CALORIMETRIC HEAT EXCHANGE CORRECTION

By taking the ratio of Egs. (26) and (27), one obtains

the result
2

25}
U0,1)/00,)=(esp(=0) / {esp(=0- 22}, 29
where ’
0= Da2(ty —t1)/ro¥= (wlkad/C") (¢ —t1).
Solving Eq. (28) for ¢’ gives
(t'—t1) = (C'/ nlkas?)
In{(@s?/a®)(1—U(0, £,)/U(0, £,1))].
Equations (25) and (29) together result in
(1=U(0, 4)/U(0, &)
= (a1 a?) {0.403(1 —exp(—R'ty/C"))} 7,
which along with Eq. (25) gives
{(//t)—1H{1=U(0, 1)/ U0, 1)}
=(0.403/¢) (1 —expy) In{0.403(1—expy)},
where y=—R't;/C’.

(29)

(30)
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V. CONCLUSION

From the experimentally obtained heating and
cooling curves, the quantities ¢, &/, U(0, &), U(0, 1),
and Q are easily obtained. Equation (30) then allows for
a calculation of the ratio R'/C’. Having obtained this
quantity, one may then calculate R’ from Eq. (26), and
hence the heat capacity C’. Formulas (25) and (30) have
been checked on heat capacity measurements taken in
the temperature range 65°K—300°K, and yielded
values of C’ approximately 2 percent larger than the
values obtained by applying the Keesom and Kok
method to heating and cooling curves of the type
shown in Fig. 2.

The author expresses his gratitude to Professor H.
Grayson-Smith of the University of Alberta for his
interest in the problem, and to the staff of the Theo-
retical Section of the Sylvania Physics Laboratories,
where the problem was finally completed.
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When the anode potential of a nonoscillating magnetron is lower than the cut-off potential, the discrete
electron-to-electron interaction has an effect on the space-charge distribution which would be negligible if
only resulting in fluctuations about a known steady state. However the states proposed by Brillouin, Slater,
and others are not steady states in this sense. The electron interaction must, therefore, be expected to produce
a steady drift away from such initial states. This paper discusses qualitatively the final steady state to be
expected and its dependence on the ratio of anode voltage to cut-off voltage. Because of the involved nature
of the electron distribution function no attempt is made to calculate the space-charge distribution explicitly.

I INTRODUCTION

S an initial state for the oscillating magnetron the
nonconducting (or approximately nonconducting)
condition of a dc magnetron has a considerable interest
and has received appreciable attention, both of a
theoretical and an experimental nature. Nonetheless, a
satisfactory agreement has not been reached about the
shape of the electron orbits and the detailed distribution
of potential and electron density in such a space charge.
The solutions presented necessarily rest on postulates
and assumptions that constitute idealizations of the real
conditions. So does, of course, all physical theory, but in
this case well-known factors have been neglected with
the justification that their effect is judged to be so small
that the approximate solution resulting will be close
enough to be of value. Furthermore, the mathematica]
* This work was undertaken as part of a magnetron research

rogram sponsored by the U. S. Signal Corps under contract No.
A-36-039 SC-5423.

difficulties of a more rigorous approach appeared
prohibitive.

It is the purpose of this paper to reconsider the con-
ventional simplifications on which these solutions are
based, to discuss whether or not they introduce ap-
preciable errors, and to investigate the feasibility of a
solution from a more realistic set of assumptions. Since
the space charge is essentially a dilute gas formed by
discrete electrons, classical statistical mechanics offers a
logical approach to a fresh study of the problem.

We shall first place the problem into the framework of
statistical mechanics. The next step is to consider the
solutions proposed so far in this light and to show that
they cannot possibly represent steady states. This dis-
cussion does not directly indicate whether the errors in
the distribution of space charge and potential are large
or small. Finally, the problem of finding a solution
consistent with the laws of statistical mechanics will be
investigated and the result compared with the previ-
ously suggested solutions.
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Fi6. 1. Coordinate system for plane magnetron.

I1. EQUATIONS FOR ELECTRON MOTION
IN A MAGNETRON

Since we are going to apply the methods of statistical
mechanics to the problem of electron motion in a
magnetron, it is convenient to write the equations of
motion in Hamiltonian form. The total energy of an
electron is:

1 2
W=[————p—eA] —ek, 1)
2m

where p is the momentum vector, A the vector potential
of the constant magnetic field, and E the scalar electric
potential. The momentum p is given by:

m=mv-eA, (2)

where v is the velocity vector of the electron.

