensions A and B in this problem
are precisely the average linear dimensions of the
crystal along the incident and diffracted beams, respec-
tively, it is likely that the AB-extinction formulas apply
with reasonable accuracy to any simple polyhedral crys-
tal, if we interpret A and B to be mean linear dimen-
sions along these two directions. This suggestion can
be checked by numerically integrating Eqs. (2a) and (2b)
for various crystal shapes. We have not pursued this
in any detail.

It is apparent that the extinction coefficient, in gen-
eral, depends on both crystal shape and setting. For a
sphere or-a cylinder it is clear that the extinction de-
pends on the scattering angle 26. Detailed numerical
calculations were carried out by Hamilton'® for a cy-
linder. We have found numerically (using Hamilton’s
results) that the extinction in a cylinder of diameter D
can be calculated to an accuracy of better than 3% for
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FIG. 4. Comparison of the extinction coefficient for the paral-
lelepiped shown in Fig. 2 (for A=B) with the formulas sug-
gested by Zachariasen.

oD < 3 using formula (64), if we set
2="0A =GD¥(26), (67)
where the angle-dependent factor is

£(26)=0.734 + 0. 324 exp[0. 4624(26)*] (26 in radians).

(68)
Since the series given in Eq. (64) converges very rapid-
ly (only the first few terms are necessary in the range
0< z<3), these equations provide a simple and accurate
method for calculating the extinction in a cylindrically
shaped crystal.

To obtain a formula for a sphere, we note that the
extinction coefficient for a sphere of diameter D is
related to the extinction coefficient for a cylinder of
diameter D’ by

esphere(D):(z/D) j:)/zecvllnder(D’)dy’ (69)
where
D (y)=(D%/4 - y?)*/2, (70)

The integral can easily be evaluated numerically.

The difficulty one faces in solving the transport equa-
tions for a cylinder or a sphere exactly is that the
solution must be obtained in a piecewise sense. The
reason for this is the fact there are discontinuities in
the derivatives of the current densities along certain
lines (planes). This problem was dealt with in the paper
by Werner, Arrott, King, and Kendrick” and has been
discussed in detail by Zigan.® A comparison of the exact

results of this calculation with the suggested extinction °

formulas of Zachariasen is shown in Fig. 4. We note
that if €= 0. 8, the simple linear formula [Eq. (66)]
works. However, when the extinction is large, the
deviations between Zachariasen’s formulas and the
correct results are large.
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B. Primary extinction and the formula for ¢

The transport equations written in Sec. II, and used
in the solution of the problem in Sec. III, apply rig-
orously only to the secondary extinction problem in
ideally imperfect crystals. It is incorrect to assume
that they apply inside a perfect crystal region (as as-
sumed by Zachariasen), since the current flow is not
along the two directions x and s. The problem of cur-
rent flow in perfect crystals has been discussed in
many papers, and is a topic of great interest and im-
portance in diffraction theory (see for example Kato'!)
and the review by Batterman and Coles'?, and the refer-
ences given in these papers).

In order to see how we might modify the analysis of
Secs. II and III to include the effects of primary ex-
tinction, and to gain some feeling of when these modifi-
cations might be valid, we will review the derivation
of ¢. Derivations along somewhat different lines are
given in numerous places, see for example James. ?
We envisage any macroscopic region of the crystal as
being made up of many small perfect crystals, slightly
misoriented with respect to each other. The macro-
scopic region under consideration is assumed to be
small in comparison to the total crystal volume. The
procedure used to calculate ¢ is to first calculate the
cross section (in the Born approximation) of one of these
small perfect crystal grains, and then to integrate this
cross section over the angular distribution of mosaic
grains.

The scattering cross section do/dQ for a small
spherical perfect crystal of radius R is given by Eq.
(A8) in the Appendix. This cross section is related to
the cross section per unit volume in k space by

d3g do
dr’® B2dQ

The delta function §(k — #’) requires that the scattering
be elastic. We describe the orientational distribution
of mosaic grains by

N(Q, B)ZNOW'(Q, B) (72)

