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The integration may first be performed with respect
to ¢, ¢4, s, using Eq. (B5), and then {;, using Eq.

(B9). The result may then be expanded and inte-
grated with respect to the remaining variables. The
sums may be contracted by means of binomial
identities. The following result is obtained:
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where (7) = 7,7} (no summation) and S is the factor
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Expression (B18) must now be expanded out. The
terms may be collected in the form:
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with the appropriate coefficient giving the result
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The Hilbert space method, employed in the previous article to obtain the coupling coefficients of
SU(3), is used here to obtain the recoupling, or 6(A\u), coefficients of SU(3). The coefficients are
formulated in terms of a generating function involving an integral, and an explicit expression is
integrated out for the general nondegenerate case. The symmetries of the 6(\u) coefficients are dis-

cussed.

1. INTRODUCTION

HE 6(\u) coefficient of SU(3), which relates
the alternate ways three representations [A;, u.],
i=1,2,3, may be coupled, can be written in the form'
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1A form similar to this has been derived by J. J.
de Swart, Nuovo Cimento 31, 420 (1964). Equation (1.1)
is the recoupling coefficient multiplied by the factor
(—1)¥*+13(N1,N13)71/%, where Nz and s are the dimensions
of the spaces
(see Ref. 3 below).
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where use has been made of the orthogonal proper-
ties” and the symmetry properties of the 3(Ay)
coefficients derived in the previous paper.®

2 J. J. de Swart, Rev. Mod. Phys. 35, 916 (1963).
* M. Resnikoff, preceding paper, J. Math. Phys. 8, 63
(1967). This article is hereafter referred to as (I).
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2. SYMMETRY OF THE 6(2y) COEFFICIENTS

From the symmetries of the 3(Au) coefficients* [see
Sec. 3D. of (I)], many symmetries of the 6(\u)
coefficients are apparent from Eq. (1.1).

Exchange of columns 1, 2
Let
2.12)

be exchanged and let k < k,, also be exchanged in
Eq. (1.1). The right-hand side of Eq. (1.1) becomes
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Ay > fiahz, A Doz, AMaplas < Mishas

(2.1b)

The right-hand side of Eq. (2.1b) is equal to the
right-hand side of Ey. (1.1) [using Egs. (3.56),
(3.59), (3.61), (3.68) of (I)], except for a phase. The
result follows that
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where
A=MN+MN+N+1m

— (At p o+ M)+ kA kg
The other relations follow similarly.

Exchange of columns 1, 3

Let
Mir 2 fishia, M pshie,  Asiz < Uahg, (2.2a)
and k,, < k', be exchanged. Then
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These symmetries relate six of the 6(Au) symbols.

¢J. R. Derome and W. T. Sharp, J. Math. Phys. 6, 1584
(1965), have discussed symmetries for the 6-j symbols of a
general group. In contrast to their paper, the phase and the
method of labeling degenerate states is specified here, and
this leads to simpler relations. de Swart (Ref. 1) obtains
symmetry relations for octet recouplings.

Inversion of columns 1, 2

Let
Nty <> A, Naltz © Uzhg, (2.33)
and k;, <> k, ki3 <> &/, be exchanged. Then
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Inversion of columns 1, 3
Let
M > gy, Niztiiz € Kishis (2.4a)
and k;, < k', k153 < k, be exchanged. Then,
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Finally, if the partition numbers are exchanged,
A <> u;, then the right-hand side of Eq. (1.1) is
a sum over conjugate 3(Ap) symbols, and the sym-
metry relation, Eq. (3.68) of (I), may be employed,
with the result
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where
O=k+k+k12+k13-

This symmetry is present in SU(3) because the
base vector |Au; @) and the conjugate base vector
[Au; @), are in different Hilbert spaces. In SU(2), v}

and w) are members of the same Hilbert space.”
The 3 — 7 symbol

<jl je ja)
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and its conjugate

( o B s )
- ml - mg —ma
are related by a phase, but since the spaces, labeled
by j, are the same, a change to the conjugate 6 — j

symbol yields no further relations. In general, then,
48 6(\u) coefficients are related by a phase.

8 V. Bargmann, Rev. Mod. Phys. 34, 829 (1962).
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3. 6(du) COEFFICIENT EXPRESSED AS
AN INTEGRAL

Notation: Let the variables of the base vector
\u; @) be written f(¢, ¢) or f(t, 8), and the base
vector with complex conjugate variables §, § be
written |\u;ea). Also, let the invariants h.(p;) be
written h.(ty, 8 &2 02 {3, 8s), where the explicit
functional dependence is exhibited.®

The variables of the invariants h.(p;) are chosen
such that a product of four h.(p;), integrated over
the variables {;, yields a multiple of the 6(\u)
coefficient, as given by Eq. (1.1). First, associate,
with each 3(Au) coefficient appearing in Eq (1.1)

an appropriate invariant k;(p;), 7 = 1, , 4:
hy = b, (15 815 $25 825 $12y O12)
= E {)\1141 Aoptz )\nﬂxz}
@razais V@1 Oz Q2 Jky
X D‘l#l; o) [Ntz 0r3) P\u#lz? o2).. (3.1a)
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exchange ¢, <> 855, { « &, and complex conjugate
these variables to get
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The degree conditions [see Sec. 3C of (I)] are chosen

