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By means of the theorems proved earlier by the author, the problem of the double cnoidal wave of
the Korteweg—de Vries equation is reduced to four algebraic equations in four unknowns. Two of
the unknowns are the nonlinear phase speeds ¢, and ¢,. Another is a physically irrelevant
integration constant. The fourth unknown is the off-diagonal element of the symmetric, 2 X 2
theta matrix, which in turn gives the explicit coefficients of the Riemann theta function. The
double cnoidal wave u(x,t ) is then obtained by taking the second x-derivative of the logarithm of
the theta function. Two separate forms of these four nonlinear “‘residual” equations are given.
One is obtained from the Fourier series of the theta function and is useful for small wave
amplitude. The other is based on the Gaussian series of the theta function and is highly efficient in
the large amplitude regime where the double cnoidal wave is the sum of two solitary waves. Both
sets of residual equations can be solved via perturbation theory and results are given to fourth
order in the Fourier case and second order in the Gaussian case. The Gaussian-based perturbation
series has the remarkable property that it converges more and more rapidly as the wave amplitude
increases; the zeroth-order solution is the familiar double solitary wave. Numerical comparisons
show that the two complementary perturbation series give accurate results in all the important
regions of parameter space. (The “unimportant” regions are those in which the double cnoidal
wave is an ordinary cnoidal wave subject to a very weak perturbation.) This is turn implies that
even for moderate wave amplitude where the nonlinear interactions are not weak, and yet the
solitary wave peaks are not well separated, at least to the eye, it is still qualitatively legitimate to
describe the double cnoidal wave as either the sum of two sine waves or of two solitary waves of

different heights.
PACS numbers: 02.30.Jr, 02.60.Lj, 02.30.Mv

I. INTRODUCTION

In an earlier work, the author' discussed the use of theta
functions to study the dynamics of “polycnoidal waves,”
which is the term coined by the author for the spatially peri-
odic solutions of the Korteweg—de Vries (KdV) and other
soliton equations. The general theorems proved there, how-
ever, were applied only to the simplest case of the 1-poly-
cnoidal wave, i.e., the ordinary cnoidal wave discovered by
Korteweg and de Vries in 1895. This paper is the second
article in a three part follow-up™* which will apply the ear-
lier results to the double cnoidal wave of the KdV equation.
Throught this paper, the term *‘double cnoidal” will be used
interchangeably with *2-polycnoidal” to denote that gener-
alization of the cnoidal wave which is characterized by two
distinct phase speeds, amplitudes, and widths.

One major theme of Ref. 1 is that by using the Gaussian
series of the theta function for large amplitude waves and the
complementary Fourier series for small amplitude waves,
one can calculate the single cnoidal wave through perturba-
tion series to very high accuracy for all values of the param-
eters. In the worst possible case, which is when the two series
converge at equal rates, it was shown that the zeroth-order
approximations give the phase speed to within 5% relative
error while the first-order approximation is accurate to with-
in 0.03%; the approximations for wave shape are similarly
accurate. The purpose of this article is to show that one can
also obtain good results for the double cnoidal wave by again
deriving two complementary perturbation series based on
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the Gaussian and Fourier representations of the theta func-
tion, respectively.
Although the Korteweg—de Vries equation

u, +uu, +u, =0 (1.1)

is a partial differential equation, the theta function series for
the double cnoidal wave contains only four free parameters:
The coefficients of the infinite series for the theta function
are completely specified once these four parameters are
known. Independently, Boyd® and Nakamura* were able to
show that the problem of finding the double cnoidal solu-
tions of (1.1) can be reduced to solving a system of four alge-
braic equations for the theta function parameters. This, to-
gether with the overlapping of the complementary large
amplitude (Gaussian) and small amplitude (Fourier) expan-
sions, makes it possible to derive efficient, accurate perturba-
tion series that describe both the phase speeds and shape of
the double cnoidal wave for all possible values of the param-
eters.

The next section derives these four algebraic equations,
the implicit dispersion relation, for both the Fourier and
Gaussian expansions. (The Fourier equations can be ob-
tained as a special case of the Gaussian.) Section III discusses
the general method of solving a set of nonlinear equations via
perturbation theory. Section IV and V give the actual results
for the Fourier and Gaussian expansion, respectively. Mixed
Fourier—Gaussian series are described briefly in Sec. V1. The
errors in these expansions are discussed in Sec. VII. The
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paper ends with a final section that summarizes what has
gone before and discusses the possibility of extending pertur-
bation theory to other exactly integrable soliton equations.

Il. THE RESIDUAL EQUATIONS (IMPLICIT DISPERSION
RELATION)

The solution u(x,? ) of the KdV equation is related to the
theta function via the transformation

u=12(In8),,. (2.1)
The theta functions themselves satisfy a transformed version
of the KdV equation which was first given by Hirota® and
which will therefore be referred to in what follows as the
“Hirota—Korteweg—de Vries” (HKdV) equation. The most
compact representation of this bilinear equation is in terms
of certain operators introduced by Hirota himself and de-
fined by

DX"D,'"(F-G)EK_Q__ J )”(i_i)’"
dx Ix'/ \dt o’

X F(x,t)G (x',t")] (2.2)

t'=1
where the notation indicates that x’ and ¢ * are to be replaced
by x and ¢ after the differentiation has been performed. The
HKdYV equation is then

(D.*+ D,D,)0-6)=2462 [HKdV], (2.3)

where A is a constant of integration which must be deter-
mined in the course of solution.

The theta function solutions of (2.3), dubbed *“N-poly-
cnoidal” waves in Ref. 1, are functions of the N-dimensional
Riemann theta function. The double cnoidal wave, the only
example considered here, is the special case N = 2. The clas-
sic theta function notation is discussed in part one of this
three part sequence (Ref. 2).

Here it will suffice to note that the “phase” or “angle”
variables are defined by

X=kix —cit)+ &y (2.4)
Y=ly(x —cyt) + ¢, (2.5)

where the constants &;, ¢;, and ¢, are wavenumbers, phase
speeds, and phase factors, respectively. Please keep in mind
that there is only a single spatial variable x; X and Y are
propagating arguments with no direct physical interpreta-
tion. Reference 2 describes how to pass from X-Y space to x-t
space in more detail.

The Fourier series for the theta function is

o o

o= 3 Y exp(— {Tyn® + 2T nin, + Tyony'))

= — o0 M= — o
[integers]

xXexp[2min, X + n,Y)1, (2.6)

where the sums are taken over all integers including 0. The
constants T,, T,, and T, are the elements of the so-called
“theta matrix.” For simplicity, the notation differs slightly
from the usual in that a factor of /7 has been absorbed into
theta matrix elements as explained in Ref. 2.

The complementary Gaussian series is
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0 ©

o= ¥ 2

nH=—w A= —

exp( - {(%)(X )

+ Rl )Y )+ (B2) 7+ i)

(2.7)

[half-integers]

where the sums now range over the half-integers, i.e,, 41,
+ 3, + 3, etc,, instead of over the integers as in the Fourier
series (2.6). The 2 X 2 symmetric matrix whose elements are
the constants R, R,,, and R,, is loosely called the “inverse
theta matrix” since it is proportional to the inverse of the
matrix formed from the T};’s that appear in the Fourier se-
ries.?

The next step is to simply rewrite the theta series as
functions of the physical variables (x,? ) using the definitions
of (X,Y) given above, substitute the series into the HKdV
equation, and collect terms. The resulting sums depend upon
how the bilinear operators of the HKdV equation affect a
typical pair of terms in the series, so it is useful to define such
a pair of terms as

F =exp( — (@/2)x* — Bxt — (y/2)t?)
Xexp( — [0, 4+ 6m, 4+ 6, 1x — €, + €1, + €, ]2),
(2.8)
G =exp( — (a/2)x* — Bxt — (y/2)t?)

