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where kD,cq= - (II L II) is the so-called "equilibrium 
dissociation rate coefficient," then it is easily shown that 
the moments N".= (II 'It I x".) of the eigenvectors \ XI') 
are of the order of magnitude 

Singular perturbation methods may then be used to 
obtain a uniformly valid asymptotic solution for 
\ X(t). The result shows that after a short initial 
transient the dissociation and recombination rate coeffi­
cients, kD and kR , approach the "steady-stat.e" value 

kD= KeqkR = Ao[1 +8(1- No) Keq-WA +O(€4)], (4) 

where Keq is the dissociation equilibrium constant. 
Since this expression depends only on Ao and I xo), and 
since for a given set of initial conditions the incubation 
time caused by the initial transient may be shown to 
depend only on \ xo), we see that all the important 
parameters describing the dissociation and recombina­
tion of diatomic molecules may be determined from the 
lowest eigenvalue and the corresponding eigenvector. 
This fact is of immense importance for both analytical 
and numerical calculations of the rate coefficients and 
incubation times because, in the limit indicated by 
Eq. (2), the lowest eigenvalue and the corresponding 
eigenvector are easily approximated by rapidly con­
vergent iterative techniques. 

To show how this may be done, we express the eigen­
value equation (2) in the form \ XI')=-AI'L-1'It I X!'), 
If we substitute a trial vector for \ XI') in the right-hand 
side of this equation and perform the indicated opera­
tion, we obtain a first approximation to the eigenvector 
I xo), within a normalization constant. This first 
approximation may, in turn, be used as a trial vector 
to get a second approximation, and so on. After suffi­
cient iterations, the result converges to \ xo) with any 
desired degree of accuracy, in the sense of mean-square 
error, provided only that the initial trial vector is not 
orthogonal to \ Xo ).2 To prove this, we define the nth 
approximation to the unnormalized eigenvector by the 
formula \ j<n) ) = - L -1'It \ j<n-l) ). Then, since the initial 
trial vector \ f(O» may be expressed in terms of the 
eigenvectors I XI') by means of the expansion I j<0) ) = 

Ll'bl' \ x!'), we find that the mean-square error in the 
normalized eigenvector is 

E(n) = 2 - 2 ( (f(n) I 'It I xo) / (f(n) I 'It If(n) )lf2) 

'--' L (blA02n/b02AI'2n), (5) 
".>0 

which vanishes as n~oo provided that bo¥-O. A simple 
approximation to the eigenvalue Ao may be obtained 
from the formula 

A (n) = (f(n) \ 'It I j<n-l) ) / (f(n) \ 'It \ j<n) ) 

"'-'Ao[1+ L (bI'2A02n-l/b02Vn-l)] (6) 
,,>0 

which approaches Ao as n~oo provided that bo¥-O. 

In the limit indicated by Eq. (2) the calculation 
converges very rapidly, and only one iteration is neces­
sary. For our initial trial vector we choose the equi­
librium distribution \fO»= 11). In practice, this 
usually deviates significantly from I xo) only in the 
upper energy levels where the weighting function if;i is 
small. The expansion coefficients bl' are given by the 
formula (j<0) I 'It I x,,) = N p.. The first approximation to 
Ao is therefore 

A(l)=- (1\'ItL-1'It I n/(11'ItL-1'liL-1'li 11) 

""Ao[1+0(~)], (7) 

where the asymptotic limit follows from Eq. (3). The 
first approximation to \ xo) is 

I X<I)= - L-1'It 11)/ (1 I 'It L-1'It L-1'It 11)1{2, (8) 

which, in view of Eq. (3), has a mean-square error 
E(l) = O( €6) . Of course, the relative error in the second­
order quantity (l-No) is somewhat larger. Neverthe­
less, we readily find that (1-N(l)) = (1-No)[1+O(€2)], 
which is consistent with the accuracy of Eq. (4). 
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The method of configuration interaction with a trun­
cated complete set of functions and one variable scale 
parameter which was recently applied to the first four 
members of the helium isoelectronic series1 has been 
extended to this series through Z = to. The energies 
obtained for Z?:: 5 are lower than have previously been 
obtained, with a configuration-interaction approach,2 
and differ from those obtained with Hylleraas-type 
functions3 by 0.002% for Z=5 and by 0.0007% for 
Z = to. It is found that for Z?:: 2 there is a finite range 
of values of the scale parameter near the energy'"mini­
mum over which the energy varie{by less than 0.00001 
a.u., which is the limit of the precision used in the 
matrix diagonalization. 
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TABLE I. Ground-state energies for the helium isoelectronic 
series (in atomic units). 