Equation (1) defines the “energy state” of the electron
with reference to an average potential produced by the
electrode potentials and a “smeared out” space charge.
In describing the motion of an electron in an arbitrary
but fixed energy state we shall disregard entirely the
fluctuations in space-charge density and electric field so
that we can define an ideal phase space or u-space for the
electron motion. Then we can proceed to study the flow
of the electrons between different energy levels in
u-space, caused by the interchange of energy between
the electrons or, which is the same, by the fluctuations in
space-charge density and potential.

To simplify the mathematical processes, we choose a
plane magnetron and a Cartesian coordinate system
(Fig. 1). The cathode is represented by the plane y=0,
the anode by the plane y=d. The uniform magnetic flux
vector B is parallel to the positive z~axis. The potential
of the cathode is taken to be zero and the potential of
the anode positive is equal to E,. No variations are
taking place with x and z,

3/dx=09/9z=0. 3

The vector potential A then has only one component,
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A ., such that
—~94 ./dy=B,= B, (4)

Ax=—By’ (5)

since we can choose A as well as E to be zero at the
cathode.
The Hamiltonian (Eq. (1)) then is

1
W= E—{ (p=teBy)*+p,*+pt} —eE, (6)
m

and the canonical equations of motion

dp. oW du,
——=—=0=m—-"e¢By,, ™
i 9x dt
dp, aW 1 dE ok
——=——=—i(p,+¢eBy)-eB—¢—=¢Bv,~¢—, (8)
a dy 2m dy dy
dp. oW
——=— =0, 9
dt 9z ®
dx oW 1
—=——=-(p,+eBy) =1, (10)
dt dp, m
dy oW
'—'=‘—"‘='Uy, (11)
dat  ap,
dz oW
ey, (12)
dat 8p.

The constants of the molion, or the parameters that
determine the energy state of each electron, are W, .
and p.. Optionally, we can specify the state of an
electron by ., p. and p,e, the last quantity being the
value of p, at the cathode (y=0). It should be noted
that p,, may be imaginary, since the orbit of an electron
may not necessarily reach the cathode.

In the study of the space charge in the magnetron we
shall be interested in the distribution of the electrons in
phase space or u-space, i.e., a six-dimensional space with
the coordinates z, ¥, 3, pa Py, P» Actually, 2 subspace
¥, Pz, Py will contain all the boundary surfaces and orbit
projections necessary for the study of the problem.

IOI. EQUILIBRIUM STATES

If the cathode of the magnetron is at constant tem-
perature and no current flows to the anode, no energy is
received or lost by the swarm of electrons in the tube.
It should, under these hypothetic conditions, be possible
to consider the magnetron as a closed system in thermal
equilibrium. In this section we shall consider the condi-
tions to be satisfied for thermal equilibrium in a
magnetron.

On the other hand, when a minute current flows to the
anode the problem becomes a transport problem, and
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the solution is obtained from the thermal equilibrium by
applying a small perturbation to the distribution func-
tion for the electrons. As the current is increased, the
diffusion of electrons through the space charge from the
cathode gradually changes to a steady flow of the whole
space charge towards the anode. The intermediate con-
ditions, with severely distorted distribution function but
no coherent flow pattern, offer the greatest mathe-
matical difficulties; unfortunately, there are reasons to
believe that this is the actual state of affairs in a cut-off
magnetron.

Since the space charge is assumed to be in equilibrium
with the thermionic cathode emitter, the distribution
density function at y=0 is necessarily of the Maxwell-
Boltzmann type.

P0=A 'eXp[——th(Pzz+?y02+Pzz)]- (13)
m

The distribution density function P at an arbitrary
point approaches its equilibrium value under the in-
fluence of two simultaneous processes, convection by
electron motion, and exchange of energy and momentum
between the electrons because of Coulomb interaction.

We shall not include here the complete classical
derivation of the distribution density function. It is only
necessary to investigate the consequences of the mag-
netic field and the curvilinear orbits of the electrons.

