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Generalized vector coherent state constructions of totally symmetric U(3) tensors are used to
gain new expressions for the SU(3) DSU(2) X U(1) Wigner coefficients for the coupling
(A1) X (4,0) = (A3u5). These expressions show how the extremely simple formulas of Le
Blanc and Biedenharn, involving a single 9-j coefficient, arise as special cases of a general result
that involves 12-j coefficients. A simpler general result involving only 9-j coefficients and K-
normalization factors is derived in a way that can, in principle, be generalized to the generic

coupling with multiplicity.

I. INTRODUCTION

In the past few years, a vector coherent state theory'™>
(VCS) and its associated K-matrix technique'®’ have been
used to great advantage to evaluate explicit expressions for
the matrix representations of higher rank Lie algebras. The
unitary groups in the canonical chain U(a)DU(n — 1)
D:++DU(2) DU(1) form a particularly simple example,®
and VCS techniques have been used to cast many results for
the U(n) Wigner—Racah calculus into new forms that reveal
the structure of the Wigner and recoupling coefficients in a
new light. It has been shown in particular® that the U(n)
elementary unit projective operators of Biedenharn and
Louck'® can be written down very simply in terms of
U(n — 1) Racah coefficients and the simple K-normaliza-
tion factors of VCS theory. Very recently Le Blanc and Bie-
denharn'' have shown that some classes of U(xn)
DU(n — 1) xU(1) reduced Wigner coefficients are simply
products of U(n — 1)9-j type recoupling coefficients and K-
normalization factors. The question naturally arises: To
what extent can the most general U(n) DU(r — 1) XU(1)
reduced Wigner coefficient be expressed in terms of
U(n — 1) recoupling coefficients and the K-normalization
factors of VCS theory? The earliest detailed applications of
VCS theory have focused on the matrix elements of the gen-
erators of the algebra. Very recently'>'> VCS theory has
been generalized to include the Bargmann space realizations
of more general operators lying outside the algebra. This
generalization now makes it possible to examine the specta-
cularly simple class of U(#) tensors of Le Blanc and Bieden-
harn'' and show that they are a special case of a more general
result. In this generalization, U(n#) DU(n — 1) X U(1) re-
duced Wigner coefficients are expressible in terms of sum-
mations involving U(n — 1) 12+ type recoupling coeffi-
cients. For the Le Blanc-Biedenharn case, these sums
collapse to a single term in which the 12-j type coefficient
collapses to a 9-f type coefficient. The ultimate aim of con-
structing a U(n) tensor operator calculus in a unique (au-
thor-independent) way has not been fully implemented in
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the generic case with multiplicity.'* It may therefore be use-
ful to first reexamine the special multiplicity-free case of to-
tally symmetric U(n) tensors within the framework of the
generalized VCS theory.'*'? It is the purpose of this investi-
gation to generalize the Le Blanc-Biedenharn result. To
avoid the multiplicity problem, however, the investigation is
restricted to the special case of totally symmetric tensors. To
avoid some of the notational complexities of the Gel’fand
notation needed for general U(#), a further simplification to
n = 3 is made so that the U(n — 1) recoupling coefficients
are expressible in terms of well-known angular momentum
recoupling coefficients of 12-j, 9-j, or 6 type. Three new
expressions are given for the SU(3) DSU(2) X U(1) re-
duced Wigner coefficients for the most general coupling of
type (A,,) X (4,0) — (A;143). In terms of their complexity
and the number of required summations, these expressions
are comparable to previously known' results. Since all re-
sults are expressed in terms of SU(2) recoupling coefficients
and the K-normalization factors of VCS theory, these results
reveal the structure of the SU(3) DSU(2) XU(1) reduced
Wigner coefficients in a new light. They are derived by VCS
techniques that can, in principle, be generalized to the gen-
eric case with multiplicity, the ultimate aim of this type of
investigation.

The paper is organized in the following way. Section II
gives the Bargmann space realization of totally symmetric
U(3) tensor operators using the generalized VCS ap-
proach.'” In this approach, a U(3) tensor operator is fac-
tored into two parts in an SU(2)-coupled basis: (1) an “in-
trinsic” operator acting only on the generalized VCS
“vacuum” states, U(1) extremal states in the U(3)
DSU(2) XU(1) scheme; and (2) a Bargmann space (z-
space) operator that changes the U(1) weights. As soon as
the “intrinsic” operator reduced matrix elements are known,
the evaluation of SU(3) DSU(2) X U(1) reduced Wigner
coeflicients is reduced to an exercise in angular momentum
coupling. The “intrinsic” operator reduced matrix elements
are evaluated in Sec. IIl. The new expression for the
SU(3) DSU(2) XU(1) reduced Wigner coefficient is then
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given in Sec. IV. For the coupling (4,4,) X (4,0) - (A314,).
The expression of Sec. IV is particularly simple in practice if
n, the number of squares added to row 3 of the Young tab-
leau for (A,u,) is very small compared with (4, — n) the
number of squares added to rows 1 and 2. The case n =0
leads to the first Le Blanc-Biedenharn result. For the case
when (A, — n) is small an alternate but similar expression
may be more sueful. This is given in Sec. V. For the case
(A, — n) =0 it collapses to the second Le Blanc-Bieden-
harn result. The general expressions of both Sec. IV and V
involve 12-j coefficients. An even simpler expression, involv-
ing only 9-/ coefficients, is derived in Sec. VI by a buildup
process that compounds the two special Le Blanc-Bieden-
harn results. This final approach not only gives the simplest
result from the point of view of actual computations but also
shows the greatest promise for the needed generalization to
the generic case with multiplicity.

1l. VCS REALIZATION OF TOTALLY SYMMETRIC U(3)
TENSORS

The U(3) generators E;; can be realized in the usual
way in terms of oscillator creation and annihilation opera-
tors, a}, and a,,; with “spatial” index i = 1, 2, 3, or x, y, z,
and “particle index p, withp =1, ..., n:

l n
EY Zl (el +a,al,). (1)
<

The complementary'® U(n) generators C,, are

E, =

3
= 3 (ahay, +agal,). 2)
i=1

For U(3) it is sufficient to choose n = 3, and this choice will
be made. However, the specific value of n plays very little
role in the present investigation. [A restriction to SU(3)
with n = 2 has been shown to have some advantages by Le
Blanc and Rowe'” but would require some modification in
the present construction. ]

In the VCS theory, the U(3) generators are organized
into (1) an Abelian nilpotent algebra of raising operators
E,=A,, with i =1, 2; (2) an Abelian nilpotent algebra of
lowering operators E;; = A, with i = 1, 2; (3) The U(2)
subgroup generators E;; with i, j = 1, 2; (4) the U(1) sub-
group generator E,;.

The generators of U(2) @ U(1) are called the core sub-
group generators.

The U(3) state vectors can be specified by the Young
frame integers [m,; m,; m;;] with standard Gel’fand sub-
group labels m,,, m,,, and m,,. Alternatively, they can be
specified by the total number of oscillator quanta
N=m,, + my; +my;, the Cartan SU(3) labels
A=m; — My, W=my —my;, and U(2)XU(1) sub-
group labels given in the notation of Ref. 5 by angular mo-
mentum quantum numbers of I, M, and the U(1) label ¥,
the eigenvalue of J(E,, + Ey» —2E;3), with Y
=4 +2u)—w, w=0, 1, .., 4 +pu. Note that
W=my+my —my—my, I=im,—my), M,

= m,; — }(m,, + my,). Note also that w gives the eigenval-
ue of E;,. The set of generalized ‘“‘vacuum” or “intrinsic”

Co =
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states of VCS theory will be chosen to be the states with
w=0, [N(Ag)w=0,1=A4/2,M, = m), for which

E;|NAw)w =0, I=(A/2)m)=0,
for i=12;m= +4/2,.,—A4/2. 3)

Note that the operators E; are raising operators for Y. The
state withw = 0, m = 14 is a highest weight state. In terms of
the Elliott label'® e = — 3, however, the E; become lower-
ing operators and the vacuum states become lowest e-weight
states. The words raising and lowering will therefore be
avoided. The E;; =4, will be named annihilation operators
instead since they annihilate the generalized vacuum states
of Eq. (3), whereas the E;; =4 | can be named creation oper-
ators. In the U(3) X U(n) realization, with n = 3, the gener-
alized vacuum state with m = + 14 has the form

INAp)w =0, I=m=21/2)

¥ fo|w

a;,  ap
A

=N "ylal,) . ¢

a,; dy

T “

ailll a, aIs ”

X a;l a;2 a;3 ’ (4a)

1 T
ay O O3

with

= A+ @+ D)A+p+2)
g =
(A +p+mys+2)u + my; + 1)imy;!
The vector coherent state is built in terms of two com-

plex variables z; (i = 1,2), through the action of the creation
operators E;; on the generalized vacuum or intrinsic states:

|Z;N(Ap)m) = exp(z¥E;, + z¥E5,) |IN(Apw)w
=0,(1/2)m). (5)

Note that this coherent state carries the labels N(Ax) and
m= +A4/2,.., —A/2.Itformsa (4 + 1):dimensional ar-
ray, i.e., it is a vector quantity.

