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Surveying determinants of protein structure designability across different
energy models and amino-acid alphabets: A consensus

Nicolas E. G. Buchler and Richard A. Goldsteina)
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A variety of analytical and computational models have been proposed to answer the question of why
some protein structures are more ‘‘designable’’~i.e., have more sequences folding into them! than
others. One class of analytical and statistical-mechanical models has approached the designability
problem from a thermodynamic viewpoint. These models highlighted specific structural features
important for increased designability. Furthermore, designability was shown to be inherently related
to thermodynamically relevant energetic measures of protein folding, such as the foldabilityF and
energy gapD10. However, many of these models have been done within a very narrow focus:
Namely, pair–contact interactions and two-letter amino-acid alphabets. Recently, two-letter
amino-acid alphabets for pair–contact models have been shown to contain designability artifacts
which disappear for larger-letter amino-acid alphabets. In addition, a solvation model was
demonstrated to give identical designability results to previous two-letter amino-acid alphabet pair–
contact models. In light of these discordant results, this report synthesizes a broad consensus
regarding the relationship between specific structural features, foldabilityF, energy gapD10, and
structure designability for different energy models~pair–contact vs solvation! across a wide range
of amino-acid alphabets. We also propose a novel measureZd

k which is shown to be well correlated
to designability. Finally, we conclusively demonstrate that two-letter amino-acid alphabets for
pair–contact models appear to be solvation models in disguise. ©2000 American Institute of
Physics.@S0021-9606~00!52305-8#
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INTRODUCTION

A significant over-representation of certain protein fol
in the biological database has been extensiv
documented.1–3 After uncoupling evolutionary and func
tional relationships between protein families in the databa
it was noticed that certain structural ‘‘superfolds’’ such
a/b doubly wound and triosephosphate isomerase~TIM ! bar-
rels are represented;11–13 times compared to, for instanc
the jelly roll motif which has been observed only thr
times.2 The possible origins of this dispersion in structu
representation in the biological database poses an intere
question. Are there energetic, kinetic, or topological reas
for this dispersion? Concerning this question, Finkelstein
co-workers were the first to use simple analytical models
protein sequence energy landscapes to demonstrate tha
ergetic and topological constraints can indeed stabilize
lead to easier ‘‘design’’ of certain protein motifs by rando
sequences.4–8 This mutually reinforcing relationship betwee
protein structure designability and energetic stabilization
become the focus of recent analytical and computatio
work on lattice proteins.

One theoretical model that attempts to address kin
and stability issues of protein folding and structure desi
ability was based on ideas first developed by Bryngelson
Wolynes. Two thermodynamic transitions are conside
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possible in protein folding: One to the folded, native state
a temperatureTf and the other to a glassy state at a tempe
ture Tg .9–14 For temperatures belowTg , the liquidlike pro-
tein chain entropy drops to zero~in the thermodynamic limit!
and the chain becomes solidlike and ‘‘frozen’’ in any one
its low-energy, metastable states. Consequently, as the
perature approachesTg , folding kinetics become slow and i
becomes difficult for the protein to transit from misfolde
local minima to other stable states.Tf , on the other hand
defines the temperature at which the free energy of the fol
state is deep enough to be preferentially populated over o
kinetically accessible conformations and be stable to ther
fluctuations. Thus, assuming that protein sequence folda
ity requires an equilibrium temperature regime which is bo
adequately belowTf for the folded state to be stable ye
sufficiently aboveTg for the folded state to be accessibl
Wolynes and co-workers postulated that optimal folding e
ergy landscapes would seek to maximizeTf and minimizeTg

or, equivalently, increase the ratioTf /Tg .15,16Using the ran-
dom energy model~REM!, it was shown that this ratio is
equal to

Tf

Tg
5A F2

2S0
1A F2

2S0
21, where F5

^E&2Ek

s
, ~1!