Under equilibrium conditions the convection-current
element formed by a certain group of electrons in phase
space must be continuous throughout its path through
x-y- space. The expected value of a current element
formed by electrons of y-directed momentum between
puo and pyot-dpyo at the cathode is, therefore, equal to
the corresponding element at any other value of ¥,

ePopyudpyo=ePp,dp,. (14)
However, conservation of energy requires
1
W=—{p."+p,o"+ .}
2m )
=2—{(Pz+eBy)2+Py2+P=2}—eE, (15)
m
and consequently,
Puedpy=p,dp,. (16)

Continuity, therefore, requires that the distribution

density at y is
Pdpz/ Pod}’u (17)

It should be noted that the distribution density func-
tion P is given by Eq. (17) only for the regions in phase
space accessible to electrons emitted from the cathode.
We shall later map these regions.

The interaction between the electrons during thermal
equilibrium must be such that the same number of
electrons are removed from a certain cell in phase space
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as are entering into the cell during the same time
interval.

Suppose that a certain encounter involves # electrons
with the initial energy states W,---W,, and after the
encounter, the energy states W,'- - -W,’. Conservation
of energy requires that

Wit Wet - - Wa= Wi+ Wo+ - W,

The rates at which such encounters and the inverse
encounters take place should be equal and are pro-
portional to

Py-P,-Py--

(18)

:P,=Py-Py---P,. (19)

Since the exponential function transforms a sum into
a product, it is obvious that the Maxwell-Boltzmann
distribution function satisfies the requirements (18) and

(19), as well as (13) and (17). Thus we can write:

P=A4-¢°% (20)

where A is a constant related to the total number of
electrons in the space charge and a=1/kT.

It is interesting to note that the presence of the
magnetic field and the consequent curvature of the
electron orbits do not affect the distribution function.
The factors that determine the distribution arise from
conservation of energy and isotropy of interaction.

Inorder tofind a space-charge distribution compatible
with thermal equilibrium, we integrate (20) with respect

to p., py, and p, from — o or 4+ . The result is
p= poe*°E. (21)

This relation is combined with Poisson’s equation to

O E p poeaeE
—= e (22)

2 €

€
( ) eaeE+ Cl
ae€y

In order to perform the second integration, we
introduce

(23)

Q=ee7, 4)
d0/Q(a+0)= —2pae/ e dy. (25)

Since the first term in (23) is always positive, C; and
a must be negative if a potential minimum exists.
Changing the sign of @ and integrating, we get

2/(a)* tan™(Q—a/a)}=by+Cy, (26)
p=po-a/CoS™b(y~— yn) = po[ COSBYn/cOSB(Y—ym) F, (27)
E=2/ae log cosby,/cosb(y—y..), (28)
where
— 2p0a8 3
b= ( ) . 29)
€0
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The boundary conditions are represented by the
constants pg, @, and y,. For negative values of y,, the
solution represents temperature-limited conditions.

Figure 2 indicates the space-charge distribution re-
quired for this thermal equilibrium. It obviously does
not resemble the distribution in a cut-off magnetron,
since it demands emission of electrons from the anode
with the same temperature as those emitted from the
cathode but with considerably higher density,

(30)

Nonetheless this equilibrium has a certain interest to
us, since the difference between this distribution and the
actual distribution in any particular volume element in
real space may serve as a rough indication of the
amount of diffusion that takes place in that element. A
steady state is reached when the diffusion into every
energy state is equal to the diffusion out of the same
energy state.

Before we investigate more closely this diffusion
process, we shall in the next section discuss the represen-
tation of electron energy states as points and orbits in
phase space.

pa= poe*eFe,

IV. INITIAL STATES AND PHASE-SPACE
REPRESENTATION OF ELECTRON
ENERGY STATES

When a magnetron is switched to a source with a
voltage E smaller than the cut-off voltage of the
magnetron, a charge Q will flow to the magnetron. The
source supplies the energy EQ, but the stored energy in
the magnetron is only $EQ. The difference is lost in the
circuit resistance and, possibly, in a temporary increase
in the electron temperature of the magnetron space
charge above the cathode temperature. These transient
effects we shall disregard and assume that the initial
conditions are consistent with conservation of energy
and momentum for each electron emitted from the
cathode and with Poisson’s law.