[Eq. (3.6)] such that the 3(Au) coefficient appearing
in Eq. (1.1) is obtained. Similarly,
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The variables of the four invariants, Egs. (3.1),
have been exchanged such that the functions %;(p;)
are still invariants in the triple product space. Fur-
ther, for each base vector |Ay; a), there exists the
corresponding base vector |\u;e’) with complex
conjugate variables. An integral over the product
of invariants then yields the inner products, (|\g; a’),
[Au; @)) = 64,4, since the base vectors |\u; a)
are orthonormal [see Eq. (2.9) of (I)]. If the degree
conditions are chosen to give the 3(Au) coefficients
of Egs. (3.1), then the product of the four A;(p.),
integrated over {;, shonld give, within factors 4; =
[(m: + DY + DI, the 6(\u) coefficient on the
right-hand side of Eq. (1.1). Thus’

[ T1 ko duso(®) = CToOW),

i=1

32

where

¢ - {(xm + D!k DO D! (g + DY G+ DI o + 1)!}*
(#12 + 1)! ()\ + 1)! (I-’-z + 1)! ()\13 -+ 1)! ()‘1 + 1)! ()\3 -t 1)!

The factor C arises because the exchange of variables
¢ & § changes the normalization of the base vector
[see Eq. (2.21) of (I)]. As seen in Sec. 3D of (I), it
also changes the normalization of the invariant
h(p:) by the same factor. If the four h;(p;) are
assumed normalized before the appropriate change
in variables, factor C may be dropped. That is, if

(ra(fs, 853 L2y 825 Sr2y O12), Ma($y, 815 &oy )] =
(3.3)

¢ The general functional dependence is given by Eqgs.
(3.33), (3.34), and (3.35) of (I).

(and similarly for h,, ks, h,), then Eq. (3.2) may be
written as

4
[ T hed duss®) = 801, 3.9
Let p;; be the power of the determinants,® where
1 = 1, 2, 3, 4 labels the particular invariant 4,(¢),
(Eq. 3.1)land j = 0,1, --- , 6, 0’ labels the deter-
minant. Let «;;,7 =1, ,4,j =1, ---, 6, be the
partition numbers,

7 The measure dy.,,(r) is defined in Eq. (1.1b) of (I), or
see Bargmann (Ref. 5).
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K1;i = (Mazy N2y Moy M2y Moy i), (3.52)
k25 = (i Nay Mzy N, Miay Birz), (3.5b)
ks; = (N, f2, l1sy K5 Azy Mia)s (3.5¢)
ke = (Migy May M1, Hrzy Moy o). (3.5d)
The degree conditions become
ki + pis + pis + Ni = «iy,
ko + pi + pis + Ny = kir,
ki + piz + pis + Ni = ks, p:i; 20 (3.6)
fo + pir + piz + Ni = ki,
Elo + pis 4 pis + N: = ks,
ki 4+ pia + pis + Ni = kis,
and
kio — klo = Py — (kia + xis + Kio), 3.7)

P.- = %[Ku + ki + Ki3 + 2(Ki4 + Kis + Ki&)]-

The p,; of Eq. (3.6) are not independent, e.g., u,,
occurs in Eq. (3.5a) and (3.5b), so that relation
ko + p13 + pre + N1 = kiy + pas + p2s + N, holds.
There are 11 other such relations called by Barg-
mann® the compatibility conditions. Note in the
above that either k,, or k/, is equal to zero, depending
on whether k;,, — k% is > 0 or < 0, respectively
[see Eq. (3.32) of (I)].

M. RESNIKOFF

If the explicit form of h,(p,;) is inserted in Eq.
(3.4), then

B0W] = 3 T Benlons; tom, nun)I(ks), (39)

ni1tnia=Ni m=1

where

1) = [ T (o~ (o
X F(Pm,-)G(M)(kmo, o) d#aa(g') (3—9)

and G (koo k.,,) represents the determinants raised
to the k., or &/, power, e.g., in h;(p.;),

Gro, 0) = [(§1 X £2) 6], ka0 — ko 2 0.

To obtain the 6(Au) coeflicients, it would be neces-
sary to integrate Eq. (3.9). This integral may be
evaluated, but it would involve numerous sums over
a product of factorials. There is no particular utility
in presenting it here since, if particular numbers
are required, Egs. (3.8), (3.9), may be programmed.
A particularly simple case, the nondegenerate case,
is carried out in the next section.