where ^E& is the average energy of the protein chain in
conformations,Ek is the global energy minimum belongin
to the native structurek, and s describes the variance an
‘‘roughness’’ of this REM energy landscape. Clearly,Tf /Tg

is a monotonically increasing function ofF ~equivalently

ent

:
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FIG. 1. On the left is a generic sequence in the most designable 535 lattice structure for thepair–contactmodel calculated by Monte Carlo sampling. O
the right is a generic sequence in the most designable 535 lattice structure for thesolvationmodel, also calculated by Monte Carlo sampling. The interactio
in each energy model are represented by dotted lines and, for maximally compact lattice proteins, are constant across all structures~there are always 16
pair–contacts, nine buried residues per structure!. Note the large number of long-range pair–contacts between amino-acids far from one another
sequence in thepair–contactmodel. For thesolvationmodel, in contrast, there is a high degree of symmetry and regularity in the buried–exposed pat
the most designable structures. Both patterns in these highly designable structures for different models can be explained by the same mechanismely, all
these structural interactions are rare with respect to the structural ensemble.
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known as aZ-score in the protein design literature17,18!,
which was termed the sequence ‘‘foldability.’’ While th
REM ignores all correlations in the free-energy landscape
has been shown that maximizing the foldability for prote
sequences results in a reduction in the depth of metast
traps and the stabilization of conformations similar to t
native state producing the funnel-like energy landscapes
tral to good folders.19–22 Additionally, it was verified both
with molecular dynamic and Monte Carlo kinetic simulatio
that faster folders had higher average foldabilities and lar
Tf /Tg .15,16,23,24

A different energy landscape measure,D10, also related
to folding kinetics and thermodynamic stability was first i
troduced by Shakhnovich and co-workers.25,26 This energy
gap is defined as the difference in energy between the glo
energy minimum native stateEk and that of the next highes
energyE1. Upon running Monte Carlo kinetic simulations o
lattice proteins and analyzing their energy landscapes, S
khnovich and co-workers noticed that the relevant statist
feature for fast folding was a large energy gapD10.27,28 Re-
cent work using the random energy model and lattice p
teins demonstrates that in spite of their obvious differenc
F and D10 are inherently correlated.29 Hence, for all inten-
sive purposes,F and D10 can be used interchangeably
similar measures of fast-folding and native state stability

The existence of a simple statistical measure of an
ergy landscape, well-correlated with increased thermo
namic stability and the ability of the protein to fold
prompted Govindarajan and Goldstein to use foldabilityF to
analyze structure designability. Upon calculating t
maximum-possible ‘‘optimal’’ foldabilityFopt

k within a pair-
contact model for a prototypical sequence folding into a t
get structurek, Govindarajan and Goldstein demonstrat
that there was a dispersion in possibleFopt

k across all
structures.30 They postulated that those structures with t
largestFopt would be the most designable, as there would
it
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many possible sequences far from the optimum which
still adequately foldable.30,31 Conversely, a protein structur
with low Fopt

k would be poorly designable, as only the rel
tively rare sequences with close-to-optimal interactio
would be able to successfully fold into these structures. A
ditionally, for any relevant value ofF., largeFopt

k structures
would have a larger volume of foldable sequences satisfy
F.F. than lowFopt

k structures. Hence, an implicit conclu
sion of this foldability–designability model is that those s
quences folding into highly designable structures should a
have larger, average foldabilitŷF& and energy gap̂D10&
than their lowly designable counterparts. Using a statist
model of protein interaction space, Govindarajan and Go
stein analytically demonstrated a strong, positive correlat
betweenFopt

k and structure designabilityVk ~i.e., the volume
of sequence space folding into structurek!.31 The appeal of
having a measureFopt

k well correlated toVk is that it can be
calculateda priori using only structural information. In ad
dition, it is easily interpretable which structural features le
to higher Fopt

k and, hence, designability. Govindarajan a
Goldstein explicitly showed that those structures w
‘‘rare’’ or ‘‘uncommon’’ pair–contacts with respect to th
ensemble of all possible structures had largerFopt

k . Even
with local, secondarylike propensities added to the latt
protein model, the optimal foldability was predominantly d
termined by those rare, nonlocal pair–contacts between
tant sequence positions.32 Hence, one would expect highl
designable pair–contact lattice proteins to have a maxim
number of long-range pair–contacts@see Fig. 1~a!#.