As stated earlier in this paper, the energy state of an
electron is characterized by its energy W and two of the
components of its momentum, p. and p., these three

4
? 7
“
/]
P
:
o] Ym d 7y

F16. 2. Space-charge distribution at thermal equilibrium.
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Fi1c. 3. Mapping of regions in phase space accessible to electrons
whose orbits intersect the anode or cathode plane.

quantities being constants of the motion, as long as
energy and momentum are conserved. On the other
hand, the component p, and the potential energy vary
during the motion. ‘

In order to map the regions in phase space accessible
to the electrons emitted from the cathode it is sufficient
to consider the space pa, P4, ¥

The accessibility criterion is obtained from

2mW = p 2+ p >+ 9.2 = (p =+ eBy)~+ p 2+ p2— 2meE,

or

pr= Pyt 2meE—B2y:—2p By, 31

where p, and p,0 have to be real quantities.

Figure 3 shows a sketch of the boundary surface be-
tween the accessible and the inaccessible part of
papy-y-space. It is, of course, qualitative only, since
E(y) is not known but related to the space-charge

distribution by Poisson’s law. Integration of the dis-

tribution function (20) over the accessible space with
respect to p. and p, would give the relation between p,
E, and v that, combined with Poisson’s equation, de-
termines the initial conditions.

The inaccessible region has the shape of a distorted
cone with its apex on the axis $,=0, but in general not
at p,=0. The axis p,=0 to the left of the apex is a
generatrix of the surface. It should be pointed out that
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the fact that the inaccessible region reaches the axis does
not mean that electrons with p,=0 and p. in this range
cannot escape from the cathode. They do, but only
tangentially to the p.-p, plane, describe a broad elliptic
orbit in the y-p, plane and reach their turning point on
the upper part of the boundary line of the accessible
region or hit the anode.

In Fig. 3 the boundary for interception of the electrons
by the anode is also indicated. In other words, any
electron to the left of this surface will be removed by
impact on the anode. The space-charge density can,
therefore, be considered zero to the left of this boundary
except where this region overlaps the region accessible
from the cathode.

The volume between the two boundaries contains all
the possible energy states whose electron orbits reach
neither the anode nor the cathode. We shall refer to this
volume as the secular region since the life of an electron
energy state in this region is very long compared with
the period of the cyclic motion of the electron. It should
be noted that:

1. Only an infinilesimal change in momenium is re-
quired for an electron to cross the boundary into this
volume. '

2. The electron population of this volume will continue
to increase until the current flowing to the anode through the
opposite boundary equals the current entering the volume
from the cathode-accessible region.

3. Whether the discrete electron-electron interaction is
weak or strong determines primarily the time required to
reach a steady state but not necessarily the final space-
charge distribution.

Before discussing the possibility of determining at
least roughly the final space-charge distribution, we
shall give some brief comments on previously proposed
solutions to the space-charge distribution in the cut-off
magnetron. Common to them all is that the solution is
identified with some form of what we have called initial
conditions ; sometimes the justification is given that the
interaction between discrete electrons is small enough to
be neglected. The three underlined conditions above
show that this reasoning is not correct because of the
effect of the interaction, however weak, is cumulative.
In other words, these distributions are unstable, since
the perturbations due to electron interaction do not
produce fluctuations about the initial state, but a drift
away from this state.

The Brillouin or single-stream space-charge distribu-
tion'2 in phase space (Fig. 4) is limited to the line AB
and independent of y within this range. At first sight
this distribution may appear to be a possible equilibrium
at 0°K temperature. However, it would be strange

L. Brillouin, “Electronic theory of the plane magnetron,”
Advances in Electronics (Academic Press, Inc., New York, 1951),
Vol. 3, p. 85.

2 L. Brillouin and F. Bloch, “Electronic theory of the cylindrical
magnetron,” Advances in Electronics (Academic Press, Inc., New
York, 1951), Vol. 3, p. 145.

3 A. W. Hull, Phys. Rev. 18, 31 (1921).
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Fic. 4. Brillouin distribution in phase space.

indeed if all electrons occupied the same point in mo-
mentum space, although lower energy states certainly
are possible. But we must consider the possibility that
the state be metastable because of the lack of a process
whereby the unoccupied energy states could be popu-
lated. Obviously such a process does exist. Since the
space charge is formed by discrete electrons whose
velocity varies with y, even though their orbits do not
intersect, the electric field at the edge of the space-
charge cloud necessarily fluctuates in magnitude and
direction both in time and space. A diffusion will there-
fore take place, both out into the unoccupied space and
towards the cathode. The energy required for this
random motion is, of course, supplied by the dc electric
field.