State vectors can be expanded in terms of the U (3) basis
vectors |N(Apg)wIM, ). In the VCS method these are
mapped into their z-space functional realizations:

|N(Ap)wIM, ) — |N(Au)wIM, ) ycs,
IN(/I,H)U)IM1>VCS .

. (4b)

= Y AN(A)O(A /2)m|e**|N(Apu) wIM, )

X |N(Ap)0(A /2)m) @ |0), (6)

with z*A = z,4, = z,E|; + z,E,;. Note that this is a
linear combination of intrinsic space standard kets,
|N(Ap)0(A /2)m), with coefficients that are functions of z.
For completeness the z-space vacuum ket |0) (for the action
of the z bosons), has been included in Eq. (6). However,
since its z-space realization is the simple number 1 it will
usually be omitted throughout later sections.

Operators O are mapped into their z-space realizations
I'(O) via
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(O|N(Ap)wIM,;))ycs + Z(N(/l,u)o im|e"“0e_"‘e’"|N(/1,u)wIM,) |N(A)0 im) ® |0)

=3 3 (N(Aw)O(A /2)m|T () |N(AuYBIM, ) N (A )BIM, || N(Ap ) wiM, ) IN(/iu)O—m)éb 0), (7
m wIM,
|
with and
['(0) =0+ [z°A,0] + }[z-A, [22A,0]]+ - . (8) {al,,al,} = {ta"h' 5, (a2 . };

The z-space realizations for the generators E,; are given in
Refs. 5 and 8, but are repeated here for completeness.
With i, j= 1,2,

M(E,)=T) =2,
dz;
I(E =E a - intr Ecol].
( ij)_ ij—zja—Zi_Eij + L (9
2 ad
L(Ey))=TMUh =3 (]Ea,.z,, — Ej32, — 2,2, 6——)
a=1 a

Note that they are functions of the z-space operators
z;, d/dz;, and intrinsic operators E;; (denoted by double
lines). These intrinsic operators are defined only through
their action on the intrinsic states. They commute with the z-
space operators z;, d/dz;, and in the matrix element of
I'(O) of Eq. (7) they must be worked through to the left so
that they can act on the intrinsic state. Since generators do
not change the irreducible representation of the group, the
E,; connect intrinsic states only to intrinsic states (possibly
w1th m'#m). The E,; are thus defined through their pure
intrinsic state matrix elements, e.g., withE,=1_,

(N(A)O(A /2)m|E | N(Au)O(A /2) (m — 1))
=JA2+my(A/2—m+1).

d12,13

(10)

In the generalized VCS metho operators O outside
the group algebra are to be included. Since the action of such
operators can change the U(3) irreducible representations,
Eq. (7) is to be generalized to

(O|N(Ap)ywIM,))ycs

- 3 S S

N Twy ' i,
XT(0)|N(Ap)WIM,)
XAN(Ap)YWIM, || N(Ap)wIM, )
X|N'(A'u)0(A'/2)m") ® |0). (1)
The oscillator creation and annihilation operators
(al,, a;,, for specific particle index a are of particular inter-
est since more complicated operators can be built from these.
We note first that the operators al,, E; = 4,,2*, (i = 1,2),
transform as U(2) tensors of rank [10], whereas their con-
jugate partners a,,, E;; = A [, z; transform as U(2) tensors
[0-1]. In terms of standard spherical tensor T/, therefore,

/l’
Io_ml
0= I

{2, 28} =12, (z*), Z'/ ), (z%)}, (12a)
whereas
{szz} = { +Z 1121/2 (z), — Zl/21/2 (Z)}
={(-1DV~"Z'2 ()}, (12b)
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{ala:aza} = {(a)lizl/z’ - (&lfl/z . (13)

Note also that al, and a,, are SU(2) scalars.
The z-space realizations of the operators af,, a,, can
now be constructed by the application of Eq. (8) to yield

T((a))) = (a))?, (14a)
T(al,) =af, +dl,z, + ¢,z

= (&}) —V2[&]'*XZ'*(2)]3, (14b)
[(a;,) =d;, = (¢.)o, (15a)
((e,) ) = ()7 — Z 7%(2) (&, )5 (15b)

After the application of Eq. (8) the operators a,, ;, have
been formally replaced by double-line intrinsic operators.
These double-line operators again commute with the z; and
d /3z;. They are again to be worked through to the leftin the
matrix element of I'(OQ) in Eq. (11) where they are then
defined through their actions on the adjacent intrinsic state.
Unlike the matrix elements of Eq. (10), however, they can
convert an intrinsic state with N'(1’u") to a nonintrinsic
state, (with ws£0), in the representation with N(Au). The
practical application of VCS theory thus depends on the e-
valuation of the matrix elements of double-line operators
such as &', ¢& between the purely intrinsic states on the left
and the permitted states on the right (see Sec. III). Finally,
note that the square bracket in Eq. (14) denotes angular
momentum coupling using a right to left coupling order.
This right to left coupling order convention simplifies phase
factors in the VCS constructions and will be used through-
out.

The VCS mappings of Egs. (6) and (7) are nonunitary.
The I'(O) are, in general, nonunitary realizations of the op-
erator 0. Clearly, L #(C4)); and
I'(al,)#(I'(a;,)). Similarly, the VCS state vector
|IN(Ap)wIM,)ycs of Eq. (6) is not normalized. It will be
instructive to give a specific evaluation of
|IN(Ap)wIM, ) s, through

(N(Ap)O(A /2)m|e“A|N(Au)wIM,)
= (N(Ap)wIM,|e** |N(Au)0(A /2) m)*

= Y AN(Ap)wIM,;|Z (A

k,my

X |N(Ap)O(A /2)m)y*Z 4/*(z), (16)
where we have used
A" = ZFE;, + 22E;, = 2[ATV2 X Z (213, (1T)

and repeated use of the angular momentum recouplmg
transformation:
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[[Z(k— l)/Z(AT) Xz(k— l)/Z(Z*)]OX [Aﬂ/lle/Z(z*)]O]g

172 172 0
=[(k—=1)/2 (k—1)/2 0O
k/2 k/2 0

X[[Z(k— l)/Z(AT)le/Z(AT)]k/Z

X [Z D2z X Z (a4 )8 (18)

- k(k;—l) [Z*2(AT) X Z (2" 1.

In Eq. (18) we have used the value of the unitary (square
bracket) form of the 9-f recoupling coefficient and the build-
up relation for the z-space boson polynomials:

[Z w./Z(z) szZ/Z(z) ]'u:I/Z
=8, + wV (W1 + W)V w W) Z 2% (2).

In Eq. (16) we have also used the conjugation relation
(Z*72,(2%)) = (= D" Z (). (20)
The buildup relation together with Eq. (12) leads to the

specific construction
Zw/z(z) _ (zl)w/z — rn( _ zz)w/Z +m ’

" V(w/2 —m)W(w/2 + m)!