In a computational tour de force, Li and co-workers e
haustively enumerated the structural designability of tw
letter amino-acid alphabet hydrophobic polar~HP! sequences
in different lattice geometries@6362D ~two dimensional!
and 333333D ~three dimensional!# for a pair–contact
model.33 Not only was it consistently found that some stru
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tures were more designable than others, but largerVk struc-
tures also had bigger̂D10& compared to lowly designabl
structures. Of particular mention, there was a large, disc
tinuous jump in^D10& between highly designable and low
designable structures. Similar in logic to work by Bryngels
and Pande,34,35 Tang and co-workers posited that the
highly designable structures were inherently more stable
perturbation and/or mutation.34,35A recent deluge of compu
tational lattice protein designability work makes a stro
case for the inherent relationship between thermodyna
and mutational stability, faster-folding kinetics, extensi
neutral networks, and the large designability of particu
structures.36–46 All in all, these computational results voic
support for the foldability–designability model of Govin
darajan and Goldstein. However, in contrast to the result
Govindarajan and Goldstein, based on the structural feat
of highly designable structures calculated from their H
amino-acid alphabet Tang and co-workers concluded
‘‘proteinlike’’ symmetries increased designability rather th
a maximum of long-range pair–contacts@see Fig. 1~b!#.

There are several reasons to suspect the existenc
amino-acid alphabet dependent artifacts endemic to sim
HP amino-acid codes; artifacts which should disappear
larger amino-acid alphabets.47 Previous work has shown tha
when meff ~the effective entropy of sequence space! and g
~the conformational entropy per residue! satisfiesmeff,g,
there exists a sizable number of sequences with degen
global-energy minima which are considered unfoldable.6,48,49

However for larger amino-acid alphabets wheremeff.g,
such ground-state degeneracies rapidly vanish. Co
quently, specific designability conclusions for two-letter
phabets might not be valid for those higher-letter alphab
which have more diverse pair–contact interactions and la
meff . Recent work of ours specifically explored the effect
amino-acid alphabet size on lattice protein structure des
ability for a pair–contact model.50 Indeed, it was noticed tha
small amino-acid alphabets, such as the two-letter HP an
et al.amino-acid code, had substantially different designa
ity results from those of larger amino-acid alphabets, such
the Miyazawa–Jernigan~MJ! 20-letter code or the indepen
dent interaction model. Namely, those structures which w
highly designable in two-letter amino-acid alphabets had m
diocre designabilities with large-letter alphabets and v
versa. Moreover, with respect to the role ofmeff andg, it was
shown that the large number of degenerate ground state
smaller amino-acid alphabets was not the source of des
ability differences. In short, amino-acid alphabet depend
artifacts are inherent to the size of the alphabet rather t
the details of amino-acid pair–contact interactions or
abundance of degenerate ground states.

An intriguing theoretical paper by Li and co-worker
based on a solvation model of lattice proteins where the
ergetics are only dependent on those residues buried in
protein core, elegantly recast the designability problem in
vector framework.51 Namely, the energy of a sequence in
particular structure was equal to the Euclidean distance
tween the solvation structurek and the sequence vectorS.
Thus, a sequenceS folds into the solvation structurek which
is closest in distance to it. By numerically estimating t
n-
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volume of sequence spaceVk folding into a solvation struc-
turek, Li and co-workers showed that those structures, wh
had a minimal density of other structures in their vicinit
were the most designable. In summary, Li and co-work
reasoned that those ‘‘atypical’’ or rare structures residing
away from the other solvation structures; hence having a
density of surrounding structures, were the most designa
Further analysis demonstrated that highly designable st
tures in a solvation model were identical to the ones th
calculated for a pair–contact model with an HP two-let
amino-acid alphabet: That is, structures with lots of ‘‘pr
teinlike’’ symmetries.