Xexp( — [8in] + 8n5 +8,]x — [en] + 1) +¢€,]1),
(2.9)

where the Greek parameters (a, 3,7, and so on) are linear
functions of the theta matrix elements, wavenumbers, and
phase speeds that will be given explicitly in Sec. V. The forms
(2.8) and (2.9) are the natural definitions for the Gaussian
series, but they can be specialized to the Fourier series, too,
by setting the second-degree exponents &, 3, and y equal to
zero and replacing the pseudowavenumbers &8, and §, and
pseudofrequencies €, and €, by 2 7 i k,, and so on. Thus, it is
sufficient to consider the Gaussian case alone. Note that the
second-degree exponents are the same for all terms in a given
series; only the linear exponents are different and only
through the replacement of (n,n,) by (n],n;).

Defining a function zeta via
(D.*+D D, —24){F-G)

E§ (nl - n; » Ny — né; a, B;?’,51,52,61,62,A )FG (2.10)

one can use the theorems proved in Sec. VI of Ref. 1 to show
that for the HKdV equation,

g(m’n’a, ﬂ,yaal,az,el,fz,A )
= (m8, + n8,)* + (mb, + nd,)[(€, — 12a8,)m
+ (€, — 12a8,)n] + 12a° — 28 — 24. (2.11)

The residual function p(x,t ), which is defined by
plx,t)=D,* + DD, —24)6 - 6) (2.12)

becomes, after substituting either of the theta series (2.6) or
{2.7) into (2.12), invoking (2.10}, and collecting terms
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p=exp—ax’ —2Bxt —yt’ —2 8,x — 2 ,t — 20 ) (times)
X Z z Pic €xp( — [8,] + 6k ]x
= _[ir:e:e:]_ ®
—lej+ek]lt—[Pj+ Dk 1), (2.13)

where both sums are taken over the integers for either the
Gaussian or Fourier theta series.

A theta series is a solution of the HKdV equation if and
only if p{x, }=0. Since the terms in (2.13) are linearly inde-
pendent, this in turn implies that

k=0,12,.., (2.14)

for all integers j and k. Thus, by substituting an infinite series
into the differential equation, one reduces it to an infinite set
of coupled algebraic equations which determine the coeffi-
cients of the series.

Since the theta function is uniquely determined by a
finite number of parameters (the three theta matrix elements
plus the wavenumbers and phase speeds), one seems to have
a problem: infinitely more equations than unknowns! Inde-
pendently, Boyd' and Nakamura* resolved this apparent
paradox by proving that only four of the infinite set of “resid-
ual equations” (2.14) are independent: the rest are propor-
tional to the chosen four, which may be conveniently taken
asj=0,1and k =0,1.

The goal of this paper is simply to solve these four alge-
braic equations via perturbation theory.

P =0, j=012,.,

lll. PERTURBATION THEORY FOR GENERAL SYSTEMS
OF ALGEBRAIC EQUATIONS

Suppose one is given a system of N algebraic equations
in N unknowns which depend upon a small parameter,

i=1.2,.,N,

0)

(3.1)

such that a solution x = (x,?,x,,....xy®) is known for
€ = 0. A regular perturbation expansion in € can be calculat-
ed through the following three steps: (i) expand each F; as a
power series in the N 4 1 small variables ([x, — x,”],
[x, — x,91,..., [xy — x5 @];€); (ii) expand each of the un-
knowns (x,,x,,...,X ) as a power series in €, substitute in the
series obtained in the first step and collect powers in ¢; (iii)
order-by-order in ¢, solve the equations that result from de-
manding that the expansions for each F; obtained in the sec-
ond step are identically equal to 0.
If one writes

Fi{xx,,...xy;€) =0,

X1
x
x=| 2 |=x9 + x4+ 2 4 ..., (3.2)
XN
then
Ix™ = FV(x9xD,.. xV~ ), (3.3)

where F?) is the column vector whose elements are those
terms at O (€”) in the power series of F; which depend only
on the lower-order coefficients in the series in the unknowns
(x' and so on) which have already been calculated where J
denotes the usual N X N Jacobian matrix of the functions F,
evaluated at € = 0. The elements J;; of J are
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F;
Jy=—{x%0). (3.4)

ox;

If the equations F; are polynomials® in the unknowns,
then calculating the right-hand side of (3.3) is merely a mat-
ter of rearranging power series. Since it is always possible to
solve a system of linear equations like (3.3}— a matrix equa-
tion is one of the types that is always solvable—the only
delicate part of the business is calculating the lowest-order
solution x'%, since this may involve solving nonlinear equa-
tions. Fortunately, in the important cases for the double
cnoidal wave, solving the zeroth-order perturbation equa-
tions is easy.

Although routine, the power series rearrangements and
algebra needed to repeatedly compute and then solve (3.3)
quickly becomes laborious as the perturbation order in-
creases. The perturbation series were therefore calculated
using the algebraic manipulation language REDUCE 2, which
can add, multiply, differentiate, and collect terms in polyno-
mials of several variables in symbolic form without requiring
the substitution of numerical values as in FORTRAN. Regular
(as opposed to singular) perturbation theory is ideally suited
to REDUCE 2 and vice versa: The program to compute each
of the perturbation series given in the next two sections had
fewer than 50 executable statements (!) and cost of the final
runs was less than $10.00.

A special advantage of employing an algebraic manipu-
lation language is that different soliton equations in the same
class as the KdV differ only in the function { defined in Sec.
I1. Therefore, perturbation series for the Boussinesq water
wave equation and several others can be obtained by rerun-
ning the program after modifying only a couple of state-
ments.

A second advantage is that the computer can substitute
the perturbation series back into the original nonlinear equa-
tions to verify that the solution has indeed been calculated
correctly.

The same algorithm, and very nearly the same comput-
er program, can also be applied to higher polycnoidal waves.
The major difference is that for the triple cnoidal wave, for
example, which is the generalization of three sine waves
(small amplitude) and three solitons (large amplitude), N = 7
instead of 4, and the series are more complicated because of
the greater number of parameters.

IV. SMALL AMPLITUDE (FOURIER SERIES)
PERTURBATION THEORY

As noted earlier, the residual equations that determine
the theta function Fourier series are a special case of the
corresponding more general expressions for the Gaussian
series theory. Making the replacements §,—2mik;, €,
— — 2m,k;c; and a = 8 =y = 0, one finds

o ot 2 2 2 —k)?
n2 4+ (n, — ) gna’ +(ny — k)
P = E E q; 9
m

= — o Hp= — ®©
[integers]
Xe~ 2Tz [nn, + (1 — jny — k)]
X&(2ny —j2n, — k;k,kyc0,05,4 ), (4.1)

where
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E(mnsk ko0 004 )=16m%kym + kon)* + 42 (kym + kyn)
X k¢ ym + kyc,n) — 24, (4.2)
g;.=e " [“nomes”]. (4.3)

The four equations to be solved are
k=0, (4.4)

The input parameters are the wavenumbers (k,,k,) and ei-
ther the diagonal theta matrix elements (7,, T,,) or the
nomes (4,,¢,). The perturbation series given here are power
series in ¢,% and ¢,°. The nomes (or equivalently, T, and T>,)
determine the amplitudes of the two sine waves that form the
lowest-order approximation, while k, and &, are the wave-
numbers of these two waves.

The four unknowns whose column vector is x are the
two phase speeds (¢,,¢,), the constant of integration A4 for the
HKdYV equation (which has no physical significance), and
the exponential of the off-diagonal theta matrix element

P =0, j=01

X €1
X3 A
x e_zrll

Novikov’ has stressed that double cnoidal waves may
be almost periodic in space as well as in time. In other words,
the ratio of k,/k, is mathematically arbitrary and may even
be irrational. Therefore, it is useful to first give the general
solution for symbolic k, and k, [to O (¢,*, ¢,*)] and then the
special k, = 1, k, = 2 solution to O (g,, ¢,%).