(19)

(21)

where this is an eigenfunction of (I,)*" = }(E$" — ESY"
and (I°I°") with eigenvalues m and (w/2)(w/2 + 1);
[see Eq. (9)]. The creation operator polynomial Z (Ah) is
obtained from Z(z) by the replacement z, —A4 [. The non-
normalized state |@,, 1y ), constructed through the action of
w creation operators A', via

|Bumre,) = [Z“2(AT) X IN(Ap)O(4 /2)) 130
= S (A /2)m(w/2) (M, — m)|IM})

XZ%E oy (ADIN(AW)O(A /2)m)  (22a)

isorthogonal to states | N(Au)w'I'M ;) withw' #w,or I '#1
M ;% M, but is not normalized. The normalization factor is
given by the K-matrix element of VCS theory>®

[for the derivation, see Eq. (28) below]:

|N(/1,u)wIM,) = [l/K(/llu)wl] I¢w1M, ).
Equations (6), (16), and (22) thus lead to
|N(1,U)LUIM1)VCS

(22b)

=K(Ap),, 2<121- mL;—(M, — m)|IM,)

XZ 4, (2)|N(Ap)0(4 /2)m)  |0)
=K(/1,Uf)w1|N(/{,U')WIM1)- (23)

The normalized z-space state vector will henceforth be de-
noted by
1

|N(Ap)wIM) = [Z'”/Z(z) X | (Au)0 -%)]

M

=] (Aw) [izv—xi]l,M). (24)

2

Note, in particular, that the state vector in Eq. (24) has
been written with a round parenthesis. (Note also that the z-
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space vacuum vector |0) will be omitted henceforth for
economy of notation; for the same reason the label N will
henceforth be omitted but will be quietly understood.) The
z-space state vectors of Eq. (24) form an orthonormal set
with respect to the z-space integrations with the standard
Bargmann measure.® In evaluating matrix elements, it will
be very useful to indicate explicitly whether matrix elements
are to be calculated through their z-space integrations (with
the Bargmann measure) or in standard Hilbert space form.
For this reason the state vector of Eq. (24) has been written
with a round parenthesis, |* - *), whereas the state vectors of
Eq. (22) are interpreted as standard Hilbert space vectors
and are denoted by angular brackets, |- - ). The appearance
of round parentheses in a matrix element henceforth will
automatically signal z-space integrations and pure intrinsic
space operations. The appearance of angular brackets on the
other hand, will signal standard Hilbert space operations. To
transcribe the matrix element of an operator O between
states of the orthonormal Hilbert space basis [ N(Au)wIM, )
to the corresponding z-space matrix element, we not only
need to transcribe to the orthonormal z-space basis
|N(Ap)wIM,) but also need to transform the nonunitary z-
space realization I'(Q) to a unitary realization of the opera-
tor to be denoted by ¥(O). In the VCS technique, this trans-
formation is achieved via the K operator:>

7(0) =K ~'T(0)K = (y(ON)". (25)

The Hilbert space matrix element of O can thus be tran-
scribed to the z-space matrix element of y(O):

(A" yw'I'M'|O|(Ap) wIM )
= (A 'YW I'M'|7(0) | (Ap)wIM)

XT'(0) (26)

(Aw) [%x%] IM)KW)W,-

This is a basic relation that will be used repeatedly to calcu-
late matrix elements of intrinsic operators. It can also be
used to verify the normalization factor character of X in Eq.
(22). Note that

(o | (A ' HWI'M’)
-3 (g = nl)
X (=127 ™((A)0(A/2) (M — m)|
XZ"Y2 (A (A uHwI'M'). (27a)

where we have used the conjugation properties of the Z of
Eq. (20) to obtain (Z“*(AN)) = (— 1)*2~"Z*2 (A).
Equation (26) can then be used to give

((A)O(A /2) (M — m)|Z "% (A (A 'y ywI'M')
= ((An)0(A /2) (M — m)|
XK T'T(Z 2, (A)K | (A 'wHw'I'M')
3

A
lx((/lp)O 5 (M m)|(Z

X l(i lﬂl)erer)K(/l ,ﬂ')w'l'
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— ( _ l)w/z — m((/qv "u:)w:I/Ml|Zz/2(z) | (/1,u)w

=0A /)M —m¥YKA'UW)yr, (27)
where we have used I' (4,) = 3 /9z;, and the fact that d /dz;
is the adjoint of z, with respect to Bargmann integrations.’
Finally, K or K ~! acts as a simple unit operator on the nor-
malized intrinsic state. Equations (27a) and (27b), with the
orthonormality of the states (24), then give
(¢w[M| (l ',u')w'I’M')

= (A 'uW"HYWI'M'|(Aw)wIM*K(A'uw')

= 5(;. Y AE) SuwwBr10m KAL) o1, (28a)

leading to

(¢wIM |¢wlM)
=2 2 (Durn | (A ' pHWI'M')

(A'u) wI'M’
XA YW ' M |Gun)
= | K(Ap) ™. (28b)

The K-factors have been evaluated by VCS techniques:**

(A +pu+ D

(29a)

KQAp) = ’
(At)r \ﬁi/2+,u+l—w/2+1)!(,u+/7~/2"w/2“1)!

or,withw=p+gq,I=1A—1p+lg

(A+p+ D!
A+p+1-pNu—9!

General U(3) tensors can be constructed from the oscil-
lator creation and annihilation operators so that their VCS
realizations follow from Egs. (14) and (15). Note, however,
that Eqgs. (14) and (15) lead to the following form for the
VCS realization of the group generators £,; = A4, of annihil-
ation type: ['(4,) = 3 ,d} &,,; i.e., they are built entirely
from intrinsic (double-line) operators. This is quite different
from the *“‘standard” realization of these group generators,>®
I'(4,) = d/9z;, in which they are built from pure z-space
operators. It is well known that coherent state realizations of
operators are not unique due to the overcompleteness of co-
herent states. Both realizations must, however, give the same
matrix elements. This was demonstrated explicitly in Ref. 13
for the analogous versions of the annihilation generators of
the Sp(6) DU(3) algebra. Itis to be noted, however, that the
structure of the expressions for the matrix elements can be
very simple for one type of coherent state realization and
very cumbersome for another. In some cases a search for an
optimal realization may therefore be needed.

Totally symmetric U(3) tensor operators can be con-
structed through the three-dimensional oscillator creation
operators in a single particle variable a, say a = 1, via the
polynomials

T80 () = [(al)y A wl ] Pys 2= (a)),
(30a)

K(Ap),, = (29b)

with

2+ M, I, — M,
(af,)=+" )=

VL + M) VT, — My)!
(The subscript 2 on the quantum numbers A, w, I, M is used
for later applications.) The VCS realizations of these totally
symmetric U(3) tensors could be obtained by repeated ap-
plication of Egs. (14) or preferably by the direct application
of Eq. (8).

,
(22, (30b)

Py (al)=
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For the latter, the needed tools are the commutator

[Z.A:aga] = a¥021 + a;aZZ = - \/i[aﬂ/zxz ”2(2)]89
(31)

and the angular momentum recoupling transformation

[ [Pw/2(a1') xzw/Z(z) ]0)( [aTI/ZXZ 1/2]0]8

1 1
2 2
| £ 2 9
2 2
w+1l w41
[ 2 2

X [ [Pw/Z(aT) X (uT)I/Z](w+ 1)/2

X [Zw/2(z) XZ l/2](w+ l)/2]g
=J(w+2)(w+ 1/2[P**?(ah)
XZ(w+ l)/Z(Z)]g’

(32)

where we have again used the value of the unitary (square
bracket) form of the 9-j recoupling coefficient and the build-
up relation (19), together with the analogous relation

[P=2(at) x P (a)]w?
=8, + w,V (W, + w,)V/w,w P2 (al). (33)

Repeated applications of Egs. (31) and (32) in the vth com-
mutator of Eq. (8) yields

A,0) t
F(Tl(ug, L (204, — wan (O ))

T yw:
= F( (a30 )' Px}?)(iz_w:)(az))
sz-

& Ayt k—w,+ 1) w,!
= — 1) 2 > 2
2, \/ (—wa + 1)1 kNw, — k)

K. T. Hecht and L. C. Biedenharn
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(&';a)wz—k
x_.__.—__
(w, — k)!
X [P(l/2)(iz—w3+k)(d1‘)sz/2(z) ]1(\}/2)(/13—w2).
(34)

This is the needed VCS realization of the totally symmetric
U(3) tensor.