Reconciling these results of Li and co-workers with o
previous conclusions regarding alphabet-size artifacts
structural features~i.e., long-range pair–contacts! important
for large designability, it is tempting to speculate that p
haps the two-letter pair–contact model is a solvation mo
in disguise. Indeed, recent papers by Ejtehadi and
workers delineate a mathematical framework that highlig
such a link between solvation and pair–contact models
two-letter HP amino-acid alphabets.52,53 Namely, they clev-
erly begin with a special case with mixing coefficientgM

50, that has pair–contact interactions of the form H
522e2gM , HP52e, PP50. This special case (gM50)
allows these possible pair–contact interaction energ
g(Ai ,Aj ) of two-letter amino-acid alphabets to be rewritte
as a linear sum

g~Ai ,Aj !5sAi
1sAj

where sH52e and sP50, ~2!

wheresAi
is the energy of having amino-acidAi form any

pair–contact, regardless of the identity of the other ami
acid. In this special linear interaction framework, the ene
of a particular sequence in a structure becomes not a que
of which amino-acid types form pair–contacts with one a
other, but ratherhow manypair–contacts does a particula
amino-acid form in any given structure. Herein lies the co
nection between the pair–contact and solvation model
those sequence positions buried in the protein core inhere
form more pair–contacts than those on the surface.

For this linear interaction framework, there exists only
small subset of the total pair–contact structures that hav
unique interaction pattern. Thus, most structures will ha
degenerate global-energy minima and remain completely
designable for this two-letter linear interaction model (gM

50). Only by having a nonzero mixing parametergM ,
which energetically favors hydrophobic pair–contacts, c
one split the ground-state degeneracy of these undesign
structures. As the Liet al. two-letter HP code is but a smal
mixing perturbation (gM50.3) of the ‘‘solvationlike’’ linear
interaction model, it should not be surprising that they ha
pair–contact designability results similar to that of a solv
tion model. In addition, Ejtehadi and co-workers provide
quantitative explanation for the observed discontinous ju
in ^D10& between the highly designable and the lowly de
ignable structures ~previously undesignable fo
gM50).33,52,53Additional work has shown that some pair
contact structures can remain stable and highly design
across an entire range of mixing parametersgM for any two-
letter amino-acid alphabet.54,55
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More recently, an analytical, statistical mechanical tre
ment for calculating the volume of two-letter HP sequen
space folding into particular 2D pair–contact structures
been presented by Kussell and Shakhnovich.56 Upon decom-
posing structures into various strings of pair–contacts, wh
in 2D can form either strands or loops, Kussell and Sha
novich established that highly designable 2D structures
two-letter amino-acid alphabets should have the follow
properties:~1! No loops, ~2! a maximum number of two-
length strands, and~3! a minimum number of larger-lengt
strands.

Given the wide range of these results, this report is
attempt to synthesize a broad consensus regarding the
nection between sequence energetics and structure de
ability for different energy models and across a wide ran
of amino-acid alphabets. The latter is of specific interes
there is evidence of designability artifacts for smaller amin
acid alphabet sizes, yet most research has considered
two-letter amino-acid alphabets in pair–contact mode
Thus, our questions are: How do the aforementioned e
getic measuresFopt

k , ^F&, and^D10& correlate to designability
Vk? Does their relationship break down when done w
smaller amino-acid alphabets? Within the solvation mode

We begin by introducing a universal framework a
stracted from specific energy models and amino-acid com
sition with which to discuss principles of energetics and d
ignability. Within this simple framework, the relationsh
between energy gapD10, foldability F, and designabilityVk

becomes geometrically interpretable. Furthermore, a no
measureZd

k , constructed to be correlated to designability,
introduced. We then calculate structure designabilityVk

across a range of amino-acid alphabets from two-lette
‘‘infinite’’-letter ~Monte Carlo sampling! codes in both sol-
vation and pair–contact lattice models. It is established
Vk is indeed positively correlated tôF&, ^D10&, Fopt

k , andZd
k

in both solvation and pair–contact energy models. In ad
tion, for comparison to work by Kussell and Shakhnovic
we calculate the number of pair–contact loops and inte
tion strands versuŝVk&. Several notable results stand ou
~1! Across all energy models, the positive correlation b
tween^F&, ^D10&, Fopt

k , Zd
k , andVk consistently deteriorate

for two-letter amino-acid alphabets,~2! the 20-letter amino-
acid alphabet is identical to Monte Carlo sampling; both
phabets accurately reflect the principles and structure des
ability of the underlying energy model,~3! two-letter amino-
acid alphabets for a pair–contact model and the solva
model share identical highly designable structures~i.e., pro-
teinlike and symmetric!, and ~4! while loops are negatively
correlated toVk across all amino-acid alphabets, for tw
letter amino-acid alphabets having a maximum number
one-length and three-length strands, not two-length stra
leads to higher structure designability.