€= — k12(1 - 24412 - 72414) + 384924k26/([k12 - kzzlz)’

(4.6)
€= — k22(1 - 24q22 - 72%4) + 384q,4k16/([k12 - k22]2)’
(4.7)

A4 =0+ 12(k,*q,* + k,*q,%) + T2(k*q,* + ky*q,")
- 768412422](14]‘724/([k12 - kzz]z)’ (4.8)

e~ T = ([{k, — k(K + ky)1?]
+ 32k k,{(ki%q,% + ky°q,%)/ [ (ks + k5)*])
+ 32k k,{k *q,* — 9%k,* + 16k ,%k,
— 18k %k,* + 3k, + k,%q,*(3k,* — 18k, 2k,?
+ 16k k,* — 9k,*) + 16k ,%k,2q,2q,%( — 3k,?
+ 2kik, — 3Kk,7)}/ [k, + ko) k2 — k221 (4.9)

The special solution for a wave and its second harmonic
ki=1k,=2)is

=4 — 14249, + 72g," + (242)g,*
+ 96g,° — 32(63 488¢,° + 69 632¢,%¢,*)/27
+ 168g,® + 114 688(3 064¢,°g,* + 16 7049,%,°

+ 6 025¢,%)/243}, (4.10)
= 167*{ — 1 + 244, + 72¢9,* + ($)q,*

+ 964,° — 256(q,° + 184¢,*g,°)/27

+ 1684,% + 64(535¢,% + 104 4484,5,>

+ 658 528¢,°g,%)/243}, (4.11)
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A =0+ 167*{129,% + 1924,
+72g,% + 1 152¢,* — (495)q,%g,>
+ 1444,5 + 23044,°
+ 204 800(¢,q,” + 13¢,%¢,%)/27
+ 3364,° + 53764,° — 16 384(495¢,%,>
+ 38 461¢,*g,* + 89 475¢,%¢,5)/243},
e~ Te= () + (§1)g,° + ().’
— (%)[g,* + 340g,* + 704¢,%¢,’]
+ 25619 972¢,° + 93 168¢,%¢,*
+ 19 7284,*g,* + 374,°1/6 561

- (30 994 432)q 4 4

(4.12)

— (154, )(2 887¢,° + 8 816 4284,%)

— (45388)(29 029¢,%¢,% + 736 867¢,%¢,%).  (4.13)

Several features of these expansions deserve comment.
First, the numerical coefficients are rather large for high
order, suggesting that the range of accuracy in the ¢, — ¢,
plane is too small to be useful. To show that this is not true,
contours of constant error for the perturbation series of var-
ious orders are given in Figs. 1 and 2 in Sec.VIL

Second, the expansions proceed in powers of
g,*(=exp[ — 2T},]) and ¢,*( = exp[ — 27T,]) rather than
q, and g, themselves even though the series for the theta
functions have coefficients that are power series in the un-
squared variables ¢, and g,. This obviously improves the
accuracy and usefulness of the perturbation series.

Third, the perturbation series are sparse not merely be-
cause all the odd powers vanish but because some of the
expected even powers are missing, too. The series for ¢,, for
example, has zero coefficients for ¢,%, ¢,%¢,%, ¢,%¢,% and
4.°¢,%, i.e., one missing term at each order so that the series
through O (g,%,4,% contains only eleven terms. Similar spar-
sity exists for the other quantities.

Fourth, although the series for 4 has been listed for
completeness (one cannot solve for the other unknowns
without simultaneously obtaining 4, too) 4 is only the con-
stant of integration for the Hirota-Korteweg-deVries equa-
tion and has no direct physical significance. It is never neces-
sary to evaluate 4 to compute the double cnoidal wave
solutions of the KdV equation itself.

Fifth and most important, although u(x,? ), the KdV so-
lution, is defined in terms of an infinite series, it is never
necessary to explicitly tabulate the coefficients of the series.
Instead the three dependent parameters T,, ¢,, and c, to-
gether with the four free parameters T,,, T,,, k,, and &,
completely determine all the coefficients of the theta Fourier
series (2.6), which in turn determines u(x,t) via (2.1)

Ordinary Stokes’ expansions, obtained via the method
of multiple scales as in Appendix B of Ref. 1, can be calculat-
ed for almost any wave equation, but each Fourier compo-
nent—and their numbers grow as the square of the perturba-
tion order—must be calculated through a separate
expansion as complicated as that for the phase speeds ¢, and
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¢,- To need only three perturbation series instead of many is
thus a great simplification.

V.LARGE AMPLITUDE (GAUSSIAN SERIES)
PERTURBATION THEORY

For large amplitude, the double cnoidal wave problem
reduces to solving the four simultaneous nonlinear residual
equationsp;, = 0, where the residuals are given by the Gaus-
sian series

o0 o0

Pik = Z z q{n,2+(n,vjbzqén22+(n2—k)2
I

n= — ny= — o

[half-integers] [half-integers]
Xexp( — Ry {nny + (ny —j)ln, — k)})
X§(2n1 —j,2n2 - k;a: ﬂ,7’61)62:51,62, A );

j=01 k=01, (5.1)

where

R (5.2)
Equation (5.1) is very similar in form to its Fourier series
counterpart, (4.1), but there are some noteworthy differ-
ences. As indicated in the square brackets under the summa-
tion symbols, the sums do not run over the integers but rath-
er over the “half-integers” + 1, 43, 4 3,.... The “nomes”
q, and ¢, are replaced by the “complementary nomes” g,
and ¢; which are defined in terms of the elements of the
inverse theta matrix. A factor 2 is present in (5.2) which is
missing from (4.2} and the factor of 2 multiplying T, in (4.1)
has no counterpart in the coefficient of R, in (5.1).

The major difference is in the form of { which is

;(m’n;ayﬂ’7,351’52,61;€2"4 )
= (6;m + 8,n)* + (86,m + S,n)[ (e, — 12a8,)m
+ (6, — 12ab,)n] + 12a*> — 23 — 24, (5.3)

where the parameters are related to the wavenumbers and
phase speeds via

gl=e [“complementary nomes”].

@ =R,k + 2Rk k; + Rysky, (5.4)
B= — Ry k¢, — Rzkksfc, + ¢;) — Rypky’c,, (5.5)
¥ = Ryk,%c,® + 2R 5k kyeic; + Rysky’cd, (5.6)
8, =Ry ki + Rk, (5.7)
8, = Rk, + Rk, (5.8)
€= — Ry ke, — Rpki0, (5.9)
€, = — R k¢, — Ryk,0,. (5.10)

The parameters &, and §, may be named “pseudowave-
numbers” because, as shown in Appendix B, they give the
widths of the two solitary waves in the large amplitude, near-
soliton regime in the same way that the wavenumbers k, and
k, give the widths of the two sine waves in the small ampli-
tude regime. Similarly, €, and €, may be labeled “pseudofre-
quencies” in the sense that ( — €,/8,) and ( — €,/6,) are the
phase speeds of the two solitary waves for large wave ampli-
tude.

The major complication posed by (5.4)—(5.10) is that the
parameters denoted by Greek letters are functions of R,,,
which is one of the unknowns. Thus, it is not possible to
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evaluate any of these parameters a priori; instead, one must
solve for them as part of the task of solving the residual
equations, which would seem to leave us facing an algebraic
problem of ghastly complexity.

Fortunately, the situation is not quite as bad as it looks.
The function § is independent of y, which is automatically
eliminated from u(x,z ) by taking the second logarithmic deri-
vative with respect to x. Thus, although ¥ is needed to graph
the theta function, it is quite irrelevant both to solving the
residual equations and to evaluating the solution of the
Korteweg—de Vries equation, so ¢ will be ignored in the rest
of the discussion.

The parameter S appears in § only as the sum S + 4.
Thus, if B is artificially set equal to O to reduce the number of
unknowns, the solution of the residual equation will be un-
changed except for 4, but 4 has no physical significance.
Therefore, the calculations presented will be done with
3 = 0; after R,, and the other unknowns have been deter-
mined, one can then evaluate £ and add the result to the
computed A to obtain a final solution which is completely
consistent with the original equations (5.1)—(5.10).