(ll. MATRIX ELEMENTS OF INTRINSIC OPERATORS

In order to evaluate matrix elements of the totally sym-
metric U(3) tensors between states of arbitrary (1,1,) and

(13#3)y
((iﬂs)wslaMﬂTzﬁ??)wﬁ|u~1/"1)w111M1)
= ((13;1,3)w313||Tf”’:}?)|| (Aw)wd)

XA, M, LM, |I,M,), (35)
via VCS techniques through the use of the basic relation
(26) and the T'(T ““9) of Eq. (34) it is necessary to evalu-
ate the matrix elements of the intrinsic operators
(d},) P /DA~ (gl ) in the z-space basis. Note again that
these intrinsic operators commute with z;, 4/dz;. In a z-
space matrix element they must be worked through to the
left where they are then defined through their matrix ele-
ments between a pure intrinsic state on their left and the

appropriate permitted states on their right.
It is sufficient to describe the intrinsic states of (4,u,)

((A3u3)0(4;3/2) ”Piz/z((ﬂ) I (/11/1:1)0(11/2))

by two-rowed tableaux. For the most general coupling
(A481) X (4,0) = (A3u5) in which n squares are added to
row 3 of this tableau [with O0<n<min (A,,u,) ], the intrinsic
states for (A,) with w; = 0 will then have only » oscillator
excitations of type 3. Since the (f},)” are defined through
their left actions on the intrinsic states of (4.u,), and since
the left action of &}, annihilates an oscillator excitation of
type 3, only operators with v<n will have nonzero matrix
elements. The only terms of Eq. (34) that can contribute are
those with k = w,, w, — 1, ..., w, — n. Note that, withn =0
and consequently A, + 2u, = 4, + 2u, + A,, the basic rela-
tion of Eq. (26) leads to

(.(/13,113)'-03 =0,I,= (A/DIT 5201, - 1,2
X Appw, =0,1, =41,/2)
= ((A313)0(A3/2) [|PH*(a) || (A 1£,)0(1,/2))
= ((A3u3)0(A5/2)||PH? (") || (A ,£,)0(4,/2)). (36)

In this case the only needed reduced matrix element of in-
trinsic operators is related immediately to a very simple re-
duced matrix element in ordinary space. This is the reason
for the simplicity of the Le Blanc-Biedenharn result. More-
over, in this case the ordinary space angular momentum re-
duced matrix element [denoted by standard double lines in
Eqgs. (35) and (36)] can be reduced to an overall SU(3)
reduced matrix element (to be denoted by both double lines
and double brackets®) through an SU(3) DSU(2) X U(1)
Wigner coefficient with value 1. With A5+ 2u,
=A, 4+ 2u, + A,

=((Ap )Y, =14, +2u)l, =/1|/2;(/120)§/12,%/12H (Aape3) Y3 = 3(Ad5 + 2u3) 1, =A3/2)

XA (A | T4 (@) [[(A0))) = DX A [ T 42 (@[ (A1)

Although this ({|| ||)} can be evaluated,” it will drop out of
all final expressions andis therefore not needed. (Note also
that the particle index @ on a' has been dropped and will be
omitted henceforth for economy of notation, althoughitis to
be quietly understood.)

For the case of arbitrary n, the intrinsic operator matrix
elements of operators (o} )P '/ =" (') withv=0,1,...,
n, will be related to the standard Hilbert space matrix ele-
ment

((Ax2)0(A5/2) || (@})"P V2 %= (ah) || (Ap,)0(4,/2))

by an inductive process through repeated use of the basic
relation (26). The matrix element of the intrinsic operator
(&])"P VP4~V (4%) between a purely intrinsic state of
(A5p5) on the left must haven — vz excitations in the state
of (A,u,) on the right. This type of matrix element is evalu-
ated by a tranformation back to ordinary Hilbert space, via
Eq. (26), where the states with # — v excitations are con-
structed by ordinary Hilbert space creation operator excita-
tions 4 | through Eq.(22). The evaluation of the matrix ele-
ments in VCS space of the formal intrinsic operators is thus
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(37)

reduced to the evaluation of ordinary matrix elements in
ordinary Hilbert space. The intrinsic operator matrix ele-
ments therefore become fully explicit and well defined.

The case n = 1 will be illustrated in detail. In this case
only intrinsic operators with v =0 and v = 1 lead to non-
zero matrix elements. With w, = 0, Eq. (34) leads to

TP} (ah)) = P,
and the basic relation (26) gives
((Ag3)w;

=0(4,/2)|[P** (D) ||(Au)w, =1 I,=(1'/2))

- As Aa/2( eyt 1 i,]i')
P* A — ==
((/13#3) 2I|7’( (@) (Adyy) X5 3

(38)

A 1 A JA
= Angty) 23| P A [— —*]—)
1><(( ahs) 2|| (M| (A1) NI

XK(/{I,Ux)u;.'/z)a (39)

where the z-space states are given by the angular momentum
coupled notation, |(Ap){w/2XA/2}1LM), of Eq. (24).
Note that the “collective” angular momentum of the intrin-
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sic state, w;/2 = 0, is to be omitted in this notation. Note
also that the left action of the intrinsic operator P**(&') on
the intrinsic state ((4,u;) (13/2)m| must create a state with
one z-space excitation since n = 1 in the space of states with
Ay 4+ 2u, =45+ 2u; — A, + 3. By expressing the standard
Hilbert space state with w, = 1 in terms of the |@,, ; »,, ) of
Eq. (22), the needed intrinsic operator matrix element is
given by

A 1_A14°
ol A1)
(G 2P0l A | -x 2|2
- 1
Kz(ﬂ'.“l)nu/z)
A/2TA/2
[P“Z(a*)x[ M2 (A w))w, =02 >] ]

(40)

where we have used Z '/2(AT) = A™/? and the reduced ma-
trix element relation

(LI TH) = ALMS|[TH1) 15,
Angular momentum recoupling yields
((/»3#3 P2 (D[ (A)) [ 2] A )
L g(llbkihot

Kz(/lll-tl)l(/l'm

2222 2 2
As
X (/13/13)w3=07m3

A
<(/13/—‘3)w3 = 0“2‘3‘”’3

(41)

[[PA:/Z(aT),A 1']/2] (4, — 1)/2

A\
X (Al,u,)w,=07'>] ,

where the U-coefficient is a Racah coefficient in unitary
form, and where the angular momentum-coupled operator
[P#2x 41" ]~ 12 has been converted to an angular mo-
mentum-coupled commutator by using the fact that A anni-
hilates the intrinsic state in its left action on this state [ cf. Eq.

(42)

(3)]. The angular momentum-coupled commutator is de-
fined by

A:/2 1/721(A.—1)/2
[P%2(a), 4?5

1 A, A, —1
= 2 — ml > m—m, 5 m
[P,‘"’fm, (", 4], (43)
with
{A T_l/2 —A “/12/2} = {A .1r,A ;}E{Eg}pEn}, (44)
this gives

[P’lz/z(aT),A ﬂ/z]sz—l)/z:mazpu “””(aT)
(45)

so that

((ws) =Y IR T [ XA, ] A’

Aav

K? (41#1)1(/1 /2)
x(uwo 2Pt~ W(awuu.u,)o%) ,

(46)

which is the first intrinsic space matrix element needed for
n=1.