UNIVERSAL MODEL

For any given energy model, one commonly used fram
work for analyzing the designability and energetics of str
tures and sequences across various amino-acid alphabe
been the lattice protein. Lattice proteins are coarse-gra
t-
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versions of proteins, where the level of detail focuses
amino-acids as entities occupying lattice points and pro
conformations as self-avoiding walks on these regular
tices @see Figs. 1~a! and 1~b!#. Clearly, this ignores some
very real aspects of proteins, such as atoms, backb
angles, sidechain packing, etc. Nevertheless, lattice prot
have a rich history in theoretical biophysics, not only b
cause their simplicity captures salient features of biopo
mers such as excluded volume and topology, but because
number of conformations is finite and amenable
analysis.57 Throughout this paper, we restrict ourselves
maximally compact 535 2D lattice proteins. Our choice o
this particular lattice model is threefold:~1! Maximally com-
pact because in naturally occurring globular proteins, hyd
phobic collapse is a dominant force and native structures
compact and solvent exclusive,~2! 2D because in a solven
framework, small 2D lattice conformations have a more
alistic buried–exposed ratio, and~3! 535 because the num
ber of possible conformations is large enough to be inter
ing, yet small enough to be feasible and have self-averag
statistics for designability calculations. Although there is
question whether 2D proteins exhibit problems in terms
cooperative folding kinetics,58,59 energetic measures such
F, D10 and designabilityVk , as calculated in this report an
others, are not dependent on the kinetic connectivity betw
structures. For maximally compact 535 2D lattice proteins,
there are a total of 1081 unique structures after neglec
conformations related to one another by rotational or mir
symmetries. Thus, given such a set of lattice conformatio
the energy landscape of a protein is determined by its am
acid sequence and its peculiar energy model. In this rep
we shall analyze these lattice proteins across two differ
energy models: The pair–contact and the solvation mode

In the pair–contact model of anN amino-acid length
protein, as shown in Fig. 1~a! the energy of sequenceS in
conformationk is determined by the nonsequential, neare
neighbor amino-acid pair–contacts that are formed. Ma
ematically, this is expressed as a linear equation:

ES
k5(

i , j

N,N

gS~Ai ,Aj !Di , j
k 5gS•Dk, ~3!

wheregS(Ai ,Aj ) is the pair–contact interaction energy
two arbitrary amino-acids whose values are specified in
definition of the amino-acid alphabet.Di , j

k is shorthand for
d(ir i

k2r j
ki2a), wherer i

k ,r j
k are the sequence positions

amino-acidsi, j in conformationk anda is the lattice spac-
ing. In other words,Di , j

k is equal to one if a pair–contac
between sequence positionsi and j is formed for structurek
and 0, if otherwise. For the maximally compact 535 2D
lattice protein, there are 132 such possible pair–conta
@132 is the dimensiond of the vector space in Eq.~3!# of
which 16 are actually formed for each structurek. Since each
set of pair contacts for each of the 1081 possible structure
unique and nondegenerate, no vectorDk is identical to the
other. Note that allDk lie on ad-dimensional Euclidean hy
percube with a fixed distance from the origin.

In the solvation model of anN amino-acid length
protein,51 as shown in Fig. 1~b!, the energy of amino-acid
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sequenceS in conformationk is similarly expressed as

Es
k5(

i

N

gS~Ai !Di
k5gS•Dk, ~4!

wheregS(Ai) is the solvation energy of having amino-acidi
of sequenceS buried in the protein core rather than th
solvent-exposed protein surface.Di

k is equal to 1, if sequence
position i is buried in structurek, and 0 otherwise. For the
maximally compact 535 2D lattice protein, there are 2
possible residues that can be buried@25 is the dimensiond of
the vector space in Eq.~4!# of which nine are actually buried
for each structurek. However, unlike the pair–contac
model, there are degeneracies in theDk vector; that is, there
are some structures which are different from one anothe
the pair–contact model yet have identical solvation patte
in the solvation model. Thus, regardless ofgS, the solvation
model is unable to distinguish energetically between th
two different structures and ground-state degeneracies
occur. Thus, similar to Liet al., we simply excise this de
generacy by reducing the original 1081 structures to the
unique, nondegenerate solvation patterns.51

