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(W, W') = 1: [H(k,), H(kD] 
1:. ,k;' 

x II (~:r') II (~gk'i) (BI6) 

= J exp [weT"~ f) + W(T~, m dP.lSU;), (BI7) 

The integration may first be performed with respect 
to t2' t4, t6, using Eq. (B5), and then t5, using Eq. 

(B9). The result may then be expanded and inte­
grated with respect to the remaining variables. The 
sums may be contracted by means of binomial 
identities. The following result is obtained: 

(W, w') = 1: (ToT~)k • .B"'( -d) "'[(4) + (6)] "'[(3)(4»)" 

X [(2) + (3)]"[(5)(6)]"[(1) + (5)]""S, (BI8) 

where (i) = TiT: (no summation) and S is the factor 

S _ (ml + ko + a2 + I)! (2ml + 2ko + 2a2 + aa - a\ + Z4 + Z6 + 3)! 
- ko! 2za! Z4! Z5! Z6! al! (ml + ko + a2 - al + I)! a2t aa! 

(2ml + ko + 2a2 - al + Z4 + Z6 + 2)! (m\ + ko + a2 - al + Z4 + Z6 + I)! 
X (2ml + 2ko + 2a2 - al + Z4 + Z6 + 3)! ' (BI9) 

(B20) 
d = (1)(3) + (2)(5) + (3)(5) 

where 

Expression (BI8) must now be expanded out. The 
terms may be collected in the form: 

with the appropriate coefficient giving the result 
[H(k,), H(ki)]. 
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The Hilbert space method, employed in the previous article to obtain the coupling coefficients of 
SU(3), is used here to obtain the recoupling, or 6(XI'), coefficients of SU(3). The coefficients are 
formulated in terms of a generating function involving an integral, and an explicit expression is 
integrated out for the general nondegenerate case. The symmetries of the 6(XI') coefficients are dis­
cussed. 

1. INTRODUCTION 

T HE 6(Ap.) coefficient of SU(3), which relates 
the alternate ways three representations [Ai, p.,], 

i = 1, 2, 3, may be coupled, can be written in the form 1 
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1 A form silnilar to this has been derived by J. J. 
de Swart, Nuovo Cimento 31, 420 (1964). Equation (1.1) 
is the recoupling coefficient multiplied by the factor 
(_I)kl+ku(N 12N13)-l/2, where N12 and N13 are the dimensions 
of the spaces 

0"121'11,OX •• 'J1.11 
(see Ref. 3 below). 

where use has been made of the orthogonal proper­
ties2 and the symmetry properties of the 3 (Ap.) 
coefficients derived in the previous paper.3 

2 J. J. de Swart, Rev. Mod. Phys. 35, 916 (1963). 
3 M. Resnikoff, preceding paper, J. Math. Phys. 8, 63 

(1967). This article is hereafter referred to as (I). 
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2. SYMMETRY OF THE 6(~y) COEFFICIENTS 

From the symmetries of the 3(XJL) coefficients4 [see 
Sec. 3D. of (I)], many symmetries of the 6(XJL) 
coefficients are apparent from Eq. (1.1). 

Exchange of columns 1, 2 

Let 

(2.la) 

be exchanged and let k ~ k12 also be exchanged in 
Eq. (1.1). The right-hand side of Eq. (1.1) becomes 

L {JLSXS XJL X12JL12} {X12JL12 JL1Xl X2JL2} 
a, -a3 a a12 k a12 -al a2 k .. 

(2.1b) 

The right-hand side of Eq. (2.1b) is equal to the 
right-hand side of E\}. (1.1) [using Eqs. (3.56), 
(3.59), (3.61), (3.68) of (1)], except for a phase. The 
result follows that 

(2.1c) 

where 

A. = Xl + X3 + X + JL2 

- (JL + JL1 + JLs + X2) + k + k12 • 

T.he other relations follow similarly. 

Exchange of columns 1, 3 

Let 

(2.2a) 

and k12 ~ k', be exchanged. Then 

(2.2b) 

where 

B = JL + iJ.1 + X2 + X13 

- (X + JL12 + iJ.13 + Xl) + k + klS ' 

These symmetries relate six of the 6(XJL) symbols. 

4 J. R. Derome and W. T. Sharp, J. Math. Phys. 6, 1584 
(1965), have discussed symmetries for the 6-j symbols of a 
general group. In contrast to their paper, the phase and the 
method of labeling degenerate states is specified here, and 
this leads to simpler relations. de Swart (Ref. 1) obtains 
symmetry relations for octet recouplings. 