For the second needed intrinsic matrix element for the
case n = 1, we use Eq. (34) to give
T(al P~ V2 (at))

— d;rPi:"_ l)/Z(dT)

((/13#3)0 A3)\ag Pt 2ot (A0 2 ) ((/um%udu’“ﬁ—'W(dz*)n(/lwl)%)

= T+ D) Z PN 2715 () )

A1 A A, A A
- VL TD (_____ 2=
(2+)/1'z/2 22222 2

A 1 A1 A
Aus) BIPA2 (@[ (A [_ _'] __).
)(< ) 2P |G| 53] 2

—V(A + D[P XZ2) D2 (4T)
The basic relation (26) yields
(48)

The last intrinsic matrix element in Eq. (48) is given by Eq. (46), so that

(s Zjasp - v2@h 2w 21)

=11+, +1) —_—
[ : /1'2/2 Kz(/lll'l'l)l(/l’/Z)

(/{l + 4+ I)ﬂq

1 (,11/1/12

<(/13,u;)0 %”a;PL/Z— 1/2(0?)”(/‘“'“‘)0%) ,

)] ((/13/43)0%”@1’“:‘ D2t [|(A )0 %)

(49)

where we have used A; + 2u; = 4, + 2u, + A, — 3 to simplify the final result for the sum over possible A '/2. Equations (46)
and (49) give the two needed intrinsic operator matrix elements for the case n = 1.
The case n = 2 illustrates some additional features. Three intrinsic operator matrix elements are now needed. The analogs

of Egs. (39)-(46) yield
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(wm Ze|pH () | () [lx—]

)

- Y+ D) U(’11 ﬁ’ﬁ"—ﬁ—l)<( 022 @) pisaei(g (/l.u.)oﬁ>, (50)
K*(A )22 2 22 2 2 2 2

where we have used Z! (AY) =271/2[4T2x41?],,, angular momentum recoupling, and a double application of the
commutator Eq. (45).
For the next matrix element, Egs. (26) and (47) yield

<(/13,u3)0%||a§1’“1'"/Z(aT)|I(/1|,ll1)w1 = 1_%.)

- [(wn Y9 LT uw.)[%x%]‘—)

2
/—-'—(/12_'_ 1)((/13”3 3”[P/I/z(¢t)xzuz]u —n/z“(,{uul)[-—x— '17)} KA )12, (51)

The left-hand side is evaluated by the technique used to evaluate the standard Hilbert space matrix element in Eq. (40) to give

((A%)o%naw%- D20l || (A wy = 1 i;—}

1 A 1A A,—1 4" 4 (a})?
= 22 U(—‘——iz——;——2—1)<(i )0
KA ) 102 ’ 222 2 ¥ V2

Angular momentum recoupling together with Eq. (19) reduces the second term of the right-hand side of Eq. (51) to the
intrinsic operator reduced matrix element of P*~*(a') which is given by Eq. (50), so that

P,{/Z—l(a'f)

(/l.ul)O%). (52)

'13 + (,1,_1;/2 t [1 ’{l] ’1’)
P A ) A — A
((,13,;3) %4 @l Am| x| S

2 '
=<(/{ 3)0 (a}) LB par-1igh ’(/1#1)0}1)[—2——“ Mu(’illiz’l_zi_l_,_’l_ﬁ_g
2 2/ k24w V222 2 722
3 (42+1)_\/2,12 (ﬁiﬁiiﬁi —1)U(ﬁii'_'i”~' )U('ln iﬁﬂ&_l)]
,1~/2K2(/1,,u,)2(,1 oy V222272 2 222 272 2 2272 2
2
=<(,1 3)0 () ~27 ph-Yah) I(/l,,u )o’1'>
2 2
w V24, U(ﬁ_l__ﬁ’lz_I.Lﬁ_l\(i3+ﬂ3+4)(/~‘3+2) (53)
KA, — Dy, 222 2 722 ) (A+p+ Dby

where we have used A, + 2u, + 4, — 6 = A5 + 2, to simplify the final result for the sum over possible 4 " /2.
For the final intrinsic operator matrix element for n = 2, the basic relation (26) gives

A | [ ah)? A
Ag)0 23| [ —— P42~ Y(at Ap)0=L
(d*)z A/2—1 ¥ /{l }'3 (A, — 1)/2 t 1/274/2—1 -A'l
={( 3) 5 —P @] | (A 2 — V2, ( () e [P D2(E) X Z ] Il(iwl)y)
G FD 1)((@9 L@ x 2 A () 2 (54)
Angular momentum recoupling reduces the last two terms to the form that follows from Egs. (50) and (53), so that
)2
((/1 3) \/i —— P(aH)*? ! ‘(/1.#1)—)
(@})? 1 A 1A A, —1 4" 4
= ( (A )0 — P( *)““‘H(/{ o=t >[1+2/1 ——-—-——UZ(—'———3—?——;——3—1)
< ¥ 2 e 2 £ % K2 (A1) 1 222 2 2 2

+24,(A,+ 1) z

A"/2 LA/2

p(faliabol il (2 Ladit kol
222 2 2 2 2 222 2 2
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U(ﬁiﬂi;ég 1) 1 U('l /1_/1_/‘_&_1)
22 2 22 Kz(/lhul)zun/z) 2 22 2 2
1 A /I A /I A
X — A (A, + 1) U( =2 2—1)].
g g 1"2/2 Kz(/lll‘t])Z(,l"/z) 2 2 2 2 2

It is now advantageous to carry out the sum over A '/2 first in the third term, where

o(al bl Al (A LhhA b l), (W LAN LAk bbd
 \222 2 722 2 22272 2

222 22 27777_)’
(56)
to obtain
(¢})? _ A
(( 3) \/_ —— pt? l(dt) i(/ll,uq)j)
= ((Aw (a*)2P1/2~1( ah) ‘(i )0ﬁ>
I 11 2
AL 1A, A,—1 A" A
R A LEE N
[ AE/ZK( I:ul)l(/l/Z) 222 2 2 2
l A, /l A, A" A
R S N CPEX S|
B /1"2/2 2(’11/‘1)2(;."/2) 2 222 2
=<</1 @) praiigry Aol > (/13+,u3+4)(/13+,u3+3)(y3+3)(#3+2) . (57)
For the case of general n(withAd; +2u, =4, +2u, + 4, — 3n), the corresponding result is
(¢])" A
A P(/l —n)/2 d't A _l)
(( 3) \/? (a") (1,u|)2
(a})" A\ (A+1—v)!  n 1
— ,{ 227 ptha—nm2eat A it 2
<( = (ah) ’( ) 2> z

Vo (A, + 1 =—n)! (n— )W Kz(llhul)(,,_,,,(;_n/z)

XUz(ﬁn—véiz—v.ﬂxlz—n)
2 2 2 2 72 2

(a})" A
={(A 227 pth—mr2egt A (g
<( 3) I (a) ‘( i) >
st +n+ Dl +n+ DI +p +1—m)lp —m! (58)
(As+ 5+ 2 s + DUA + py + D!

The techniques illustrated in detail for n = 1 and n = 2 lead to the general result for the needed intrinsic operator matrix
elements
A ”
((/1 nh ’(/1.#.)[ —_— )
(al)”

_ A, +1—w)! n! 1
={(A O ——~ pA—m2(gf) ‘(/1 )0 > (4,
<( ) (e i A+ 1—m)! (n—v)WMK? (il’#l—v)(n—v)ﬂ. "2

(13 +,u«3+n+2)'(,u3+n+ 1)'(11 +u, + 1 "V)'(,ul —v)!
(i3+,u3+n—1’+2)!(,u3+”_1’+ 1)'(/11 +u,

(dT ) P(/I — v)/2((&1‘)

V!

n!

XU(in v&iz—v_ﬂxlz—n)
2 2 2 2 2 2

Pyl (59)

Note that Eq. (59) reduces properly to Eq. (58) for n = v.

Fmally, there remains the evaluation of the standard Hilbert space matrix element, with v = ». This is given by

T yn
<(A 3)0 (@) (i.m)oi'>

2B p-miaghy
n!