Geometrically, we have abstracted these two differ
energy models into an identical framework where the ene
of sequenceS in structurek, ES

k , is simply a dot-product of
the interaction vectorgS with the structure vectorDk. gS
contains the interaction values for all pair–contact or sol
tion energies formed in a given sequenceS. All sequence and
amino-acid alphabet specific information such as the iden
of amino-acids and amino-acid energetics is implicitly co
tained in and specified bygS. However, because we hav
restricted our attention to only maximally compact latti
conformations we can also abstract this framework to
amino-acid composition independent. Because all maxim
compact lattice conformations have the same numbe
pair–contacts formed or buried residues, the following tra
formations ongS will have no effect on the relative energ
landscape

c1gS°gS, ~5!

c211gS°gS, ~6!

where1 is the identity vector. The scalar transformation
Eq. ~5! is equivalent to shrinking or expanding the ener
landscape by a multiplicative factorc1 , whereas the vecto
transformation in Eq.~6! is identical to boosting the energ
landscape by a constant amount of energyc2 . The transfor-
mation described by Eq.~6! is the eigenvector spanning th
nullspace ofgS across both energy models. For the pa
contact model the nullspace dimension is 1 and the eigen
tor is 1, whereas the solvation model has a nullspace dim
sion of 2 and eigenvectors1even5(0,1,0,...,1,0) and1odd

5(1,0,1,...,0,1). Based on these transformations, allgS can
be remapped with no adverse effect on the relative ene
landscape and designability, so that

gS•gS51, ~7!

gS•150. ~8!
in
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We have constrained an infinitely large interaction spa
g to lie on the surface of a unit hypersphere whose ‘‘cent
of-mass’’ is zero.37 This universal vector framework, ab
stracted from a specific energy model and amino-acid co
position, is inspired by and a synthesis of the work
Govindarajan and Goldstein and Tang and co-workers.37,51

As a consequence, the energy for any given sequenceS, in-
dependent of its specific composition, amino-acid alpha
size, or amino-acid interactions, lies between2D<ES

k<D,
whereD is equal to the square root of the number of buri
residues or pair–contacts for each compact 535 structure.
As shown in Fig. 2

ES
k5igSiiDkicosukS5D cosukS, ~9!

where cosukS is the projection angle between the normaliz
interaction vectorgS and structure vectorDk. Assuming that
all of the compact states are kinetically accessible, the na
structure is the state of lowest free energy. Hence, in
geometrical framework, the native structure is that which h
the lowest, uniqueES

k and D cosukS or, equivalently, the
structureDk which is farthest away from the interaction ve
tor gS . Similar to Govindarajan and Goldstein and Liet al.,

FIG. 2. A heuristic example demonstrating interaction space and explai
the geometric framework of sequence-structure energetics. The four s
ture vectors,D, are drawn as dark, solid arrows. The sample interact
vector, shown as a dot–dashed line near the bottom, folds into target s
turek, as it has the farthest angular distance cosukS from k. The dotted lines
are the structure-degeneracy planes between all structures and our
structurek. The area of total interaction space, farthest away from the na
structure, folding into target structurek ~drawn in the darkest shade! is
bounded by a maximum of two of these structure-degeneracy planes.
other shaded arc-areas represent portions of interaction space folding
the other structures, respectively, farthest away from them. The sm
dashed arrow is the bulk-vector^D& which is an average over all structur
vectors.Ak spans between the target structurek and the bulk vector. Note
that the largest areas of folding interaction space belong to those struc
farthest away from the bulk vector and one another.
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if one can further assume that the sequence space ofall pos-
sible random, foldable protein sequences$gS% covers the en-
tire unit-hypersphere interaction space isotropically, then
designabilityVk of structurek breaks down into calculating
the surface area of the interaction space unit-sphere o
mensiond which folds into structurek: That surface area
furthest fromDk constrained by the appropriate structur
degeneracy planes. The structural-degeneracy planes
those hyper-dimensional planes of dimensiond21 in inter-
action spaceg where two structures,Dj andDk, have iden-
tical energy. In terms of our designability calculation for
target structurek, one needs to determine the relevantn21
structural-degeneracy planes which constrain a surface o
teraction spaceg farthest fromDk. However, note that thos
relevant structural-degeneracy planes will nearly always
determined by those structures closest in vector space to
target structurek. This observation forms the essence of t
conclusions of Tang and co-workers; namely, highly desi
able structures are characterized by a low-density of
rounding structure vectors.51 Calculating which structural-
degeneracy planes are relevant for any given target struc
has no simple analytical solution. Throughout this paper,
instead numerically calculate the designability of structu
on the unit-hypersphere in interaction space via Monte C
integration. This is done by randomly drawing alld $gS%
interactions for the pair–contact or solvation model from
Gaussian distribution. In the theoretical protein folding l
erature, this Monte Carlo method is also known as the in
pendent interaction model~IIM ! or ‘‘infinite’’-amino-acid
alphabet.25,26,47