(=number of mosaic grains per unit volume per unit
orientational solid angle). W’(a, B) is the normalized
mosaic distribution function; a is an angle in the
horizontal scattering plane and §8 is an angle in the verti-
cal plane. If 6V is the average volume of a mosaic

grain (which is assumed to be spherical) then

5V =$%m1R®=1/N,. (73)
The probability for Bragg scattering per unit path, o(A),

for a crystal orientation A, in a mosaic crystal com-
posed of many of these small perfect crystals is

sa)= % [ aadpwia,p) [ @ LEAPRANY

(kK—k')= 5(k - B). ()

where
dg=k' -k-G. (75)

k is the incident wave vector, k' the wave vector of the
scattered beam, and G the reciprocal lattice vector.
For spherical grains we can perform the integration
over k’. For a given Bragg reflection we get
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- 2
HA) = |Fgl? 676V

sin[RG cosfz(A — )]

v kznzfdadﬁw(o"ﬁ) RG cosb,(A - a)

(76)

The integration over g is immediate (giving 1). If we
define

cell

zZ=RGcosfy(A - a), ('

W(a)= [ dpw (a,p), (78)
the expression (76) for o(A) can be written

- _Q b _ F4 sinz

oa)=2 /w dz W (A e 93> 2 e, (79)

Q is defined by Eq. (46). If we assume that W is the
Gaussian function as given in Eq. (63), and we make the
replacement

sinz/z —~ exp(—22/m) (same height and area), (80)
then

o(a)=[Q/(27) /2, | exp(~ &% /2n%). (81)

The effective mosaic spread 7,,, is related to the actual
mosaic spread by

_ <2Rsz cos?sn? + 11)”2
Nets =T\ 3R7c2 cos*,n?
Although this result has been derived in a somewhat dif-
ferent way, it is the same as Eq. (35) of Zachariasen’s

paper (Ref. 2). There are two limits of the expression
(82): (i) Very small grain size:

Nets=(1/2)'/2(RG cosb,). (83)

(82)

(ii) Large mosaic spread 7:
Nets=1- (84)

Although the derivation of o(A) given here (and in
Zachariasen’s paper) is valid, the use of the formula
(81) in the limit (83) in the transport equations (2a) and
(2Db) is inconsistent with the necessary assumptions.
The reason for this is the following: As the grain size
R decreases, the natural width of do/dS? increases in
all three directions in k space. What one is attempting
to do here is to take into account the broadening in one
direction, namely perpendicular to G, while ignoring
the broadening in the direction (in the scattering plane)
parallel to G. Thus, in the limit where the mosaic grain
size is very small, and the width of a Bragg reflection
is dominated by this natural linewidth, Eqs. (2a) and
(2b) must be rewritten to take this into account. The
correct equations are

zﬂ%’;’c—s-’—!i)-=-J‘(x,s,k)f Ko (k—k)
+ [ @R FK ~ kW (x, s, k'), (85a)
%(—;‘giﬂz-gfd(x,s,k') [ ko k' ~k)
+ [ dk5k — K W (%, s,K), (85b)
where
ok~k)= = | dadgw(a,p) -g;]—a(k’—k—G). (86)
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The extraction of J, from the integral in Eq. (85a) and
J; from the integral in Eq. (85b) is possible only in the
case when the domain size is sufficiently large, so that
we can assume that the cross section contains the delta
function §(k' —k — G); that is, only when do/df is nar-
row compared to W. It is, of course, possible that after
making certain reasonable assumptions about the form
of o(k —~k’) that Eqs. (85a) and (85b) could be solved. We
have not pursued this possibility.

The problem raised here was fully appreciated by
Darwin.! In his preliminary comments on the problem
of reflection from a slab-shaped mosaic crystal he
states:

“The whole reflection from a deep crystal results
from the reflections in the successive layers. The
multiplicity is of a different type from that of [the dy-
namical theory] because rays are not now coherent. The
problem of these multiple reflexions would be ex-
ceedingly difficult if it were treated exactly: for each
layer will, on account of diffraction, spread out incident
parallel rays into a certain range of angles and so will
continually change the angle at which they attack suc-
cessive layers. But, if (as assumed) the crystal is so
imperfect that diffraction does not change the direction
of the rays to an extent comparable with the scale of
variations of the blocks, then it will be legitimate to
regard the reflected rays as coming plane parallel off
the crystal (at an angle exactly 20 to the incident beam).
In consequence of this it will be possible to replace a
highly complicated system of integral equations by dif-
ferential equations of a simple type. ”