=<(/11/‘|)Y|=%(/{1+2/11)11 =L(4,0) — Az_n’

1 A
Ay— %“(’13#3)}’3 = ? (A3 + 2u3)1; = f)
X (((/13/13)IlT“Z(”(aT)II(Mﬂ.)))-

(60)
Since the double-bar, double-bracket factor will not be needed, it suffices to evaluate the SU(3) DSU(2) X U(1) reduced
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Wigner coefficient with both w, = 0, w, = 0. In Sec. IV it will be shown that the square of this Wigner coefficient is given by
the inverse of the double sum of Eq. (58). With a generalized Condon-Shortley phase convention, we therefore get, with

As+2us=24,+2u,+ 4, —3n:

1 — 1 A
<(/11/"1)Y1=_;‘(’11+2ﬂ1)11=%§ (120)?/12—”, 42 n'}(/13#3)1’3:—:;-(}»3-!-2#3)13:73)
— (13 + U5+ 2)!(,“3 + 1)'(/11 + 40+ 1)!ﬂ1! ) (61)
(As+ps+n+2)W s +n+ DA+ 4+ 1 —=m)!(g, —n)!

IV. THE SU(3) DSU(2)x U(1) WIGNER COEFFICIENT. FORM |
The general SU(3) DSU(2) X U(1) reduced Wigner coefficient for the product (A,) X (4,0) - (A345) follows from
the general matrix element

Tw,
P (A, — w:)/Z(aT)

‘v(/ll:ul)wlll>

<(/13/~‘3)w313

w,!

1 1 A, —
= <(/l|/-l|)Y1 = ? A+ 2uy) — wlll;(/lzo) ?/12 — Wy, 2

(Ast3) Y5

1
= Gy 2) = wss) € Ay T4 (i) > (62)
with w; = w, + w, — n for the coupling with n squares added to row 3 so that A; + 2u; =4, + 2, + A, — 3n. The basic
relation (26) together with the VCS realization of the totally symmetric tensor, Eq. (34), gives
(a})*
<(’13/‘3)w313 = (/11.“1)“’111>
Vw,!

=K__(/1]l‘l)w,1, minﬁllb)( — 1)w3—v (12 — v+ l)' wZ!
K(Azus3)wy, +=o (Ay — wy + 1! (wy — )W

P (A — wz)/Z(aT)

X((ﬂ.;ﬂg)[ /1 ]13 (dT) [P =72y Z (=2 (g) | h= w2 | | (] )[ ] 1)-
(63)
The reduced matrix element in Eq. (63), rhs, can be evaluated directly by the expansion
t
((13#3)[——X—] (¢ [P(/l —v)/2(d'1‘)xz(w —v)/Z(z)]I‘(/l — @,)/2 (/1 I)[_X—]Il)
- _(211—+1) (I M, LM,| LM, )< m, -“-2"— m, |11M,><'122_ Y m, wzz- 2 m,, 12M2>
3 all Mymim,,
tyv
(B a2 m [ L b or iz @z @2 G (64)
V! i '
and by using
(/‘(;3 (dT)vP(/l 7v)/2(d1‘)
2 W
A (o) ' '
R el (R EES
(a})” —v M)A
= A )_3 37 pl-wr2 dT ‘ A [ ] )
/12/2 m’m{zm"r( a3 2 \[;. (@") ]| (Ae)) 2 >
X A ) (G A | (i o

Finally, using Eq. (19) and the orthonormality of the Z '*(z) in z space and the |4,/2m,) in intrinsic space

(/11 , A )
— m,
2

Z 5 @WEZ RN Z 5 @2 @ |5
=\/(w3+n—v)! (w,+w2—v>!<&m 2=V o,

w, +w, —v
2

wl(n—m! wlw,—w! \2 = 2 (m“"+m“’1)>
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X (22 i P B ()6, s st (66)

with w; = w, + w, — n, Eqs. (64)-(66) give

((’13"3)[%X423]I3 (df.) [Pl X Z () |y = D2 = (MJ[%X%]I')
v
()" - —v. A (w; + w, — ¥)!
= (Aap ) —— P42 (4t ‘(fll,u )[ X—] ) — [ ],
,{z/z( s I 1 \/(wl+w2_”)!(”—1’)!(w2—v)!w,! Z

(67)
where {2} is shorthand for the sum over the product of eight angular momentum Wigner coefficients that can be expressed in
terms of a 12-j recoupling coefficient in unitary form:

1
(=)= G 2 el
3 al

1 m's

A w, Ay—v  w,—wv Ay w A’ A, —wv A
X{=tm IM)( m, —2 m,, 1M>< m,—=m, IM)(—m’Z—m —3m>
<2 1 2 1 1 2 2 2 s 2442 2 3 2 3443 2 2 2 2 3
Ay n—v A’ ><w1 w, — v w,+w,—v >
X< 2 ml 2 mn— v 2 ——m 2 mw. 2 ’nw2 2 (mw, + mw: )
w;+n—v )
X mn—v_——__' m, +mw1)
< 2 2 (m, :

en+nNeLEDW +w, —v+ 1) (4,4 1)
QL+ DA+ DA —v+ D(wy+ 1)

( _ 1),1,/2—/1’/2—v/2—n/2+w2

3

1, I, I -

w,—v w, Wwtw,—v A’
172 2 2 2
A, —v A As n—v

2 2 2 2

=z Q1"+ 1A+ 1) U(I, wz—vI3 AZ—V;I,, /12——w2)U(/12—V}iI,,&L13)
QL+DA +1) 2 2 2 2 2 2 2

XU(A Wi ope W _V;I, w,+w2—v)U(/hn—vI,,&;i_ w,+w2—v)’ (68)
2 2 2 2 2 2 2 2 2
where the 12+j coefficient in unitary (square bracket) form is the standard transformation coefficient'®%°
ja jb Jab Jl
Joo o Ja T
Jac de Jr J
= < [ [Jr X [ja ij ]Jab ]JIX [jc X.]d ]ch ]‘IM | [ [Jr X [ja X.]c ]Jac ]J” X [.]b X.]d ]de ]JM>’ (69)

where the square brackets denote angular momentum coupling, for now in the conventional left to right coupling order.
Since the intrinsic operator reduced matrix elements needed for Eq. (67) are known from Eq. (59); Egs. (63) and (67)
can be combined to give the desired SU(3) DSU(2) xU(1) Wigner coefficient in terms of the matrix elements of

(al)"P*:~"72(a') between extremal states with w, = w, = 0, where the double-line, double-bracket reduced matrix ele-
ment is eliminated via Egs. (60) and (62):

<(ﬂ'l:ul)Y(w )Ih(/lzo)Yz ll ——w2,12 (12_wz)/2||(/l3ﬂ3)Y3(w3)I3)
(A )3A 4 200 (4,72);(A0)i4, — n, (A, — 1) /2| (Asta) §(As + 2u5) (A3/2))

_ “““%‘”“( _ lij(/l.ul)w,,,\/ (A, — v+ Dwl(A, + 1 — )l

v=0 K(/lslh)w,h Ay —w, + DWW (w, — MIA, + 1 — n)l(n — v)W
(w, + w, — v)!
Vi —v)w N w, — v)(w, + w, — n)!
1 U(ﬁn—vﬂilz—v.ﬁiz—n)

X 3
/1'2/2 Kz(/lpﬂ]_v)(,,_v)(l'/z) 2 2 2 2 2 2

X
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k)
I, I, I >
w,—v w, wtw,-—-v A
N7 2 2 2
A—v A4 Ay n—v
2 2 2 2 ]
> QL+HeL+ DA+ Dwi+w,—v+1) (= 1)W2— A2 =n2=v2

QL+DA+ DA — v+ D(w; + 1)
s lpps tn+ DWAs + g3+ 1+ 2)0p —vIA +u,+ 1 —v)!
(s +n—v+ DU A+ g+ 1 — v+ 2D, + g+ D
Setting w, = 0, we obtain a relation between the Wigner coefficient with w, = 0 but arbitrary w,,(w, = n — w,) and the

starting coefficient [Eq. (61) ], with both w, = 0, w; = 0, (w, = n). Using relations such as those illustrated by Egs. (56) and
the sum over A ”/2 in Eq. (53), the orthonormality sum over w, and I, can be put into the form

(70)

_ A.\2
z ((iﬂl)yn(wl)ll;(/iz,uz)%—wzizz—wzl|(13/‘3)Y3(0) —23‘> =1
wi, w1,
2
=<(/11.u1)—;—(/11+2M1)%;(/12#2)%—n'1———n )i(13+2n3)%>
i (A, 4+ 1 —w)in! 1 (/1 n—vaiz A, iz—n)]
U T g\
Xz[(/12+1—n)!(n—v)lw2 K2(A8)) (n— w1, 2 2 227" 2 b

The sum is the same as that which has been evaluated in Eq. (58) and leads at once to the needed starting Wigner coefficient
with both w, = 0, w; = 0, as quoted in Eq. (61). It is interesting to note that the square of this starting Wigner coefficient is
given by the ratio of the reduced matrix element of (af)"P *: ~"/?(a') between ordinary Hilbert space states with both
w, = 0, w, = 0 to that of the intrinsic operator (¢} )"P*' ~"/?(¢(') between pure intrinsic states.