FOLDABILITY, ENERGY GAP, AND DESIGNABILITY

Now that we have a universal model relating designa
ity Vk to surface area in interaction space, the interes
question is how it relates to energetic measures, such as
ergy gapD10 and foldabilityF. Previous work by Wolynes
and co-workers derived a simple expression for the folda
ity Fk of sequencegS folding into structurek

Fk~gS!5
DS

k

sS
5

^ES&2ES
k

AS l~^ES&2ES
l !2

5
Ak•gS

A~gS!T
•B•gS

, ~10!

where^ES& is the average energy of sequenceS amongst all
structures.15,16,30Note that the vectorAk and matrixBi , j con-
tain only structural-information

Ak5^D&2Dk and Bi , j5^DiDj&2^Di&^Dj&, ~11!

where the averaginĝ̄ & is done over allN structures. As
shown in Fig. 2,Ak is a vector spanning between the targ
structure k and the ‘‘bulk’’ structural vector^D&. The
simple interpretation of the bulk vector is that it counts ho
frequent~common! or infrequent~rare! certain pair–contacts
or solvated residues are amongst the ensemble of pos
structures. Clearly, not allAk are of equal length as som
structuresk are farther away from the bulk than others. In t
limit of large N, i^D&i is ;D2/Ad. Because allDk are of
equal magnitude, those structures which are furthest a
from the bulk or, equivalently, those structures which co
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tain the maximum amount of rare pair–contacts or bur
residues are those with largerAk . Since the bulk energy gap
is given by

DS
k5Ak•gS5iAkicosuAkS , ~12!

it is immediately obvious that those structures with a ma
mum of rare pair–contacts or solvated residues are also
most optimizable, or, equivalentlyDopt

k 5iAki . However,
Govindarajan and Goldstein were interested in foldabi
Fk(gS), whose denominator is a function ofB andgS . Bi , j

is a matrix representing the correlations between pa
contacts or buried residues amongst the ensemble o
structures. Namely,Bi , j is positive or negative if the pair–
contact set or buried residuei occurs in conjunction withj
more or less often than what is expected at random given
pair–contact or buried residue frequencies found in the b
vector. From Eq.~10! and the appropriateAk andBi , j of the
energy model, the optimal foldabilityF opt

k for a target struc-

ture k can be obtained in closed form15,16,30,32

“Fk~gopt!50→gopt5B21
•Ak

→Fopt
k 5A~Ak!

T
•B21

•Ak. ~13!

Both measuresF andD10 are simply related to design
ability in that any energy gap, whetherDk of foldability or
Shakhnovich’sD10, is but a projection ofgS onto some
spanning vectorD!2Dk, which always originates from the
global-energy minimum native statek. For Dk, this spanning
vector is exactlyAk . Hence, those structures farthest aw
from the bulk-vector̂D& will tend to have sequences fold
ing into them with largerDk and, neglectingB terms, the
foldability F. For D10, the spanning vector is between th
native state and the next farthest structurel from gS . Unfor-
tunately for analytical purposes,Dl is sensitive to and de
pendent on bothDk and gS . Notice, however, thatDl