If the average size of a mosaic grain is sufficiently
large for the internally scattered waves to be rescat-
tered within the grain, then the kinematical result for
the cross section must be modified to include these
multiple scattering effects. It is not correct to describe
this process using the transport equations of Sec. I
since the incident and diffracted waves are coupled
together in a long-range coherent manner. One must
solve the Schrodinger equation for the neutron and elec-
tron cases, and Maxwell’s equations for the x-ray case,
subject to the appropriate boundary conditions. The
solutions to two problems are well-known: (i) Slab-
shaped crystal in reflection (Bragg case) and (ii) a slab
in transmission (Laue case). The original development
of the dynamical theory of diffraction was carried out by
Darwin, '*1% Laue, 1® Ewald, "'*° Bethe, ?° Prins, 2* and
Lamla. ?® The neutron case has been treated many years
ago by Goldberger and Sietz. 2* Reviews and extensions
of the theory have been given by James, ¢ Zachariasen, 2°
and Batteman and Coles. !? Extensive work on the solu-
tion of the dynamical diffraction problem for certain
polyhedral-shaped crystals has been carried out by
Kato?®?” and by Saka, Katagawa, and Kato. 28+?°

It is clear that the integrated diffracted current per
unit volume leaving a given mosaic grain decreases with
increasing size as a result of multiple scattering. Thus,
the expression (45) for ¢ must be decreased by a certain
fraction ¢,, called the primary extinction coefficient,
namely

T(A)=¢,QW(A). (87)
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FIG. 5. Schematic diagram of mosaic block orientations used
to justify the use of the primary extinction formulas (88) for
the Bragg case (a) and the Laue case (b).

The problem is to calculate ¢,. It would be important

to solve the dynamical diffraction problem for a sphere.
This has not been done. In the absence of such a solu-
tion, we recommend using the results of the slab
problem. This procedure is physically reasonable:
Suppose the length of the mosaic grains is somewhat
larger than their thickness, and they are oriented as
shown schematically in Fig. 5(a). It is then clear that
a calculation based on the Bragg-slab geometry would
give a fairly accurate estimate of ¢,. Alternatively if
these grains were oriented as shown in Fig. 5(b), the
results of the Laue-slab geometry would be more ap-
propriate. As long as the mosaic grains are numerous
and reasonably small, some average of the results of
these two configurations should give a result which is
approximately correct (and probably functionally nearly
exact).

In the limit of small primary extinction (¢,~1.0) and
small absorption, the calculations of Zachariasen??
based on von Laue’s'® dynamical theory for a crystal of
thickness ¢ give

_q 1 _sin26 , 1 ,sin®20 _,
g=1- 3Q N D?* + ZOQ 2 D*~ ..., Laue case
_ 1 _sin26 , 2 ,sin?26 _,
=1- 3Q X D?+ 15Q —)F_—D ~-.-, Bragg case,
(88)

where D =//sind for the symmetrical Bragg case and
D=t/cosb for the symmetrical Laue case. For a mosaic
crystal, D should be interpreted as a mean linear di-
mension of a mosaic grain. The reason why the coef-
ficient of the second term is negative and the coefficient
of the third term is positive is clear: The second term
results from neutron waves scattered twice, thus con-
tributing to the forward diffracted wave. The third term
is positive and results from waves which have been
scattered three times, thus increasing the strength of
the reflected beam. This sequence of alternating signs
must occur in the solution of the dynamical diffraction
problem for a crystal of any size or shape. It is also
clear that the relevant variable in the expansion is

Q sin(26)D?/x. The numerical coefficients 3, &, and

£ in Eq. (88) will be geometry dependent. If we accept
the suggestion made above, then the average primary
extinction coefficient should be taken to be
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Sin26p 1, 11 o, sin®26s

4 )
X 120 A2 b - (89)

1
€,= 1- §'Q
The attempt to extend the ideas given here to large
primary extinction leads to two conceptual difficulties:

(i) If primary extinction is large, the mosaic grain
size D may also be large. If D is too large, the assump-
tion of there being numerous randomly placed and
oriented grains breaks down, and a calculation of co-
herent interference effects amongst the grains must be
carried out.

(ii) When primary extinction is very large, the neutron
current density is highly discontinuous, since a neutron
of a given wave vector k is nearly certain to be Bragg
reflected in a given mosaic grain if it is properly
oriented. In this limit, the transport equations of Sec.

11, which describe J, and J, as continuous functions of
the coordinates (x, s), break down. To some extent this
difficulty can be conceptually circumvented if the
mosaic distribution function is broad, and we redefine
the current densities J; and J, to include neutrons con-

d
tained in a fairly wide band of angles and wavelengths.