The parameter « has a slightly more complex role. One
can easily show from (5.3), (5.9), (5.10), (2.1), and (2.9) that
the results of a calculation in which a is artificially set equal
to O differ from those in which « is retained via

A [witha] =4 (@ = 0) + 6a?, (5.11)
¢,[with a] = c|(a = 0) — 12, (5.12a)
¢, [with a] = c,(a@ = 0) — 12, (5.12b)
ulx,t)[witha]l = — 12a 4+ u{x + 12at,t), (@=0). (5.13)

Since 4 has no physical significance, the important role of a
is to add a constant to u(x,? ) while simultaneously increasing
all the phase speeds of the “angle” variables by the same
constant. As noted in Ref. 2, the theta function solution of
the Korteweg—de Vries equation is that solution which has
(u) =0, where { ) denotes an average over the periodicity
interval. In the near-soliton regime, this is awkward because
it implies that the solitons asymptote to « = — 12« instead
ofto u = 0, which is the usual asymptotic solution as |x|— oo
in the spatially unbounded problem. Setting & = 0 merely
causes the solitons to asymptote to 0.2 Thus, the parameter
is no real trouble either.

Difficulties with the “pseudofrequencies” €, and €, can
be avoided by simply taking them as unknowns in the residu-
al equations. After €,, €,, and R,, have been obtained by
solving the rest of the problems, ¢, and ¢, can be obtained by
solving (5.9) and (5.10) as a pair of linear equations in two
unknowns. Alternatively, one could use (5.9) and (5.10} di-
rectly in £ to replace €, and €, wherever they appeared by
expressions in ¢,, ¢,, and R ;,, which are the usual unknowns
of the residual equations, but this makes the p;, much more
complicated, so it is far less work to consider €, and €, as the
unknowns and then compute ¢, and ¢, at the end.

Unfortunately, there is little one can do with the two
remaining parameters, the “pseudowavenumbers” &, and
5,. The simplest set of algebraic nonlinear equations one can
solve simultaneously is the set of six equations in the un-
knowns (4, R,,, €,, €,, 8, 8,): the four residual equations
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pix = 0 plus the pair of equations which define &, and 5,,
(5.7) and (5.8). However, the rather special form of these
equations—(5.7) and (5.8) involve only three of the six un-
knowns—means that it is not necessary to solve all six equa-
tions simultaneously. Instead, one can pretend that 6, and 6,
are independent free parameters and solve the four residual
equations via perturbation theory exactly as for the Fourier
series case in the preceding section. Adding two new param-
eters to the four that already exist (R,,, R,,, &k, k,) would
seem to greatly complicate the chore of solving p, = 0, butit
actually does not because &, and k, do not appear explicitly
in the Gaussian form of { (5.3). Instead, §, and §, appear in
place of the wavenumbers in the analogous terms of §. Thus,
this device of pretending 8, and &, are independent param-
eters leads to solutions of the coupled set p; = O which are
neither more nor less complicated than the analogous solu-
tion in the Fourier case for general k, and k,. Just as the
Fourier solution for general k, and k, (as opposed to
k, = 2k,) was taken only up to and including second order
[O(g,% ¢.")], so also the Gaussian solution of the residual
equations will only be carried to second order also.

The residual equations (implicit dispersion relation) are
defined by infinite series; to calculate the solution to a given
order, it is sufficient to truncate the series of p;, after this
same order. The truncated residual series in the Fourier case
was omitted from the previous section because it is given (to
lowest order) in Appendix A, but it is useful to give the series
to second order for at least one of the two cases so that the
reader can see more clearly what must be solved. The series
have been simplified by exploiting the general symmetry re-
lation (true in Fourier case also)

Emn)=¢(—m, —n) (5.14)
and by dividing out common factors, which is why equal
signs have been replaced by proportionality symbols. In ad-
dition

y=e R (5.15)

has been used to replace appearances of R |, so as to make the
series rational in all parameters and unknowns.

Poo< & (L1 + (1, — 1)+ [ 3% + £ (3, — 1)/y]

+a* S (L3x* + £ (1, — 3)/x], (5.16)
P1o<$(0,1) + g[8 2,1y + & (2, — 1)/x] + ¢34 (0,3),
(5.17)

Po1<$ (1,0) + g2[¢ (1L,2)y + & (1, — 2)/x] + 4i% (3,0),
(5.18)

for all m,n,

P11<§(0,0) + 2[¢1% (2,0) + ¢5%¢ (0,2)]
+297%¢32[8 (2.2 + £ (2, — 2)/x].

These rather innocent-looking expressions, (5.16)(5.19), be-
come exceedingly messy when & (m,n) is evaluated according
to (5.3), so they were solved perturbatively using the algebra-
ic manipulation language REDUCE 2 to perform (and check!)
the algebra. Note that these series, like their solutions and
the Fourier perturbation series given in Sec. IV, are
“sparse”: many expected terms in the series are identically
equal to 0. Equation (5.16), for example, contains no first-

(5.19)
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order terms at all, and only five of the possible 12 second-
order terms appear in the set.

The corresponding solutions are given below. Note that
the parameters a and f have been inserted in the proper
places so that the results are fully consistent with (5.3)

€, =6,(12a — 8% + 24¢}%6 2
+ 246,[391%6,%6,% — 28,*6,* + 6,
+ 164;*6,°]/1(6,* — 8,71,
€, = 8,(12a — 8,%) + 244575, + 245,[ 16;*5,°

+ 3¢;46,° — 28,25, + 514522)]/[(522 — 6,21,
(5.21)

(5.20)

A=6a>—F+ 1295 * + 12¢5%5,°
+ 24[3¢7%6,%8,* — 26,6, + 6,%)
— 3291%¢5%5,%8,% + 3¢5%6,° — 26,%6,°
+8,*6,%)1/1(6.* — 8,1,
e %12 = (8, — 8,2/(6, + 6,
+ 326,6,(q1%8,% + ¢5°6,°)/(8, + 6,)*
+ 325,65, (9;%(36,%6,* — 186,%5,2
+ 166,°5, — 96,%) — ¢2q;%(485,%6,*
— 328,°5,% + 488,%5,%) + g5*( — 96,°
+ 168,6,° — 186,26,* + 36,*6,2)1/
[(8, + 8,)%6, — 6,)%]. (5.23)

As explained before, §, and §, are not really indepen-
dent parameters but rather are determined by R, and R,,
{or equivalently, by ¢; and ¢;) through (5.7) and (5.8). It is
therefore necessary to solve the triplet system of (5.23) plus
(5.7) and (5.8) for the three unknowns (8,, §,, R ;) to obtain a
completely consistent solution. However, in the large ampli-
tude regime, 8, and §, have a physical interpretation as giv-
ing the widths and speeds of the two solitons,

u(x,t)=38,% sech®[(6,/2)(x — 8,%t + ¢,)]
+ 38,2 sech?[(8,/2)x — 8%t + é3)],  (5.24)

where ¢, and ¢, are phase constants at those times when the
two solitons are well separated. In the large amplitude re-
gime, R ,<R,;, R, so that one has approximately

R; = 5i/ki’ i=12. {5.25)

Under these circumstances, it may be preferable to take the
pseudowavenumbers 8, and §, as independent parameters,
estimate R,; and R,, and therefore, ¢; and ¢; via (5.25) and
(5.2), and then use (5.20) to (5.23) directly to estimate the
importance of the corrections due to spatial periodicity to
the lowest-order solution, which is just the spatially un-
bounded double soliton.’

Unfortunately, this crude estimation is all that can be
done directly because the lowest-order problem for (5.7),
(5.8), and (5.23), which is

e Re= (8, —6,/(6, + 8,
51 = k1R11 + k2Rl2’

(5.22)

(5.26)
(5.7 bis)
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8, = k,Ry; + k>R, (5.8 bis)

has no closed form solution. It is easy to solve this set nu-
merically, however.