Inversion of columns 1, 2 

Let 

and k12 ~ k, k13 ~ k', be exchanged. Then 

[
XiJ.; k,k' X2iJ.2 X12iJ.12; k12J 

XliJ.1 XsiJ.3 X1SiJ.13; k13 

[
X1JL1; k12 ,k13 iJ.3X3 X12iJ.12; k,]. 

XiJ. JL2X2 X13JL13; k 

Inversion of columns 1,3 

Let 

and k12 ~ k', k13 ~ k, be exchanged. Then, 

X2JL2 X12iJ.12; k12] 
AsiJ.3 X1SiJ.13; k13 

[
iJ.1Al; k13 ,k12 A2JL2 iJ.13X13; k']. 

iJ.X A3JL3 JL12A12; k 

(2.3a) 

(2.3b) 

(2.4a) 

(2.4b) 

Finally, if the partition numbers are exchanged, 
X, ~ iJ.i' then the right-hand side of Eq. (1.1) is 
a sum over conjugate 3(AiJ.) symbols, and the sym­
metry relation, Eq. (3.68) of (1), may be employed, 
with the result 

[
AiJ.; k,k' X2JL2 X12JL12; k12] 

. A1JL1 X3JL3 A13JL1S; k13 

where 

= (_l)C[JLX; k,k' JL2 A2 JL12X12; k12] 
JLl Al JL3 A3 JL13A13; k13 ' 

c = k + k + k12 + k13 . 

(2.5) 

This symmetry is present in SU(3) because the 
base vector IXJL; a) and the conjugate base vector 
IAJL; a)c are in different Hilbert spaces. In SU(2), v~ 
and w~ are members of the same Hilbert space. 5 

The 3 - j symbol 

and its conjugate 

are related by a phase, but since the spaces, labeled 
by j, are the same, a change to the conjugate 6 - j 
symbol yields no further relations. In general, then, 
48 6(AiJ.) coefficients are related by a phase. 

6 V. Bargmann, Rev. Mod. Phys. 34, 829 (1962). 
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3. 6(J..V) COEFFICIENT EXPRESSED AS 
AN INTEGRAL 

Notation: Let the variables of the base vector 
Ix,u; a) be written f(t, t') or f(t, 0), and the base 
vector with complex conjugate variables f, ~ be 
written IA,u; a). Also, let the invariants hk(p,) be 
written hk(tl' 01; t2, 02; ta, oa), where the explicit 
functional dependence is exhibited. 6 

The variables of the invariants hk(Pi) are chosen 
such that a product of four hk(Pi), integrated over 
the variables ti' yields a multiple of the 6(X,u) 
coefficient, as given by Eq. (1.1). First, associate, 
with each 3(X,u) coefficient appearing in Eq. (1.1) 
an appropriate invariant hj(Pi), j = 1, ... , 4: 

hI == h/o;,.(tl, 01; t2, 02; t12, 012) 

L {XI,ul X2,u2 XI2,u12} 
CllO:aCCu al a2 a12 ku 

In 

X IX12,u12; ai2) IAa,ua; aa) IA,u; a)c, 

exchange tl2 ~ 012, t ~ 0, and complex conjugate 
these variables to get 

h2 == hi~12' f12; ta, Oa; ~, f) 

L {AI2,u12 Xa,us x,u} {(AI2 + I)! (,u + 1) !}i 
",.' eM ai2 aa a k (,u12 + I)! (A + I)! 

X IXI2,u12; (12)C 1 Aa,ua ; aa) IA,u; a). (3.1b) 

The degree conditions [see Sec. 3C of (I)] are chosen 
[Eq. (3.6)1 such that the 3(X,u) coefficient appearing 
in Eq. (1.1) is obtained. Similarly, 

and 

X {(,u2 + I)! (,ula + 1) !}i 
(X2 + I)! (Ala + I)! 

X IAla,ula; a~a) IA2,u2; a~) IA,u; a') (3.1c) 

h4 == hk ,,( ~1' fl; ~a, fa; tla, Ola) 

",.Fa,.. {~~~ ~~~ ,u~~::L. 
X {(,ul + I)! (,ua + 1) !}' 

(AI + I)! (Aa + I)! 
X IAI,uI; a~) 1 Aa,ua ; a~) IXla,ula; al3)' (3.1d) 

The variables of the four invariants, Eqs. (3.1), 
have been exchanged such that the functions hj(Pi) 
are still invariants in the triple product space. Fur­
ther, for each base vector Ix,u; a), there exists the 
corresponding base vector IX,u; a') with complex 
conjugate variables. An integral over the product 
of invariants then yields the inner products, (IX,u; a'), 
Ix,u; a» = Oa ,a', since the base vectors Ix,u; a) 
are orthonormal [see Eq. (2.9) of (I)]. If the degree 
conditions are chosen to give the 3(X,u) coefficients 
of Eqs. (3.1), then the product of the four hj(Pi), 
integrated over ti' should give, within factors Ai = 

[(,ui + 1) V(X i + 1) Ill, the 6(X,u) coefficient on the 
right-hand side of Eq. (1.1). Thus7 

J g hj(p.) d,ua6(r) = C[6(A,u)], (3.2) 

where 

C = {(AI2 + I)! (,u + I)! (A2 + I)! (,ula + I)! (,ul + I)! (,ua + 1) !}' 
(,u12 + I)! (X + I)! (,u2 + I)! (XIS + I)! (XI + I)! (Aa -; I)! . 