In the limit of a macroscopic perfect crystal, the
prescription given by (87) leads to the correct result,
since ¢, is then very small, and ¢ is therefore small.
The small G expression for € resulting from the
definition (58) is then

€=¢,. (90)

This is correct by definition.

V. SUMMARY AND CONCLUSIONS

The purpose of this paper, as mentioned in Sec. I,
has been to place the theory of extinction in mosaic
crystals on sounder mathematical and physical ground;
it has not been to provide yet another simple prescrip-
tion to correct data for extinction. However, the rela-
tively simple “AB-extinction formulas” of Sec. III, used
in conjunction with the suggestion that a correction for
weak primary extinction can be obtained from the exact
solution of the dynamical diffraction problem in slabs,
should prove useful. Anisotropic extinction effects
resulting from crystal shape anisotropy can be taken
into account using these formulas. Anisotropic extine-
tion resulting from anisotropy in the mosaic structure
can be included in the theory in a straightforward man-
ner using the results of Coppens and Hamilton. % An
attempt has been made to present the calculations in a
manner which suggests various extensions and modifi-
cations. The formal solutions to the transport equations
given in Sec. II should be applied to various simple
polyhedral crystals. The solution to the dynamical dif-
fraction problem for a sphere would be very important.

Zachariasen’s extinction formulas have now been ap-
plied to the results of many experiments (see for
example, Zachariasen, 3! Lawrence, * Lander and
Brun, 3 Killean, Lawrence, and Sharma, ** Cooper,
Rouse and, Willis3®), and various attempts to extend the
calculations have been made (see for example, Cooper
and Rouse®®). It is not our purpose here to attempt to
review the entire literature on the subject, or to try to
determine whether the formulas are approximately
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correct on the basis of a reasonably large amount of
experimental data. However, it is fair to say that
Zachariasen’s extinction correction works well in the
limit of small extinction (less than about 20%), that
there are angular-dependent effects which lie outside
the prescription, and that the correction works for
large extinction in some cases, but not in others. In
view of the numerous conceptual and mathematical in-
adequacies of the theory given in Zachariasen’s?'3
papers, why do the recommended corrections work at
all?

It is clear that as long as the extinction is small, a
simple linear correction is quite good (see Fig. 4),
provided that the coefficient of the linear term is left
as an adjustable parameter. Any theory, independent of
its complexity, will give this result. In the determina-
tion of complex crystal structures there are many ad-
justable parameters, and any reasonable (for example,
linear) form for the extinction coefficient which includes
several more parameters will inevitably lead to a better
fit. However, a detailed study of the wavelength depen-
dence of the extinction will show the inadequacy of the
formulas. It would be very interesting to have a fairly
complete set of experimental data on a simple crystal,
of known structure, for a wide selection of wavelengths,
Neutron data would be preferable to x-ray data, since
the scattering lengths are known and are not angular
dependent.

APPENDIX

The scattering cross section for a small crystal in

the Born approximation is

R (A1)
where V(r) is the interaction potential of the neutron with
the crystal, and K is the scattering vector

K=k’ -k. (A2)
The derivation given here is for nuclear scattering; the
generalization of the results to include magnetic scat-
tering is straightforward. V(r) is related to the
scattering lengths b; by,

V(r)=(20%%/m )2 b,;8(r- 1)

V(r) can also be expressed in terms of its Fourier com-
ponents, namely,

V(r)=2 Vgexp(iG-r),
a

2
do (%) | [ exp(-iK-r) v(r)d'r|?,

(A3)

(A4)

where the G’s are the reciprocal lattice vectors. The
Fourier coefficients V, are related to the structure
factors F by

2rr% 1

Vo= Fa, (A5)

a mn Vcsll ¢
where ‘

N

Fg= 2, b,exp(—iG- r,) (N atoms/unit cell), (A6)
j=1

Va=1(1/8Y) fcmm V(r)exp(-iG-r)d’r. (AT)

5V is the volume of the small perfect crystal. We now
assume that the crystal is spherical, with radius R.
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Using Egs. (Al), (A4), and (A5) it is easy to show that
the scattering cross section is

do |F,? [3sin(ggR)~- 3qsR coslq R))
= (6V)2 T S < =), (A8
79 (8V) L (G RY (A8)
where

9,=K-G. (A9)

do/dS is highly peaked about the points q,=0. We will
assume that the crystal is oriented close to one of these
points, and concentrate on only one term in the sum,
namely on one Bragg reflection.
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