To proceed to higher order, it is convenient to replace §,
and 6, by

S=65,+6,, (5.27)

D=6, -6, (5.28)
There are two motives for this trick. One is the §, and §,
often appear in (5.23) as their sum or difference rather than
alone. A second reason is that for the special case of k, = k,
(the principal branch or mode of the double cnoidal wave as
explained in Ref. 2) the difference variable D is given exactly
by the lowest-order solution. In terms of the new variables,
the problem becomes (5.23) plus

S=kRy, + kR, + (ky + k)R 5, (5.29)
5 = klRll - szzz + (kz - kl)RIZ' (5-30)

The general solution to first order for arbitrary k, and
k,is

S=8— ¥k, +k,), (5.31)
D=D—¥(k,— k), (5.32)
e Re=y(1+ W), (5.33)
where S, D, and y are the solutions of the lowest-order set
S=kRy + kRp, — (ki + k))ln(y ), (5.34)
D= kR, — koRy, + (ky — ko)in(y ), (5.35)
y=D?S?, (5.36)

[which is equivalent to (5.26) plus (5.7) and (5.8)] and where

¥=2S+DNS—D)[g;S+ D) +¢(S— D))/
{xS*—SD*[k\(S+ D) — k,(S—D)]/2}. (5.37)
The second-order solution for the special case

ki=k,=1is

D=D,

S=8—_2W4{—-32D*W(g*+q}}
+48D3S¥ (q;” — qi%) + 16DS°¥ (g* — ¢3)

+ WA24D2S — ¥S°%) + 250} /(S?[4D? — ¥S*]),
(5.38b)

(5.38a)

e Re=y(1 4+ W)+ (16D*W¥(g}* + ¢))
+24D°SW (qi* — g5°) + 8DS W (g5 — ¢7°)

+2D*S¥S — 6) — S°v}/(S2[4D? — ¥S°]),
(5.39)

where as before S, D, and y are the lowest-order solutions for

(61 + 8,), (6, — 8,), and exp ( — R,,), ¥is given by (5.37) and

v={ —q*[§*+ 253D+ 10SD> + 5D*](S+ D (S — D)
— 847%¢5’[S* +2D*)(S+ DS - D)
~q*[S*—2S8°D —108D?
+5D%)S—DPS+ D)}/ (D3SO). (5.40)

It goes almost without saying that the Gaussian pertur-
bation theory is more cumbersome than its Fourier counter-
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part at the same; particularly annoying is the necessity of
solving the lowest-order set (5.26) plus (5.7)—(5.8) numerical-
ly, even though a simple Newton’s iteration initialized with
R, = Oalways seems to work. However, the Gaussian series
is that oddity: a perturbation series that converges more and
more rapidly as the wave amplitudes becomes larger, so it is
an essential component of any complete treatment of polyc-
noidal waves.

V1. PERTURBED SINGLE-SOLITON REGIMES

The perturbation series derived in the previous two sec-
tions were based on the implicit assumption that both diag-
onal theta matrix elements T, and T,, are either very large
{(Fourier series) or very small (Gaussian series). When one
diagonal theta matrix element is very large and the other is
very small, however, neither the Fourier series nor the Gaus-
sian series for the theta function converges rapidly as is ob-
vious from inspecting the form of these series.

In Ref. 1, it is shown through numerical examples that
these regimes correspond to a single solitary wave slightly
perturbed by a small amplitude sine wave, so these parame-
tric neighborhoods are much less interesting than those in
which the waves have amplitudes of the same order of mag-
nitude and one or the other of the series given in the previous
sections is rapidly convergent. When (k, = 1 and k, = 2)

T\ <&m, (6.1)

the solitary wave is of unit period with a height and width
determined solely by the magnitude of 7',,, and the perturba-
tion is of wavenumber 2, i.e., periodic with a period of 1, with
a small amplitude roughly equal to 4 exp( — T,,). After the
application of a modular transformation® to k, =k, = 1,
this same regime is found to be characterized by either

R22>77"

T,,>,

R, <2, (6.2)

or equivalently (since the wavenumbers after the modular
transformation are identical) by (6.2) with the direction of
the inequalities reversed.

The other perturbed-one-soliton regime occurs when

T\ »m, Tp<m. (6.3)

The large amplitude component is now of wavenumber 2, so
that tall, narrow solitary wave is repeated with half unit peri-
od while the small amplitude perturbation is a subharmonic
of period one. When the modular transformation is applied
to convert to a representation with equal wavenumbers,
k, = k, = 1, one finds that the equivalent neighborhood in
terms of the inverse theta matrix elements lies around the
diagonal in the R, — R, plane,

Ry =~R,. (6.4)
The reason for this somewhat surprising result is that the
wavenumbers are equal in the R, — R, plane and therefore
the roles of the two diagonal inverse theta matrix elements
are physically interchangeable and the phase speeds, etc.,
must be symmetric functions of R,; and R,,. This implies
that the whole of the T,, — T, plane must map into the
wedge-shaped half of the R,, — R,, plane which lies below
the diagonal (6.4).

The Poisson summation method which was used to
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generate the Gaussian series from the theta Fourier series
can be applied selectively to just one of the sum variables,
either n, or n,, in the infinite series that define the residual
function p;; (4.1). This is not the most efficient way to pro-
ceed because it causes “theta matrix-halving” as explained
on p. 384 of Ref. 1, but it shows that in principle, Poisson
summation can be applied to generate rapidly converging
residual function series (and perturbation series derived
from them) in any region of parameter space for polycnoidal
waves of any genus N.

A procedure that gives more rapidly converging series
is to apply partial Poisson summation directly to the multidi-
mensional theta function and substitute the result into the
Hirota-Korteweg—de Vries equation. Shirfuji'® actually ap-
plied this idea to the double cnoidal wave of the Toda lattice
problem in 1976, but the independent derivation of the resid-
ual equations by Nakamura and Boyd lay in the future, and
such results as he obtained came directly from the governing
equations of the Toda lattice, and not from Hirota’s trans-
formed Toda equation. The theta function can be written as

0=0,X)+ e~ "{60,[X — (i/mT ;1™
+ 6,[X + (i/mTle ), (6.5)

when T',, €T,,, where 8,(X ) is the usual one-dimensional the-
ta function. Representing 6, by its Gaussian series represen-
tation [note that (6.5) contains the lowest terms of the Four-
ier series in the other angle variable Y with higher terms
eliminated because of the extreme smallness of exp( — T,)]
one can substitute (6.5) into the Hirota—Korteweg—de Vries
equation and then use the calculus of Hirota operators devel-
oped in Ref. 1 to obtain infinite series for the residual equa-
tions.

Unfortunately, the resulting zeroth-order approxima-
tion is a quartic equation in exp( — 7',) and cannot be solved
in closed form, unlike its counterpart for the pure Fourier
series representation given in Sec. IV. It follows that one is
forced to resort to numerical methods even to compute the
zeroth-order solution, so this kind of special treatment for
the perturbed-one-soliton regimes is not very useful. In the
first place, the double cnoidal wave is much more interesting
when it is truly a double soliton or a double sine wave than
when it is merely a perturbed ordinary cnoidal wave. In the
second place, numerical solution of the “pure” Fourier or
Gaussian residual equations (4.1} and (4.2) is quick and effi-
cient unless the difference between the magnitudes of the
diagonal theta matrix elements is very large, but in that case,
the perturbation of the single soliton is very, very small, and
therefore uninteresting.

For this reason, no further details will be given about
partial Poisson summation of Shirafuji’s approximation. For
most purposes, the perturbation series derived in the preced-
ing two sections are quite adequate. For the perturbed soli-
tary wave discussed in this section, alternative perturbative
methods, like that of Grimshaw,'! might be more physical
and easier than trying to work through the residual equa-
tions.

Wahlquist'? and Kuznetsov and Mikhailov'? report so-
lutions obtained via Backlund transformations and the in-
verse scattering transform. Zagrodzinski and Jaworski'* ap-
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ply ideas similar to Shirafuji’s to obtain what they dub
“mixed” solutions, i.e., solitons perturbed by sine waves, for
the sine-Gordon equation for general N.

Vil. ACCURACY OF THE PERTURBATION SERIES

In Ref. 1, it is shown that the complementary perturba-
tion series, one which gives the first few terms of the Fourier
series of the theta function and the other which gives the
Gaussian series, were very accurate for the ordinary cnoidal
wave provided that each series was used in the proper regime
(small wave amplitude for the Fourier series and large ampli-
tude for the Gaussian series). In the worst case, i.e., that
intermediate wave amplitude for which both series converge
equally well or poorly, both gave the phase speed to within a
relative error of 4.7% to zeroth order, and to within 0.027%
to first order, where “zeroth” order refers to the phase speed
of a linear sine wave in the Fourier case and a solitary wave
on an infinite spatial interval in the Gaussian case.