With the evaluation of this starting Wigner coefficient, the general Wigner coefficient is given by

withAd; +2u, =4, +2u,+4,—3n, wy=w,+w,—n,

Form I

((11/‘1) Yl(wl)Il,(/lz()) Y,(w)I,= (ﬁ. — wz)/2|| (/13/-‘3) Y3(w3)13>

_ KA s, [wil(A 4+ 1= mUAs + 5+ D)5 + DUy + 1+ DIA; + g3+ 1+ 2)!
K(Ap3) 1, wilwInt (A, + 1 — w )W A+ + DMy, —m)I (A, + 5+ 1 —n)!
Xmingjwz)( — 1) wl(d, + 1 =)l w, + w, —V)Inl(u, — A, +p,+ 1 —v)!

(w, — A, + 1 —mwl(n — )W A+ s+ 2+ — v (s +n+1— )
N7 ey (TR AT
v = V) in—warn

w
I, I, 1, >
W, —v W Wwtw—v i A/2— A2 — /2 —n/2
X172 2 2 7 | (7D
Ar—v A4 As n—v
2 2 2 2

X (211+1)(212+1)(w|+w2—v+1)(/{3+1)
QCL+DA,+ DA, — v+ D(ws + 1)

(72)

This form is particularly economical, if # or w, are small so that the number of terms in the v sum is small. In particular, for

n = 0, the sums collapse to a single term, the 12-j coefficient collapses to a 9-j coefficient, and Eq. (72) reduces to the first
special Le Blanc-Biedenharn result.

Withn =0,4, 4+ 2u; =4, + 2u, + Ay, wy = w, + w,,
(A ) Y (w);(1,0) Y, (w)) 1,
A

——Z—Eﬂ ”(’13/"3)Y3(w3)13>
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Aoow
2 2 :
— K(A’I/'tl)w.I.K(AZO)wzll (wl + wz)' i2_ _w_2 12 . (73)
K(Ast3) o1, w,w,! 2 2
Ay w +w I
| 2 2 ’

V. FORM Hl FOR THE SU(3) DSU(2) x U(1) WIGNER COEFFICIENT
The expression of Sec. IV is particularly simple if #, the number of squares added to row 3 of the Young tableau for
(A,ut,), is very small compared with 4, — n. In the case when A, — n €n, it is advantageous to evaluate the Wigner coefficient

<(A3.u3) Y3(w3)13§(012) - ’_Is /12 + w,, 12 = (iz - wz)/zl' (/{1/‘1) Y](wl )11> (74)
via the reduced matrix element of the operator

w»

T 1) — ((13,,)
Y.= — (1/3)s + ws LM, —
Vw,!

The VCS realization of this operator is (again omitting the specific particle index, a)

P]lﬁlz=A2/2—w3/2(aa) X (75)

F( (a3) P;,’}; — w;)/Z(a))

w,!

1> - w k
" k (Ay —w ) (w, + k) (d3) ™ (s — wy — k)72 k2 (s — w72
B kgo (=D \/(iz—wz—k)!k!wzz o] [P () X Z*(2) ] . (76)

The needed intrinsic operator reduced matrix elements can be evaluated by the techniques illustrated in Sec. II. Now with
Av+2u, =45+ 2u; + 24, — 3n,

A CA [n’-v /l]/i”)
A -1 3 P/2 A -3
(2| [t [ 52 x5] 4

VA, — v)!
A ay =" . A
—{(Au )o—'l —__P"(q) ’(/13;; )0—3>
( 2 = )
(4, — v)In"t K*(Asptts + A, +1— V) wias 17
Ay =m0 =)W K2(Agpts + Ao + 1= V) (4 _ 2oy K2 (Aatts) wia o

With these intrinsic operator matrix elements the recoupling techniques of Sec. IV can give the general Wigner coefficient
(74). The symmetry property

((Ay) Y (w)1};(4,0)(4,/3) —wpdy, = (A, — wz)/2||(/13#3) Ys(wy) L)

= V[dim(Ayu;)/dim (A, ) 1121 + D)/ Q2L + D] (= DA+mt At brcms b=,

X ((Astes) Ya(w3)I55(04,) — A,/3 + wo, L[ (A ) Yy (w) 1) (78)
gives the needed coefficient. Renaming n’ = A, — n to be in agreement with the notation of Sec. IV we obtain the new form of
the Wigner coefficient: with A; + 2u, =24, + 2u, + 4, — 3n, wy, = w, + w, — n.

Form II:
(A ) Y (w)5(A,0) (A,/3) — wydy, = (A, — w,) /2] (Ays) Ys(w;) 15))

=(— 1) +mtnrb+l—l dim(Ay;) 21, +1 Kt
dim(A,u,) 2+ 1 K(A,u,)

w,l,

X [K(/lslh)(/t,- mn=12 KAy + 1+ i, —ni=a2) -!

X"“""“ ‘ﬁ’lz“ w2) (A, — w)(A, — n)! (— 1y (A, — v (w, + A, — n—v)!
w,lw,lw,!n! (A, —w, — A, —n—v)!

v=0

2793 J. Math. Phys., Vol. 31, No. 12, December 1990 K. T. Hecht and L. C. Biedenharn 2793



K2(Asps + A+ 1= _mann U(ﬂi /12—n——vﬁl.£/12—n)
2 2 2272 2

X2

“h K (Asy 4+ Ay + 1 — V) (4~ n— (a2

X (— 1)A2=2 2= A2 5 /2 4972 AL +DHRL+ D)W +A,—n—v+1)
(/13+ 1)(212“‘"V+ 1)(w1+ 1)

T A’ A3 ]

2 2 2 2
|15, I, W (79)
W Y Amn—v Wy

[ 2 77 2 2 2 j

In the special case with n = 1, the sum in this expression collapses to a single term. The 12-j coefficient collapses to a 6-j
coefficient, and with (4,u,) = (43,5 + n):

<(/l3,#3 + )Y (w);;(n0) Y, =n/3 —w, I, = (n— wz)/2||(/13,u3)Y3(w3)13)

_ K)o, (s +p3 + 2) (3 + Dnl(w, + 1!
K(Asps + 1)y, (As+p3+n+2) (s +n+ 1) (n — w)lw!(w, + w, — n + 1)!
n—w, A, w w
y( =t w g _3) 80
x (3 2 2 277" 2 (80)

This is the second special case of Le Blanc and Biedenharn."!