The double-stream distribution described by Slater,*
Page and Adams,5® and others is represented by an
approximately elliptic line charge in phase space (Fig. 5).
The space-charge density in real space at the cathode
and at the edge of the swarm is infinite; a finite mini-
mum is located at an intermediate plane. This is also a
0°K distribution, since all electrons have the same
energy although occupying a line rather than a point in
momentum space. There can be no question about a
metastable state in this case, since the electron orbits
intersect with considerable relative velocity so that
exchange of energy and momentum is inevitable,

Twiss? has considered the modification in the initial
space-charge distribution produced by the initial ve-
locities of the electrons. The result is essentially the
initial state mentioned earlier in this section as obtain-

y p
L LL 2L LLL
A 7‘," 7 ( f//'py

Fic. 5. Double-stream distribution in phase space.

4J. C. Slater, Microwave Electronics (D. Van Nostrand Com-
pany, Inc., New York, 1950).

5 L. Page and N. J. Adams, Phys. Rev. 69, 492 (1946).

¢ L. Page and N. J. Adams, Phys. Rev. 69, 494 (1946).

"R. Q. Twiss, On the Steady-State and Noise Properties of Linear
and Cylindrical Magnetrons, doctoral thesis (Massachusetts Insti-
tute of Technology, 1949).
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able by integration of the distribution function (20) over
the accessible region of momentum space. It avoids the
discontinuities and singularities of the two distributions
mentioned above, but is otherwise subject to the same
criticism; it is an initial state but not a steady state.

V. DISCUSSION OF THE MAGNETRON
SPACE-CHARGE DISTRIBUTION AS A
DIFFUSION PROBLEM

A calculation of the steady state in the cut-off
magnetron from the initial state previously indicated is
complicated by the following circumstances:

1. The relationships governing the transfer of mo-
mentum between the electrons, including close en-
counters as well as distant encounters, are rather
involved even when the state of the space charge differs
very little from thermal equilibrium.

2. The actual distribution density is very irregular
because of the initially abrupt variation at the ac-
cessibility boundaries.

3. The distribution density function is furthermore
distorted by the automatic “sorting” of electrons that
have gained or lost energy, respectively, in the process
of interaction. Most of the electrons that have gained
energy will return to the cathode, while those that have
lost energy will not. On the average, therefore, the
returning electrons will have a slightly higher tempera-
ture than those leaving the cathode. (We use the term
“temperature” for convenience although the distribu-
tion is not regular Maxwell-Boltzmann.)

We shall here try to arrive at a qualitative under-
standing of the way in which a steady state is reached
without resolving quantitatively the complications
enumerated above.

The drift of electrons through phase space is such that
if the system were temporarily closed its state would
gradually approach thermal equilibrium.

During thermal equilibrium the number of electrons
that move from one particular volume element in phase
space to another such element is equal to the number
that moves in the opposite direction. We should expect
it to be possible to calculate the instantaneous value of
the interaction current from one volume element in the
phase spaee to another by comparing the instantaneous
distribution with the equilibrium distribution. Here,
however, we should not consider thermal equilibrium,
which is determined by the boundary conditions of the
whole space charge, but the standard normal distribu-
tion of (p.+eBy), py and p, that has the same total
population, the same energy, and the same center of
gravity as the initial distribution. The total interaction
current across a certain boundary surface in momentum
space would be obtained by a double integration over
these two distribution density functions. In addition to
a function of the densities of the two volume elements in
both distributions the integrand must necessarily con-
tain a weighting function expressing the probability of
the required change of momentum between the two
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volume elements. At least two simultaneous asymptotic
processes should be considered that give quite different
weighting functions. The first one operates by close
binary encounters and is a discrete random process of
well-known type. The influx to a certain volume element
in phase space because of its density deficiency is largely
determined by the distance of the element from the
center of gravity of the distribution density functions.
In this case the weighting function accounts for the
impact parameter and the angle between the relative
velocities of the two electrons with respect to their
common center of gravity.

The second process is the result of interaction between
a large number of electrons -at considerably larger
distances. The weighting function in this case permits
only very small changes of momentum. The interaction
current density across a certain surface in momentum
space is consequently determined chiefly by a relation
between the actual density gradient at this surface and
the equilibrium density gradient there.

It has been shown?® that when the interaction is due to
Coulomb forces, neither one of these two processes can
in general be neglected in comparison with the other.