Z k Belale Eexacts, Error 

2 3.17 3.21 -2.90335b -2.90372 0.00037 
3 5.09 5.15 -7.27945b -7.27991 0.00046 
4 6.88 7.03 -13. 65504b -13.65557 0.00053 
5 8.70 8.90 -22.03041 -22.03097 0.00056 
6 10.40 10.75 -32.40565 -32.40625 0.00060 
7 12.10 12.50 -44.78082 -44.78145 0.00063 
8 13.75 14.25 -59.15595 -59.15660 0.00065 
9 15.50 16.00 -75.53105 -75.53171 0.00066 

10 17.25 17.75 -93.90614 -93.90681 0.00067 

_ See Ref. 3. 
b See Ref. 1. 

In Table I are shown the results obtained with the 
120-term expansion 

8 nl n2-1 

'!rIs = L: L: L: C (nI, n2, l) if."s (nI, n2, l) , 
nl=I n2=1 I=() 

in which each configuration is the appropriate anti­
symmetrized combination of products of the de­
numerably complete4 set of single-particle functions, 

[r (n-l) Jl/2 . 

ifinlma, 0, cp) =[r(n+l+1)J3/ 2 e 
X exp( -~/2)Ln_l-121+1(~) Y1m(0, cp), 

of the scaled variable ~=2kr. The two values of the 
scale parameter k shown in Table I are the limits of 
the range of k over which the energy varies by less than 
0.00001 a.u. 

Since it is the wavefunction, or the approximate solu­
tion to the Schrodinger equation, which is ultimately 
of interest, the behavior of the wavefunction near the 
energy minimum was studied by calculating the expec­
tation value (r2) =!( (rI2+r22) ) over the range of scale 
parameter for which there is no significant change in 

Z 

2 
3 
4 
5 
6 
7 
8 
9 

10 

TABLE II. Expectation value (r2) for two-electron 
atoms (atomic units). 

Scherr 
Present work and Knight-

1.1903 1.1950 1.19234 
0.44588 0.44601 0.44624 
0.23196 0.23214 0.23206 
0.14192 0.14198 0.14196 
0.095712 0.095725 0.095739 
0.068889 0.068895 0.068904 
0.051946 0.051951 0.051955 
0.040565 0.040568 0.040570 
0.032552 0.032554 0.032556 

- See Ref. 5. 

the energy. The maximum and minimum values ob­
tained are shown in Table II, and compared with the 
sixth-order perturbation calculation of Scherr and 
Knight.5 This expectation value was chosen for several 
reasons. It is the one property, other than the energy, 
of an atom in a 15 state which can be obtained directly 
from the wavefunction and which can be related to an 
experimentally measured quantity, in this case the 
magnetic susceptibility.6 It has been calculated for 
Z = 2 by many different methods,7 not all of which are 
based on the energy criterion. A comparison with these 
other calculations as well as with the experimental 
value is shown in Table III. Finally, the dominant 
contribution to this expectation value comes from a 
significantly different region in space than that which 
furnishes the dominant contribution to the energy. The 
agreement shown in Tables II and III provides as­
surance that the minimum energy is not being obtained 
at the expense of the spatial behavior of the trial func-

TABLE III. Comparison of the expectation value (r2 ) for the 
ground state of He obtained by various methods. 

1.192 
1.19234 
1.1930 
1.193475 
1.193483 
1.19 

Method 

Configuration interaction 
Variation perturbation 
Stochastic wavefunction 
Hylleraas-type wavefunction 
Hylleraas-type wavefunction 
Experimental value from 

magnetic susceptibility· 

_ See Ref. 5. 
b See Ref. 7. 

Author 

Present work 
Scherr and Knight­
Kalosb 

Chung and Hurstb 

Pekerisb 

• Handbook of Chemistry and Physics (Chemical Rubber Puh!. Co., 
Cleveland, Ohio, 1966), p. E-I03. 

tion, and in fact is somewhat better than might be 
expected from a wavefunction which gives the energy 
to four or five significant figures. Because of this it 
seems likely that this type of wavefunction should be 
quite useful for calculating transition probabilities 
and other properties of these ions obtainable from os­
cillator strengths, and this work is now in progress. 
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