The factor C arises because the exchange of variables 
t ~ 0 changes the normalization of the base vector 
[see Eq. (2.21) of (I)]. As seen in Sec. 3D of (I), it 
also changes the normalization of the invariant 
hk(p,) by the same factor. If the four hj(p,) are 
assumed normalized before the appropriate change 
in variables, factor C may be dropped. That is, if 

[hICtl' 01; t2' 02; t12, 012), hlCtl' 01; t2' ... )] = 1 

C3.3) 

6 The general functional dependence is given by Eqs. 
(3.33), (3.34), and (3.35) of (I). 

(and similarly for h2' ha, h4 ), then Eq. (3.2) may be 
written as 

J g hj(pi) d,ua6(r) = [6(A,u)]. (3.4) 

Let Pi! be the power of the determinants,6 where 
i = 1, 2, 3, 4 labels the particular invariant hj(t), 
[Eq. (3.1)] and j = 0, 1, ... , 6, 0' labels the deter-
minant. Let Kij, i = 1, ... , 4, j = 1, ... , 6, be the 
partition numbers, 

7 The measure d!'n(r) is defined in Eq. (I.Ib) of (I), or 
see Bargmann (Ref. 5). 
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Ka; = (A, J.!2, J.!la, J.!, A2, Ala), 

K4; = (Ala, J.!a, J.!l, J.!la, Aa, AI)' 

The degree conditions become 

k;o + Pia + Pi6 + N, = Kil' 

k;o + Pil + Pi4 + N, = Ki2, 

k;o + Pi2 + PiS + N, = Kia, 

k~o + Pil + Pi2 + N, = K'4, 

k~o + PiS + Pi6 + N, = Ki5, 

k;o + Pia + Pi4 + N, = Ki6, 

and 

Pi; ~ 0 

P, = ![Kil + K,2 + Kia + 2(Ki4 + Ki5 + K'6)]' 

(3.5a) 

(3.5b) 

(3.5c) 

(3.5d) 

(3.6) 

(3.7) 

The PH of Eq. (3.6) are not independent, e.g., J.!l2 
occurs in Eq. (3.5a) and (3.5b), so that relation 
klO + Pia + Pl6 + NI = k~o + P2a + P24 + N2 holds. 
There are 11 other such relations called by Barg­
manns the compatibility conditions. Note in the 
above that either k iO or k;o is equal to zero, depending 
on whether k,o - k;o is ~ 0 or < 0, respectively 
[see Eq. (3.32) of (I)]. 

If the explicit form of hi(Pi;) is inserted in Eq. 
(3.4), then 

4 

[6 (AJ.!)] L II {3km(Pm;; nm1 , nm2)I(kij) , (3.8) 
nil+nill=N. m=l 

where 

I(k i ;) = J n (H m1Y''''(Hm2Y'm. 

X F(Pm;)G(m)(kmo , k:"o) dJ.!a6(r) (3.9) 

and G(m) (kmo , k:"o) represents the determinants raised 
to the kmo or k:"o power, e.g., in hI (Pii) , 

To obtain the 6(AJ.!) coefficients, it would be neces­
sary to integrate Eq. (3.9). This integral may be 
evaluated, but it would involve numerous sums over 
a product of factorials. There is no particular utility 
in presenting it here since, if particular numbers 
are required, Eqs. (3.8), (3.9), may be programmed. 
A particularly simple case, the nondegenerate case, 
is carried out in the next section. 