For the double cnoidal wave, the overlap between the
two complementary perturbation series is not quite so dra-
matic, but it is still good. Figures 1 and 2 compare regions in
which the zeroth-order and first-order perturbation series
give errors which are less than 10%. The error criterion is to
take the largest of the three errors for ¢,, ¢,, and either T, or
R, asappropriate using the modified relative error criterion

Error = (¢, — ¢,**/c, (7.1
where
14 i S S— 1 1 1 1
124 -
10+ ' t

4

FIG. 1. The lines slanting from top right to bottom left denote that region in
the Ry, — Ry, plane where the error in all three of the quantities c,, ¢, and
R,,, which suffice to determine the theta function and the corresponding
solution of the Korteweg—de Vries equation, is less than 109% for zeroth-
order Gaussian perturbation theory, which is the double solitary wave ap-
proximation. The modified relative error is defined by Eqs. (7.1) and (7.2).
The lines slanting from top left to bottom right are the 109 error region for
the zeroth-order Fourier perturbation theory, which is equivalent to ap-
proximating the double cnoidal wave as the sum of two linear sine waves.
The blank area is “no-man’s land” where neither approximation is accurate
within 10%.
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FIG. 2. Same as Fig. 1 except for the first-order Fourier and Gaussian ap-
proximations, which incorporate the first correction to the double solitary
wave and double sine wave. The first-order theories overlap very well.

4]

linear sine wave __

¢ = larger of [ (7.2)

— 394,

and similarly for ¢, and the off-diagonal theta matrix ele-
ment. The reason for the modification, i.e., the replacement
of the exact variable by its value in the linear limit, is that
both phase speeds vanish along certain curves in the two-
dimensional parameter space spanned by R, and R,,, which
implies infinite unmodified relative errors in the neighbor-
hood of these curves even though the absolute errors may be
very small.

Figures 1 and 2 show the principal branch of the double
cnoidal wave with k; = k, = 1. Because the wavenumbers
are identical, the graph is symmetric about the diagonal
R, = R,,. The neighborhood of this diagonal corresponds
to a perturbed ordinary cnoidal wave of unit period. As ex-
plained in the preceding section, neither perturbation series
can be expected to work well in these neighborhoods because
both that derived in Sec. IV and the Gaussian series of Sec. V
implicitly assume that the amplitudes of both waves are ei-
ther very small or very large. However, the graphs show that
the near-diagonal and near-axis regions where the Gaussian
and Fourier perturbation series fail are quite narrow—al-
most invisible on the scale of the graph. This is a strong
pragmatic justification for omitting a detailed treatment of
the mixed Gaussian—Fourier perturbation series which, as
noted in Sec. VI, can be calculated, but which would hardly
ever be of any practical value.

Even outside these narrow perturbed-single-soliton
areas, the zeroth-order perturbation curves do not quite
overlap; there is a small region of moderate R,, and R,,
where neither approximation gives all three dependent var-
iables to within 109%. However including the first-order cor-
rections to the sum of the two noninteracting linear sine
waves and to the double solitary wave reduces the error to
less than 109% everywhere except very close to the diagonals
and the axes.

The physical implication is clear: The double cnoidal
wave of the Korteweg—de Vries equation can always be con-
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sidered both qualitatively and quantitatively to be either (i)
the sum of two noninteracting sine waves; (ii) a pair of soli-
tary waves of different heights, repeated with unit period
over all x; or {iii) a single soliton plus a weak sinusoidal per-
turbation. When one wants to obtain numerical values for
the double cnoidal wave, the perturbation series derived ear-
lier will usually be adequate. If high accuracy is needed, it is
straightforward to solve the residual equations numerically
using the peturbation series to initialize the iteration.

The one serious complication is that the Fourier and
Gausstan perturbation series involve different parameters—
the Fourier expansion uses 77, and 77, while Gaussian em-
ploys R, and R,,—and it is not possible to transform from
one pair of parameters to the other unless one knows either
T,, and R,. In practical terms, this means that if one wants
to make a contour plot of the phase speed ¢, as a function of
T,, and T,, including such small values of these diagonal
theta matrix elements that one passes into the double-soliton
regime, one must use an iteration instead of a direct evalua-
tion. One must guess 77, (in the large amplitude, double-
soliton regime, one cannot calculate it from the Fourier per-
turbation series), perform a modular transformation as in
Ref. 3 to obtain the three inverse theta matrix elements, ap-
ply the Gaussian perturbation series, determine the differ-
ence between the R, obtained by the modular transforma-
tion and that calculated by the Gaussian perturbation series,
transform back to 7,,-T,, space, and guess a new value for
T\, and so on. The fact that the off-diagonal theta matrix
elements are unknowns rather than independent parameters
is a considerable practical difficulty.

Fortunately, it is one that arises only when one is at-
tempting to simultaneously explore the dynamics of double
cnoidal waves in both the large and small amplitude regimes.
If one is content instead to examine the double cnoidal wave
strictly as the sum of two solitary waves, then one can stick to
the inverse theta matrix elements R,, and R, as parameters
and use the Gaussian perturbation series alone. If one wants
to investigate polycnoidal waves as a sum of quasilinear
waves, the Fourier perturbation series is more than ade-
quate.

Vill. SUMMARY

Following the plan outlined in Ref. 1, the problem of
the double cnoidal wave for the Korteweg—de Vries equation
has been reduced to four algebraic equations in four unk-
nowns. Because the four functions of this set are defined only
via infinite series, it is extremely advantageous to express
these four residual functions in two quite different ways: one
obtained by using the ordinary Fourier series of the theta
function and then applying the theorems of Ref. 1, and a
second representation derived via the alternative Gaussian
series. These representations are mutually complementary
in the sense that the Fourier representation, obtained inde-
pendently by Nakamura,* is very efficient for small ampli-
tude double cnoidal waves while the Gaussian representa-
tion, obtained here for the first time, is highly effective for
large amplitude, i.e., when the double cnoidal wave is ap-
proximately equal to two solitary waves of unequal heights
repeated periodically over all space.
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It is also straightforward to solve the residual equations
using perturbation theory. Comparisons with numerical so-
lutions show that even the zeroth-order perturbation series
have good overlap while the two first-order series cover al-
most all of parameter space with errors of 10% or less. By
using the algebraic manipulation language REDUCE 2, it is
trivial to extend the series to fairly high order for the princi-
pal branch of the double cnoidal wave (fourth order for the
Fourier case and second order for the Gaussian series) so as
to cover all the physically interesting regimes in parameter
space.

The methods employed here, which explicitly use the
properties of the Riemann theta function, are only applica-
ble to partial differential equations which are exactly inte-
grable by the periodic analog of the inverse scattering meth-
od, which is known as the “Hill’s spectrum” procedure.
Within this class, however, the ideas developed here extend
very readily to other equations. For the Boussinesq water
wave equation, for example, the calculations presented here
can be repeated merely by altering the residual equations
(and the appropriate line in the REDUCE 2 computer pro-
gram) to use a new function & (m,n), where & (m,n) is defined
(for the Korteweg—de Vries equation) by (2.11).

The Gaussian perturbation series is remarkable in that
it converges most rapidly when the wave amplitude is large
rather than small, which makes it well suited for exploring
the effects of spatial periodicity on solitary waves. The Four-
ier perturbation series is useful, too, because its form is
simpler and easier to evaluate than the Gaussian series and it
remains accurate even for moderately large waves. Both se-
ries share the common property that it is not necessary to
write down separate series for each of an infinite number of
Fourier coefficients or the like: one need only have series for
three parameters, and these determine the whole infinite se-
ries for the theta function, and thus for the double cnoidal

wave itself.
Future work to calculate perturbation series for other

partial differential equations integrable via the “Hill’s spec-
trum” method is now in progress. It is hoped that the results
will be useful whenever equations of soliton type are applied
with spatially periodic boundary conditions, or wherever
there is a high density of solitons so that soliton—soliton over-
lap is important.
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APPENDIX A: PERTURBATION THEORY IN AN
UNPHYSICAL REPRESENTATION

The companion paper (Ref. 3) has shown that via the
“special” modular transformation, a given theta function
can be expressed in a denumerably infinite number of ways.
Each of these allowed representations involves theta func-
tions of two “angle” variables, X =k (x —c,t) and
Y = k,(x — ¢,t), but in general the phase speeds ¢, and c,
have no actual physical interpretation unless the representa-
tion is that unique one defined to be the “physical” represen-
tation in Ref. 3. Fortunately, the perturbation series given
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earlier automatically calculate in this “physical” representa-
tion so that ¢, and ¢, are the actual speeds at which individ-
val peaks of the polycnoidal wave are moving.

