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It is shown that amplitude phase coupling (as described by the line width enhancement factor 
a) leads to unstable phase locking in semiconductor laser arrays with evanescent coupling. 

The problem of synchronization of coupled oscillators is 
fundamental to many areas of science. I \Vhen synchroniza­
tion is successful the several oscillators act as one, with a 
unique frequency and with well-defined phase relationships 
between the oscillators. When synchronization fails the be­
havior of the oscillators is marvelously complex. Here beat 
oscillations, quasi-periodic motions, and chaotic dynamics 
are the norm. Phase-locked semiconductor laser arrays are 
an important example of the complicated dynamics of cou­
pled nonlinear oscillators. To date, however, there have been 
few experiments with the temporal resolution necessary to 

observe the interesting dynamics.2 
4 We recently presented 

numerical simulations which showed that the irregular and 
undamped spiking behavior observed by Elliott et al. 2 is in­
trinsic to the laser arrays themselves. S The temporal stability 
of semiconductor laser arrays appears questionable, at best. 
In this letter we present a linear stability analysis that shows 
that laser arrays are unstable over large regions of a param­
eter space spanned by the coupling constant and the injec­
tion current. We point out the role of amplitude phase cou­
pling, as described by the Iinewidth enhancement factorO a, 
in destabilizing phase locking between adjacent laser ele­
ments. 

The dynamic behaVIor of semiconductor laser arrays 
with evanescent coupling is described by the equations5

: 
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where N; is the carrier density, Ei is the amplitude, and ¢i is 
the phase of the electric field in the ith channel. The other 
parameters are the differential gain g' (suitably reduced by a 
mode confinement factor), the coupling constant K, the 
threshold carrier density Nth' the linewidth enhancement 
factor a, the pump rate P, the photon lifetime T p ' and the 
spontaneous carrier lifetime 7.,. The phase-locked state, if it 
exists, is found by setting aU the time derivatives to zero and 
solving for the steady-state values of E i , <Pi' and N i • In what 

foHows we show that for a wide range of parameters, the 
steady-state phase-locked state is unstable. 

A stability analysis ofEgs. ( 1 )-( 3 ) is a daunting task for 
large N. For N = 2, however, it is possible to obtain dosed­
foml expressions for the stability boundaries. For conven­
ience we introduce the following rescaled variables and pa­
rameters: 

X, = (!g''Ts) //2E" Zi = (l/2)g'Ntll 'Tp (NJNth - 1) 

p= (l/2)g'Nth'Tp(PIPth -1), 17= (Kcln)rl" 

T= 'Tsl'Tp. 

Then, for a two-element array, the coupled mode equations 
become 

Xl = ZlX1 -1JX2 sin 0, (4a) 

X2 = Z2XZ + 1JXj sin 0, ( 4b) 

e = -- a(Z2 - Zl} + 7f(XtlX2 - XllXI )cos a, (4c) 

TZI =p -- Zf -- (1 + 2Z1 )X7, (4d) 

TZ2 =p - Z2 - (l + 2Z2 )XL (4e) 

where 0 = ¢>2 - tP] and the dots signify derivatives with re­
spect to a reduced time t 17p • Equations ( 4) possess the equi­
libria: 

(I)X1 =Xz = Jp, 
(II)X[ = Xl = Jj;, 

Z! =Z2=0, 

ZI=Z2=0, 

() = 0, (Sa) 

() = 1T. (5b) 

To investigate the stability of these stcady states we in­
troduce small perturbations and linearize Eqs. ( 4) about 
their steady-state values. The Routh-Hurwitz criterion is 
used to determine the regions of parameter space in which 
the steady-state solutions are stable. We find that the out-of­
phase (II) solution is stable under the condition 

rt < (I + 2p) 12a T, ( 6) 

while the in-phase (1) solution is stable for 

77 > ap/(l + 2p). (7) 

Figure 1 shows the instability domain in the plane oftlle 
variables 7] (the coupling strcngth) and p (the normalized 
excess pump current). The other key parameters are a = 5 
and T = 2 X !O3. It is dear that the phase-locked state is 
unstable over a wide region of the 1J-P plane. It should be 
noted that experimental values of 7f are in the range 10- 3_ 

10- 4 and that a value of p = 0.05 corresponds to a pump 
current of order 1.3 times the threshold value. It is thus ob­
vious that stability is assured only for very small values of'T! 
in which case the lasers are essentially independent, or for 
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coupling strength and p = (112 )g'N,,, Tp (P / P,,, _. I), the normalized el(­
cess pump current. 

very large values of 1/, in which case the two lasers are so 
tightly coupled that they act as one. 

In the unstable regime the laser array exhibits sustained 
oscillations which may be periodic, quasi-periodic, or chao­
tic, depending on the values of the chosen parameters. Fig­
ure 2 shows time series of the amplitude and relative phase in 
the unstable region for p = 0.05 and 1] = 10 .. 4 • The initial 

conditions were X\ = X 2 = lp, Z\ = Z2 = 0, and () = 0.1. 
Note that the phases do not lock to a constant value. The 
phase difference oscillates about a mean value of e = 1T. Far­
field measurements taken with averaging detectors will re­
veal a twin-lobed structure usually associated with out-of­
phase locking. However, our analysis shows that the phases 
are not necessarily locked. It is important to note also that 
our analysis does not make any assumptions concerning the 
relative losses of the in-phase and out-of-phase modes. The 
preference of the system to operate (on the average) in the 
out-of-phase mode is intrinsic to the nature of evanescent 
coupling and may be explained on the basis of a maximum 
emission principle. Near the stability boundaries, the linear­
ized equations for the fluctuations yield an oscillation fre­
quency given by 7 

(8) 

where J is the injection current and~) = Nth - 1/ g' Tp' For 
small K, the pulsation frequency has the characteristic de­
pendence (l /1 til - 1) 112 associated with the relaxation os­
cillation resonance. However, when K is large, the pulsation 
frequency becomes simply the rate of energy transfer 
between the lasers -Kc!n. 

The origin of the instability is the amplitude phase cou-
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FIG. 2. Periodic oscillations of (a) field amplitude and (b) relative phase in 
the unstable domain. Here p = D.OS and 71 = 10 ". For larger values of rl, 
the amplitude oscillations are aperiodic and the phase evolution is unbound­
ed. 

pIing that occurs in semiconductor lasers and is described by 
the linewidth enhancement factor a. Note that the instabil­
ity disappears as a -".> O. Also, the stability domain increases 
as T --> O. An amplitude fluctuation in one laser leads to a 
carrier density fluctuation and (through a) a phase nuctu­
ation in that same laser. A change in relative phase leads to 
an amplitude change in the second laser and an accompany­
ing change in its carrier density. Sustained oscillations can be 
expected when the lifetime of the carriers ( 'is) is longer than 
or comparable to the coupling time (T K = n/ KC). 
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The stability analysis presented here has shown that 
phase locking between adjacent laser elements can be desta­
bilized by amplitude phase coupling. A similar result has 
been obtained in the problem of semiconductor laser injec­
tion locking. 8 It is not yet clear how the presence of more 
than two lasers will affect the stability of the array. Numeri­
cal solutions of the array equations show that the instability 
persists for particular parameter values. A genera! stability 
analysis for large N is in progress. Also not induded in the 
present analysis is the effect of damping factors such as non­
linear gain and spontaneous emission into the lasing mode. 
These effects may help reduce the instability domain some­
what. 

In conclusion, we have shown that amplitude phase 
coupling can lead to a self-pulsing instability in coherently 
coupled semiconductor lasers. 
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