VI. FORM [Hl. AN EXPRESSION WITH 9-f COEFFICIENTS ONLY

In the general case both forms I and II have the same complexity. Both involve two summations, the v sum and a sum over
an angular momentum quantum number. Both involve 12+/ coefficients in the general case. Since 12-j coefficients may not be
readily available a simpler expression would be useful. Such an expression can be derived by a buildup process in which the
representation (4,0) is obtained from a stretched coupling of the representations (n0) and (4, — n,0), the first adding n
squares to row 3 of the Young tableau for (4,1,) to make the representation (4,, 4, — n), the second A, — n squares to rows 1
and 2 to make the final (A,u,):

(A Y (w, )Il;(/i'20)'jl§ Ay —wol, = (A, — wz)/2||(/13#3) Yi(w;)1;) Usu_‘

=3 <<4.;11)Y.(w1)1,;(n0)§ —w", ”‘2“’ 1Ay — ) Y (w)I')
w,I’
Cr gt A,—n Ay—n—w,
X{ (At ~ )Y (W) (A, — n,0) T w, > [[(A323) Ys(w3) I)

n_wll

Ay — Ay—n— A Ay —
;3(4, — n,0) Zzn-w 2 > w”(/lzo)?z—wz—zz—wz>

><<(n0) —'32— —w”

(81)

XU(I, n—w Islz—n—w;l,/lz—wz)’
2 2 2
withw,=w, 4w, —nw' =w+n—w,w=w;—w.
The coefficient for the coupling (#0) X (4, — #,0) = (4,0) is a special case of the 1st class of Le Blanc-Biedenharn. The
needed 9 coefficient is related by symmetry to a trivial 9-j coefficient with all stretched angular momentum couplings leading

to the simple result (with w, = w + w")

” — i /l - /1 - - ﬂ, /1 —_
(0 2~ 222y —noy 22— 2 m RV | gy e, et
_ (A, — A, — w,)Inlw,! _ 82
Ay —n—w)AN(n — w”)whw"!

Using Eqgs. (73) and (80) for the remaining SU(3) Wigner coefficients, we obtain the right-hand side of Eq. (81).
The coefficient Ugy, for the left-hand side of Eq. (81) can be treated as a normalization factor. It is the SU(3) U
coefficient for the SU, recoupling implied by relation (81). It it were not known it could now be obtained from the right-hand
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side of Eq. (81) for the special values w; = 0, w; = 0, w, = n for which the 9-j coefficient and the U coefficients for the right-
hand side are all unity. (In thiscase w’ = Oonlyand /' = 4,/2 only.) From the known Wigner coefficient with w, = w,; = 0 of
Eq. (61), we can thus determine Uy, via this special case:

USU,((Alltl) (n0) (/13ﬂ3) (/12 - na0)§(/1|;l-‘f| —n) (/120))

=\/n!(/12—n)!(,u, —n+ DA+ +2—m! (4 1+ DA+ g + 1+ 2)!

(83)
ANy + DDA+ 4+ 2)! (s + DIA; + p3 + 2)!
With this value we get the general result for the SU(3) DSU(2) X U(1) Wigner coefficient.
Form III (with Ay + 2us=A,+2u, + 4, — 3n, w; =w, + w, — n):
1 A, —
<(/7-1l‘1) Y (w)1;;(1,0) ?/{2 —w, [, =2 2 22 (43#3)13>
_ A+ p+ Dl + DU A +py 4+ 2)HA, — n+ DA, — w,y)!
A+ p+ 1=, — Mz +n+ DA+ p3 + 1+ 2)!
XZ Z nl(w, + l),!w3!w2! : : ’ 1 : : :
T Ay—n—w,+w + 1)W+1) wlAd,—n—w,+ W) (w, —w)Hl(n+w —w)H(w; —w')!
[ A w I ]
2 2
K2(Appty — 1)y Ay—n wy—w A,—n—w,+w
KA wr KApts) s, | 2 2 2
As Ws I,
L 2 2 .
><U(1l w—w gl g ’12_“’2)U(1' w—w AW ﬂ). (84)
2 2 2 2 2 2 2
For the special case with w; = 0 this collapses to the simple result:
1 A,— 1 A
<(1W1)Y1(w1)11;(/120) —3‘/12 — wpl, = =2 2 % (Aa3) ? (A3 +2u) ;= 73>
= (= )A2+rw2-1, (21, + 1)n! — (A, — w,)!
A+ DA, — mw(n — w)!
>, (A 44y + DM As + 5 + 2) (s 4 1)!
A+ + 1 =)y — m)N Ay + s + 1+ 2) (s + 1+ 1)!
X U(I,ﬂﬁ’lz_”;ﬁ’lz_“b). (85)
KA ) 2 2 2 ‘2 2
For the special case with w, = 0, on the other hand, Eq. (84) leads to
1 A A A, —
<(/11,U1) ? (A +2u)1, = 71§(/120) ?2 —wyl, =2 2 % (/13113)Y3(w3)13>
_ (A, —n+ DWw (A + oy + D V(A + ps + )1 (g, + 1!
Ay —w, + DIl (A +p+ 1 — )Wy, — )W s + 14+ DA + g3 + 1+ 2)lws!
1 U(/hirnh&/hﬂ). (36)
K(Agy)ps N2 2 272 2

Finally, by interchanging the order of the coupling to (4, — #,0) X (#0) in the analog of Eq. (81) still another form can be
obtained for the totally symmetric SU(3) DSU(2) X U(1) Wigner coefficient.
Form IIT (with A5+ 2u, =4, + 2u, + A, — 3n, w, = w, + w, — n):
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1 —
<(’11P1)Y1(w1)11§(/120) ?/12 — Wy, = u

(Astts) Y3(w3)13>

A+ +2) @+ D(As+ps +n+ DU s +n) (e, — A+, + 1 —n)!

- 2

As+ps+n+2) (s +n+ 1) (A3 + p5 + Dl N (A, + 5y + D!

% (A, — n+ DA, — w,)!ntw,! (w; + w)!
w ! (w; + 1)! o1 w(w, —w)l(n —w, + W)l (A, — n — w)!
[ A w L
2 2
X (w,+w+1) K(/llﬂl)wJ‘K(/lsﬂs)wJI, A,—n w A,—n—w
Ay—n+1—w) K2(13;#3+n)w+w,,l 2 2 2
As w, +w I
[ 2 2 i
XU(I, A,—n—w 3n~-w2—+-w;1/12—w2)U(I3n—w2+w§ w, +w ;I&). (87)
2 2 2 2 2 2 2
Vil. SUMMARY ing to an additional overall phase of

Three types of expressions have been derived within the
framework of generalized VCS theory for the SU(3)
DSU(2) X U(1) Wigner coefficients for the multiplicity-
free coupling (Au,) X (4,0) - (4d3u;) involving totally
symmetric U(3) tensors. All three involve two summations
and are therefore comparable to previously known results'?
as far as their complexity is concerned. All results are ex-
pressed in terms of SU(2) recoupling coefficients and the
simple K-normalization factors of VCS theory and therefore
throw new light on the structure of such coefficients. Two of
the expressions, given by Eqs. (72) and (79), involve 12-j
coefficients. Their main value lies in the fact that they illus-
trate how the spectacularly simple special cases of Le Blanc
and Biedenharn'! arise as special cases of very general re-
sults. Simpler expressions involving only 9-j coefficients and
Racah coefficients of 6-j type are given by Eqs. (84) and
(87). These are derived by a coupling process which com-
pounds the two special Le Blanc-Biedenharn results. In this
process a U(3) tensor that can add squares only to row 3 of
the starting tableau is combined with a U(3) tensor that can
add squares only to rows 1 and 2. Since tensors for the gen-
eric case with multiplicity'* can also be built in this fashion
the VCS techniques used in this investigation may be useful
for the general coupling with multiplicity. Special values for
the SU(3) Wigner coefficients for the coupling
(A1) X (1,0) > (A3u3) in which either the (4,u,) or
(A4453) states are restricted to highest weight have also been
given in a new form involving a simple Racah coefficient, see
Eqgs. (85) and (86).

Note added in proof: The Wigner coefficients of this in-
vestigation use the phase convention of Draayer and
Akiyama (see Ref. 5). To convert to the phase convention of
Biedenharn and Louck (Refs. 8-10), the state vector of Eq.
(24) must be multiplied by the phase ( — 1)*/*~“/?2~ T Jead-
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(— DHA2-e2=li—An2+es2+ 1 1g convert the Wigner co-

efficients of this investigation to the Biedenharn-Louck con-
vention.
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