Nonetheless, it is still of interest to see how perturbation
theory can cope with the problem of calculating in an “un-
physical” representation because this both provides an addi-
tional demonstration of the existence of an infinite number
of alternative representations of the theta function and also
illuminates the assumptions and details of the perturbation
method. For simplicity, attention will be limited to the low-
est-order Fourier case for a polycnoidal wave consisting of a
sine wave of unit period and its second harmonic (plus very
small high harmonics created by their interaction which will
not be explicitly calculated).

Assuming that

Ty, Ty»l (A1)

the four residual equations are, to lowest order with com-
mon factors omitted,

Poo = §(0,0) (A2)
P10 =¢(L0), (A3)
Por=§(0,1) +e T 210 (2,1), (A4)
pun=e T (L) +£(1, — 1), (AS5)

where the zeta function for the Korteweg—de Vries equation
is defined by

& (mun)=16mk m + k,n)*
+ 4 (kym + kyn)(k,cym + kycon) — 24.
(A6)

[The zeta function satisfies the general symmetry relation
5 (mn) = £ (— m, — n) as evident in (A6), and this has been
used to simplify (A3) through (AS5).]

In the physical representation for which £, =1 and
k, =2, (A2) and (A 3) may be solved to give

;= —47 + 0fe e 2T, (A7)

A=0+4 0 Tne 2T, (A8)
If one assumes

| T2l €11, T (A9)

as done implicitly in earlier sections, then the second term in
Por Must be neglected to give

= — 167+ 0 Tne ), (A10)

Equation (A9) is the key assumption that ensures that we
calculate in the physical representation. The phase speed c,
is indeed that of a second harmonic of the linearized
Korteweg—de Vries equation. The residual p,, = 0 gives

T\, = log(3) = 1.0986. (A1l)

It is, however, equally possible to calculate in the un-
physical representation k, = k, = 1. As stressed in the auth-
or’s companion paper on the modular transformation,® the
linear dispersion relation gives a unique phase speed for each
wavenumber, so it is quite absurd to suppose that the two
waves of different phase speeds which are the dominant
terms in the Fourier series of a small amplitude double cnoi-
dal wave can both have identical wavenumbers. (If wave-
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numbers and phase speeds are the same, then the two waves
are identical and we have an ordinary cnoidal wave which
depends on but a single “angle” variable.) Nonetheless, it is
still possible to represent the solution using a theta function
with the unphysical wavenumber &, = 1 if {A9) is replaced
by

Ty,= —Ty,+A4. (A12)

The first two residuals are unaffected (to lowest order!)
by the change in &, and by (A12), so the phase speed ¢, and
constant of integration are still given by (A7) and (A8). The
invariance of ¢, is in fact true to all orders in perturbation
theory because a modular transformation that alters &, and
Y does not affect X and ¢, at all as may be seen in Table I of
Ref. 3. The invariance of A4 is also exact because the special
modular transformation leaves the theta function un-
changed, which means that after the angle variables have
been converted to x and ¢, the theta function has the same
dependence on space and time as before. The theta function
must therefore satisfy the Hirota-Korteweg—de Vries equa-
tion with the same constant of integration 4.

The other two residual equations, however, are quite
drastically changed. When the wavenumbers are identical
and A4 =0,

¢(L1)=0 (A13)
so that
pun=e T (L1). (A14)

The only way that p,, = O s if either (i) 7, = o, which is
impossible since the theta series would diverge or (ii)

(LY)=0 (A15)
which demands
c, = — 287 (A16)

This is not the phase of any linear wave of the Korteweg—de
Vries equation with an integer wavenumber.

Because of the large magnitude ot 7., it is no longer
legitimate to neglect the second term in p,,;, which becomes
[using (A 12)]

Por =§(0,1) +e L (2,1), (A17)
which gives
T,,= —T,, + 1.0986. (A18)

These alterations in ¢, and T, [from the values given in
(A 10} and (A 11)] are exactly as listed in Table I of the com-
panion paper by Boyd for a transformation by the modular
generator A, '. Equation (A 16) is the limit of the numerical-
ly calculated values of ¢, as given in Table II of the same
paper, while (A 10) gives the limit of what is called ¢,™? in
the same table. Thus, there is a gratifying consistency
between the numerical solutions of the residual equation, the
perturbation theory, and the special modular transforma-
tion.

The lowest three terms of the theta function itself can be
written in either representation,

0
2] [0] =14+e Tncos(2nX) 4+ e~ "= cos(27Y)

+ e~ Tn=Tu—2Tu o2 [X + Y ). (A19)
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In the “physical” representation [1,2], ie., k, =1 but
k, =2, the first two cosine terms are dominant in the limit of
Ty1, Tp;» 1. In the “unphysical” representation [1,1], i.e.,
k, =k, =1, (A18) implies

=T =Ty —2T; _ ,— T“eT“ — 2.2972>e- Ty (AZO)

for large T, so that the cos(27Y ) term is exponentially small
in comparison to the “mixed” terms cos(27[X + Y']). This is
asit should be because cos(27[X + Y'])is of wavenumber 2 in
x and is in fact identical with the term which is written
cos (27Y) in the other representation.

4 e

APPENDIX B: THE RELATIONSHIP BETWEEN THE
“TETRA-GAUSSIAN” DOUBLE SOLITON AND
HIROTA’S DOUBLE SOLITON

Asnoted in the main body of this paper and the author’s
previous work," the sum of the four Gaussians with peaks at
the corners of the unit square, named the “tetra-Gaussian”
and labeled by an upper case Greek O, can be given two
interpretations. First, it is the lowest-order approximation to
the full theta function series 6 (X,Y). Second, it is an exact
solution of the Hirota—Korteweg—de Vries equation for the
spatially unbounded problem, representing two solitary
waves of unequal height. This second interpretation is im-
portant because it justifies interpreting the double cnoidal
wave as a double soliton when the wave amplitudes are large
enough so that the tetra-Gaussian is an accurate approxima-
tion.

It therefore, is useful to explain how the tetra-Gaussian,
which seemingly is very different, is physically equivalent to
Hirota’s own solution to the HKdV equation, which is

H(x,t): 1 +er—31x+5,‘t7¢, +e—33x+32‘t~¢:

85 —6,\2
yous
6, +6,

Xexp( — (31 + Sz)x + (513 + 523)t — ¢ — ).

(B1)
The tetra-Gaussian in contrast is
O x,t)= exp( — {(R,,/2)(X 4 n,)
n= +1/2n= 1172
+ R (X + n )Y + ny) + (Ry/2)/(Y + ny)*})
(B2)

or written in terms of x and ¢
O (x,t) = exp( — (@/2)x* — Bxt — (y/2)t*
— (R11/8) — (R5,/8))
Xy > exp(— {(6iny + 8uny + 6, )x
n=11/2n,= +1/2
+ (647, + 6,1, + 6p)t 1)
X exp( — {RIannZ + Py + Pon, + ¢p}) (B3)

where the Greek letters are related to the theta matrix ele-
ments and k,, k, etc., via (2.8) through (2.19). Thus, Hirota’s
solution is an unsymmetrical sum of four exponentials of
linear arguments and is spatially unbounded, whereas the
tetra-Gaussian is a symmetrical sum of four exponentials of

John P. Boyd 3412



quadratic arguments. Because of (i) the form of the function
£ (4, /) which appears in the residual equation (2.22), (2.23),
and (2.26); and (ii} the second logarithmic derivative trans-
formation, these differences are almost entirely cosmetic if
one matches the psendowavenumbers, i.e.,

51 =0y, 32 = 0,. (B4)