4. 6(lt-) SYMBOL FOR THE NONDEGENERATE 
CASE 

Let J.!l, J.!2, J.!a = O. The 6(AJ.!) symbol becomes 

[6(AJ.!)] = [AJ.! A20 AI2J.!12]. (4.1) 
A10 AaO AlaJ.!la 

According to Eqs. (3.6), the invariants h;(p;;) are 

h = ~l [G'l X r2)' r12]k,o(r2' 8l2Y"Ck 8l2Y" 
1 klO! Pu! P12! ' 

(4.2a) 

h - ~ [5l2 ·(ra X 5)]k,o(ra·f)""(f·5l2Y"(f12·W"(ra·f12Y·· 
2 - 2 k20! P2l! P22! P2a! P24! ' 

(4.2b) 

h - ~ (r· flay"(5la · W"(r· f2Y"(f2' 5laY"[8·(fla X f2)]k". 

a - a Pa2! Paa! Pa5! Pa6! k~o! ' 
(4.2c) 

where ~i is the normalization before the change of 
variables (the h, above are not normalized to unity). 
The degree conditions, Eqs. (3.6), become 

(4.3a) 
Pu + P12 = Al2, 

P2a + P24 = J.!12, (4.3b) 

Paa + Pa6 = A, Pa2 + k~o = J.!, Paa + k~o = Ala, 

Pa2 + Pas = J.!la, Pas + Pa6 + k~o = A2' (4.3c) 

(4.2d) 

P4a + P46 = Ala, k~o = J.!13, (4.3d) 
P46 + k~o = Aa, P43 + k~o = AI' 

Note that since Al + A2 = Al2 + 2J.!12 and Al + Aa = 
Al3 + 2J.!13, therefore A12 + 2J.!12 + Aa = 2J.!l3 + Au + 
A2 and P24 = Pa5' 

Divide the invariants h" Eqs. (4.2), by the re­
spective normalizations ~i' 

(4.4) 

Multiply the four Mpij) by II,; T~}/ and sum over 
the PH, then the following generating function SeT,;) 
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is obtained, 

S( .. ) == '" [6(A,u)) IT p~ i 7'" LJ A A 7'" 
L.l1 ••• L.l4 

= f exp [cp( 7';;; S, f)] d,u27(r). 

(4.5) 

over the variables Sl, r2, S12' si2' Sa, S, rf
, S13' si3' 

expand in terms of the parameters 7';;, and the 
coefficient of this expansion is the 6(A,u) symbol 
divided by the normalizations .d1 ••• .d4 • This inte­
gration is carried out in the Appendix. The result is 

[6(A,u)] = 2C'· S(N12N 13f', (4.6) 

Conceptually, the remaining steps are clear: integrate where 

C' = {(A2 - ,u12)! (A1 - ,u12)! k20! P21! P22! P23! P32! Paa! Pas! k~o! (A12 + 1) (A13 + 1) (A1 - Ala)! (Aa - Ala)!}! 
(P + 1 - ,u12)! (P + 1 - ,u1a)! (A + p. + A13 + P.1a + 1 - P)! (A + p. + A12 + P.12 + 1 - P)! ' 

P = leA12 + 2P.12 + A3 + 2A + p.) (4.7a) 

and S, in terms of one sum, is 

S = L (-ly··n"+'(k2o + P21 + P22 + P43 + 1 - 8)! . (47b) 
8! (P12 - 8)! (P4a - 8)! (P22 - 8)! [Pu - (P22 - 8)]! (P32 - 8)! (klO - P24 - P43 - 8)! . 

The general 6(AP.) coefficient has not been evalu­
ated yet, though de Sware has calculated certain 
special cases for high-energy physics applications, 
and Hecht8

•
9 has the coefficients required for shell 

model calculations. 

APPENDIX 

The method of evaluating Eq. (4.5) is similar 
to that of hk(p;) given in Appendix B of (I), but the 
calculation is more laborious. Equation (4.5) is first 
integrated with respect to r 12, r 13, si2' ria, 

S(7',;) = f exp [f(s, 7',;)] dU27 , (AI) 
y(S, 7';,.) 

where Y(r, 7',;), fer, 7';;) are functions of the five 
vectors t1, r2' ra, s, (, their complex conjugates, and 
7',;. The exponential and the denominator may be 

8 K. T. Hecht, Nucl. Phys. 62, 1 (1965). 
9 K. T. Hecht, Selected Topics in Nuclear Spectroscopy 

,(North-Holland Publishing Company, Amsterdam, 1964). 

expanded 

S(7';;) = Lm, c(mi )I1(m;, 7'".), (A2) 

where c(m,) are the coefficients of the expansion, 
and I 1(mi, Ti;) is an integral over a polynomial 
function ofthe above vectors. To calculate 11 (m;, 7', i), 
multiply it by a set of parameters IT (k;)m'/mi!) 
and sum over m, so that the integrand may again 
be put in exponential form: 

(A3) 

= f exp [her, 7';;; ki)] dp.15' 

This integral may again be evaluated, expanded, 
and the above process repeated until all integrations 
have been performed. Finally, reinserting the results 
into Eq. (A2) , the coefficient of the T,/S and the 
k,'s yield the result, Eq. (4.6). 