4. 6(2y) SYMBOL FOICl THE NONDEGENERATE
ASE

Let p1, poy ps = 0. The 6(Au) symbol becomes

YR )\12F-12:|
[6Ow)] = [)\10 A0 Aggpgs 4

According to Egs. (3.6), the invariants h;(p;;) are

(4.1)

h1 - A1 [(g-l X fz)'g'lz]k"(g‘z'512)“‘(;‘1‘512)“’ , (4.23‘)
k! P11! Plz!
. [512'(3'3 X S)1k’°(§'3' f)p"(f' 512)""(?12' S)ﬂ"(fs’ flz)p“
hy = A (4.2b)
? 2 k! P21 ! P22! P23 ! P24 ! !
— (f fxs)ﬂ“(sla‘ 5)""(.(‘ g-'z)p”(fr Sla)P”[a'(fm X f:z)]k’"
ha = A3 7 (4:.20)
932! Pas! Pas! Pae! k! ’
L F \Per CF \Peo[( 5 AW k' eo
h4 — A4 (§‘13 g-l) (g-ls §'3) [(g‘l X 5‘3) 613] , (4.2d)
P43! P4s! kw!
where A; is the normalization before the change of Pz + Pus = Aia, ko = i, (4.3d)

variables (the k; above are not normalized to unity).
The degree conditions, Eqgs. (3.6), become

ko = mia Eoten =t g g
kot piz =N,  put pa =Ny,
koo + paa = 1, koo + P22 = N2y, por + p22 = A,
kso + par + p2e = N, P2z T P2 = piz,  (4.3b)
pss + pse = N, paz + klo = n, paa + kio = A,
paz + pss = sy P35+ pas + Kio = N, (4.3¢)

pss + kio = )\3, piz + Mo = A

Note that since A; 4+ Az = A» + 2u1, and A, + Ag
Ms + 2u13, therefore Az 4 2015 + A3 = 213 + Ms +
A2 and py4 = p;.

Divide the invariants h;, Eqgs. (4.2), by the re-
spective normalizations A;,

filpi) = hi(pi))-(A)7". (44)

Multiply the four fi(p;;) by JI:; #%¢' and sum over
the p,;, then the following generating function S(r,;)
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is obtained,

Z [60\#)] HT:;,'

8(r;) = A, - A,

(4.5)
= f exp [¢(Tii; ' f)] dl‘ﬂ(f)-

Conceptually, the remaining steps are clear: integrate

over the variables g‘ly 5-27 ;12’ ;;2: f37 g-; g‘,; ;131 «(;3)
expand in terms of the parameters r,;, and the
coefficient of this expansion is the 6(A\y) symbol
divided by the normalizations A, --- A,. This inte-
gration is carried out in the Appendix. The result is

BOW)] = 2C"-S(N1.N»5) ™, (4.6)

where

O = {0\2 - 1412)! ()\1 — Ihz)! Fgo! P21! P22! Pza! Pa2! Pa:s! P35! kéol ()\12 + 1) (>‘13 + 1) ()\1 - )\13)! ()\3 - )\13) !}Q
(P+1 _#12)!(P+1—#13)!()\+#+)\13+M13+1_P)!()\+M+)\12+#12+1 —P)!

P = ?li()\lz T+ 2p, + N+ 2N + IJ)

and S, in terms of one sum, is

H

§=2

(4.7a)
(_1)”"+)“l+‘(k20 + por + pre + pas + 1 — 8)! . (4 7b)
sl (p1z — 9! (psa — 8! (p22 — 8! [p11 — (P22 — 9)]! (paz — ! (k1o — p2a — psz — 9)! '
The general 6(\u) coefficient has not been evalu- expanded
ated yet, though de Swart' has calculated certain Str) = S ctm)Ii(me, 720, (A2)

special cases for high-energy physics applications,
and Hecht®® has the coefficients required for shell
model calculations.

APPENDIX

The method of evaluating Eq. (4.5) is similar
to that of h(p;) given in Appendix B of (I), but the
caleulation is more laborious. Equation (4.5) is first
integrated with respect to {1z, 13y oy Els

__ | €xp [, 7] dusy
S(rp = [ ERLE T A,

where ¢(¢, 7:;), f(¢, 7:;) are functions of the five
vectors ¢, o $3, &, ¢, their complex conjugates, and
7:;» The exponential and the denominator may be
s K. T. Hecht, Nucl. Phys. 62, 1 (1965).

9 K. T. Hecht, Selected Topics in Nuclear Spectroscopy
{North-Holland Publishing Company, Amsterdam, 1964).

(AD)

where c¢(m;) are the coefficients of the expansion,
and I,(m;, 7;;) is an integral over a polynomial
function of the above vectors. To calculate I, (m;, 7,;),
multiply it by a set of parameters [[ (&)™ /m.!)
and sum over m,; so that the integrand may again
be put in exponential form:

Emi H (%)Il(m;, i)

Sl(Tii)
(A3)

[ o0 Ths, s k) di.

This integral may again be evaluated, expanded,
and the above process repeated until all integrations
have been performed. Finally, reinserting the results
into Eq. (A2), the coefficient of the r,;’s and the
ks yield the result, Eq. (4.6).