It was stressed in the author’s previous work' that the
reason one can prove that all but four of the residual equa-
tions p, = Oare redundant is because ¢ (I, j) depends only on
differences in the exponentials of a pair of terms in the theta
function whose interaction in the bilinear HKdV equation is
described by & (7, j). This implies that if H (x,# ) is a solution of
the HKdV equation, then exp [vx + ot + = ] H (x,t ) is also
a solution for arbitrary constants v, o, and =. This theorem
was widely used by Hirota himself a decade ago to manipu-
late his solutions into convenient form. Here, recalling that
the explicit, exact solution of the residual equations for the
tetra-Gaussian (which is also the lowest-order approximate
solution for the full 8-series) implies that €, = §,®> — 12a8,,
€, =08,> — 12a8,, and exp[ — R,,] = (8, — 8,)*/(8, + 8,)%,
one can verify through routine multiplication that
exp[vx + wt + = | H (x, ) matches O (x,t ) except for the de-
pendence of the latter on ¢, 5, and ¥ provided that

v =18, +5,), (BS)
o =Y6+86,’), (B6)
E= —Ry/8—Rp/8+ P, —$,/2— $,/2 — R,,/4,

(B7)

and that one adjusts the phase factors ¢, and ¢, in the angle
variables X and Y, which determine @, and @, in (B2) via
@, =R1¢, + R;$, and @, = R4, + Ry, so that

¢1 =¢1 +R12/2’ (BS)
(152 = ¢2 + R12/2- (B9)

The two phase factors in X and Y are neither more nor less
than what is needed to match the two phase factors in H (x,¢)
and vice versa.

Since {{i,j} is independent of y, it follows that
exp[ — (y/2)t*1H (x,t)is asolution if H (x,t ) is. The function
& (1, j) does depend on 3, but only in the combination of
B — A.Thus,if H (x,t )solves the HKdV equation with4 = 0,
then exp[ — Bxt |H (x,t) is a solution of the HKdV equation
with the new constant of integration 4 = . This same rea-
soning explains why Fourier series numerical integration of
the HKdV equation instead of the KdV equation, which is
otherwise tempting because the Fourier series of the theta
function converges much more rapidly than that for the mer-
morphic function which is the corresponding solution of the
KdV equation, will not work unless 4 is known in advance:
There is only a single value of 4 which the HKdV equation
has a periodic solution. Arbitrary choices of 4 will yield so-
lutions that are the products of a periodic function with exp-
[ — (const)xt ]. This is strictly a numerical difficulty, how-
ever; neither S nor 4 has any effect on the solution of the
Korteweg—de Vries equation because the exp[ — £x ] factor
is automatically eliminated when the second logarithmic
derivative is taken.

The factor of exp[ — (a/2)x*] does alter u(x,t ), but only
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by the addition of a constant and simultaneously a shift in all
the phase speeds by the same constant. Stated formally, one
can easily show from the form of £ (i, j) (or from the theorem
given in Sec. VII of the author’s previous work) that if H (x,t)
is a solution of the HKdV equation with «(x,t} = 12(ln H ],
as the corresponding KdV solution, then exp[— (a/
2)x*H (x + 12at,t) is also an HKdV solution with the new
constant of integration 4 ' = A — 6a* with

vix,t)= — 12a + ulx + 12at,t) (B10)

as the corresponding solution of the Korteweg—de Vries
equation. Thus, aside from the @ dependence in (B10), the
tetra-Gaussian is physically equivalent to Hirota’s double-
soliton HKdV solution, even though their mathematical
form is rather different.

APPENDIX C: THE “TETRA-GAUSSIAN” AND THE
GEOMETRY OF THE X-Y PLANE

For large R ,,, R,,, one can accurately approximate the
full theta function series by a tetra-Gaussian and deduce a
number of simple facts that have been exploited here and in
Ref. 2. First, note that, using © to denote the tetra-Gaussian
as in Appendix B,

172 1/2

+ R X+ 0 )Y +n,)+ (—R%)(Y—% nz)z])], (C1)

which by extracting the common factor is
= — (R;)/2)X? + R ;XY + (Ry/2)Y?

12 12

+Inl > exp( — R, Xn, — R,,Yn,
n=—=12n="=172

— R Xn, — R, Yny)]. (C2)

When we take the second derivative of In O, the quadratic
termsinX 2, XY, and Y ? are converted to a constant ( — 12a),
so the shape of the double soliton is determined entirely by
the remaining logarithm in (C2), i.e.,
172 1/2
L=In exp( — R, Xn, — R,,Yn,

= 12 = =172
—R,Xn, — R\,¥n))].
(C3)

As done in Appendix B, one can then show that the sum of
the four exponentials with linear arguments in (C2) is equiva-
lent to Hirota’s sum of four linear exponentials that generate
the double solitary wave in the spatially unbounded prob-
lem.

Here, a different strategy will be adopted. When R,
and R, are very large, the “tetra-Gaussian” has four narrow
peaks at each of four corners of the unit square X = 4},
Y = + 1. Over most of the square, © is dominated by a sin-
gle term. The logarithm of a single exponential of linear ar-
gument in (C2) can be evaluated explicitly to give a result
linear in X and Y, which is then eliminated by taking two
derivatives. Thus, solitons occur only where at least two
peaks of the tetra-Gaussian are of comparable magnitude.
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One such region is the neighborhood of the positive ¥

axis where the important peaks aren, = + 14,7, = — }and
L=In[2cosh(R;X/2+ R,Y/2 — R,/4)]
+ R Y/2+ R X /2. (C4)

The valley in the graph of @ [which corresponds to a ridge of
the function U (X,Y) graphed in Figs. 7, 8, and 10 of Ref. 2]
occurs along the line where the argument of the hyperbolic
cosine is 0, i.e.,

R,Y= —R, X+ R,,/2 (C5)

Repeating the argument along the negative Y axis gives (C5)
again except for a sign change for the Y-intercept, R,,/2.
Thus, one finds, as quoted in Sec. VI of Ref. 2, that the slopes
of the soliton valleys are ( — R,,/R,,) and by similar reason-
ing, ( — R/Ry,).

Using the definitions 8, =Rk, + Rk,
X=k,(x —c,t),etc.,asin (5.7) and (2.4) above, one can write

L =In{cosh[(6,/2)X + (€,/2)t — R,,/4]) + [*], {C6)
where the [ *] denotes terms that will be eliminated by differ-
entiation. Then

d 2
u(x,t )EI2E L
= 38,% sech?[(5,/2){x + (,/8,)t — R,,/(26,)} 1.
(C7)

Thus, the soliton whose width and amplitude are determined
by the diagonal inverse theta matrix element R,; corre-
spondstoatrough in the graph of @ (X, Y} which runs roughly
parallel to the Y axis. Repeating the analysis for negative ¥
gives (C7) again except for a change of sign in R ,. Now, the
region around the origin is where the two soliton troughs
turn and merge. The jump represented by the sign change in
R, is therefore the collisional phase shift, which is then

phase shift = R,,/8,. (C8)

The tilting of the soliton troughs so that they only ap-
proximately parallel the X and Y axes is intimately related to
this collisional phase shift. Since the full theta series is domi-
nated within the unit square entirely by the four peaks of the
tetra-Gaussian, it follows that the soliton valleys must inter-

3414 J. Math. Phys., Vol. 25, No. 12, December 1984

cept the edges of the unit square at the same value of X (Y') for
the trough paralleling the Y(X) axis, to within
O (exp[ — R,,/2], exp[ — R,,/2]), or the theta function
will not be periodic. Were it not for the phase shift, the
troughs could preserve periodicity simply by running paral-
lel to the axes. Asitis, the tilt insures that the troughs, whose
equations are

R, Y= —RX+R,»/2, (+)¥Y>0, (—)Y<0,

(C9)

both intersect the edges of the unit square, ¥ = + 1, at
X = 0. Asexplained in Sec. VI of Ref. 2, this tilting of trough
lines also implies that the phase velocities are not the speeds
of the “free” solitary waves, i.e., the rate at which the soli-
tons travel when not enmeshed in a collision; ¢, and ¢, are
rather the time-averaged velocities of the peaks of u(x,t).
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