In enumerating the factors that determine the steady
state we should begin with the boundary conditions at
the cathode. It is natural to assume that the mass and
thermal capacity of the cathode are so large that the
temperature and distribution of the emitted electrons
are independent of the temperature and distribution of
the returning electrons, that is to say, the energy and
momentum of the electron cloud are not conserved at
the cathode. If momentum were at least partly con-
served, the center of gravity of the distribution could
not fall on the line p,= —eBy but somewhere between
this line and p,=0. The assumption made here appears
satisfactory as long as the emission is strictly thermionic;
if secondary emission is appreciable, the boundary con-
ditions become much more difficult to state.

Between the cathode and the potential minimum the
inaccessible part of the phase space is likely to be small
and not to include dense regions of the distribution. The
potential and space-charge density then drops approxi-
mately according to (21) until roughly the Brillouin
density is reached.

The most interesting region in real space is between
the potential minimum and the edge of the cloud. The
boundary of the secular volume in phase space on the
cathode side is likely to be almost parallel to the y-axis
here, since the potential distribution is probably not
radically different from that of the Brillouin solution
(see Fig. 6). The space-charge density in the secular
volume obviousty must be such that the net number of
electrons entering from the right equals the net number
leaving at the left boundary. This density is obviously
smaller than the one required for ideal thermal equi-
librium ; the center of gravity of the distribution must,

8 Cohen, Spitzer, and Routly,YPhys. Rev. 80, 230 (1950).
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therefore, be expected to be to the right of the line
p»=—¢By, that is, closer to the right-hand boundary
than to the left-hand one. The space-charge density re-
quired for a steady state is therefore closer to the
density at the right boundary than to the one at the
left, which is close to zero. To calculate this space-
charge distribution is evidently very difficuit, but it
should be clear that its density is by no means negligible
as far as calculation of space-charge distribution in real
space is concerned.

Twiss maintains that a double-stream motion with
considerably more than thermal energy exists here in the
cathode-accessible volume of phase space. The square of
the y-directed momentum of an electron can be
written (31)

P= P, 2mE— By —2p e By=tp i —2p.eBy. (32)

The orbits of the electrons in the p,v-plane are
parabolas, and since eBy>>p., p, may be of a different
order of magnitude than $,¢ for negative values of p..
The orbits do not extend to the anode, because outside
the edge of the space-charge swarm ¢25%?is considerably
larger than 2mE, so that the electrons turn back into
the cloud.

At first sight these conclusions seem to be inconsistent
with the view presented in Sec. IV, that the initial
energy distribution at any point is an incomplete
Mazxwell-Boltzmann distribution of cathode tempera-
ture. The answer is that as the electrons move in the
positive y-direction and gain kinetic energy from the
electric field, they also move towards the high energy
fringes of a distribution that, if it were complete, would
have a much higher space-charge density than at the
cathode.

The high enérgy electrons will be much closer to the
center of gravity of* the actual, considerably distorted
distribution than to the center of gravity of the Maxwell-
Boltzmann distribution of which they form a small part.
Consequently, the average kinetic energy or ‘“tempera-
ture”’ of the actual distribution will be much higher than
at the cathode.

This increase of the average electron energy with y no
doubt contains the clue to a number of magnetron
problems. Considering the cut-off magnetron as a
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F16. 6. Space-charge-limited conditions.
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resistor, we should expect the increased electron temper-
ature to increase the noise output. Twiss has attributed
the noise level to a “noise amplification” caused by the
double-stream interaction in the space-charge cloud.
The points of view may not be equivalent, but they are
certainly related.

The difference between the space-charge distribution
discussed here and the Brillouin or Twiss solution is
probably not very large when the volume of the secular
region in phase space is small, i.e.,, when the tube is
operated close to the cut-off voltage. The anode current
will be appreciably larger than the direct convection
current from cathode to anode, however, because of the
diffusion through the secular region.

When the anode voltage is far below the cut-off
voltage, on the other hand, the secular volume is large,
and the total space charge there may be large enough to
affect the space-charge density in real space and the
potential distribution appreciably.

The mathematical difficulties discourage any attempt
to predict numerically the space-charge distribution in a
cut-off magnetron; we must, therefore, look to experi-
mental investigations for quantitative information,
Reverdin® has described an interesting electron-optical
method to explore the magnetron space charge. His
results show that the steady-state formation is sensitive
to cathode geometry and temperature, but his data are
too scanty to yield any definite quantitative information
as to the effect of the various parameters of the problem.

* D, L. Reverdin, J. Appl. Phys. 22, 257 (1951).