2Dk is but the vector defining the structural-degenera
plane of both the native statek andl. Thus, coming full circle
to previous arguments regarding designabilityVk , those
structures with a minimal density of surrounding structu
vectors will also be those with sequences folding into th
with larger possibleD10. The connection relating bothF and
D10 to designabilityVk is based on the aforementioned o
servation that those structures farthest away from the b
vector ^D& also tend to have the smallest density of s
rounding structure vectors on the Euclidean hyper-cu
Thus, given that these energetic measuresF andD10 neces-
sarily reflect the underlying distribution and density ofDk,
is it really surprising that they be correlated to designabili

As a synthesis of this relation between low structu
density, increased distance from the bulk, and higher des
ability Vk , we propose a novel structural measureZd

k . The
main impetus behind this measure was to incorporate
structural density as a critical feature for large structural d
ignability. Our measure is based on the Euclidean dista
between any two structural vectorsl andk, dkl5iDl2Dki
and 0<dkl<2D. Given a target structurek and the density
of its distance from other structuresr(dk j)
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TABLE I. Statistical parameters describing the percentage ground-state degeneracy and the Pearson co
coefficients between various measuresFopt

k , Zd
k , ^F&, ^D10& and structure designabilityVk across different

energy models and amino-acid alphabets. These correlation coefficients are numerical supplements
3–10.

Alphabet and energy model % DegeneracyFopt
k vs Vk Zd

k vs Vk ^F& vs Vk ^D10& vs Vk

HP two-letter pair–contact 81.58% 0.583 0.501 0.036 0.740
Li two-letter pair–contact 63.09% 0.414 0.345 0.442 0.783
p two-letter pair–contact 61.65% 0.489 0.416 0.287 0.661
hXYX four-letter pair–contact 41.63% 0.669 0.630 0.279 0.928
MJ 20-letter pair–contact 4.39% 0.829 0.885 0.924 0.943
Monte Carlo IIM pair–contact 0.01% 0.828 0.907 0.942 0.926
HP two-letter solvation 84.72% 0.505 0.704 0.272 0.585
FVSQ four-letter solvation 45.40% 0.538 0.795 0.591 0.703
H2O–Octanol 20-letter solvation 8.58% 0.522 0.843 0.786 0.879
Monte Carlo IIM solvation 1.64% 0.603 0.868 0.853 0.915
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k5

Ddkl

sdkl

5
^dk&2dkk

AS l~^dk&2dkl!
2

5
^dk&

AS j~^dk&2dkl!
2

, ~14!

where^dk&5(1/N)S ldkl . Maximization of the target struc
ture k distance from the bulk is handled by the numerat
while the minimization of density of close, competing stru
tures is implicitly taken into account by the denominat
Thus, similar in nature to optimal foldabilityFopt, we posit
that highly designable structuresk will have largerZd

k . The
strong appeal ofZd

k is that it is exceedingly easy to calculat
unlike Fopt

k which involves carefully inverting a high
dimensional matrixB. Furthermore, our results demonstra
thatZd

k is generally better correlated to designabilityVk than
Fopt

k across both energy models. However, unlike foldabi
and its relation toTf /Tg ,Zd

k is not obviously interpretable in
any energetic or thermodynamic sense.

METHODS AND RESULTS

For each amino-acid alphabet and energy model, we
sured that the native state was the nondegenerate gr
state amongst all possible compact structures. The 535 2D
pair–contact model has a total of 1081 unique structures
there are 793 unique, nondegenerate structures for the 535
solvation model. Within the pair–contact model, we used
amino-acid alphabets: The HP two-letter, Li two-letter,p
two-letter, hHYX four-letter, MJ 20-letter, and the Mon
Carlo ~IIM ! ‘‘infinite’’-letter amino-acid alphabet. The inter
action details for these amino-acid alphabets are descr
elsewhere.50 For the solvation model, we used 4 amino-ac
alphabets: An HP two-letter, FVSQ four-lette
H2O–Octanol 20-letter, and a Monte Carlo~IIM ! infinite-
letter amino-acid alphabet. The HP two-letter is identical
that used by Li and co-workers and analyzed by Ejtehadi
co-workers, where a buried hydrophobe is energetically
vored @g(H)521,g(P)50#.51–53 Both FVSQ four-letter
and 20-letter amino-acid alphabets were taken from exp
mentally measured amino-acid water-to-octanolDG’s as
given by Roseman.60 FVSQ, a rough spectrum along th
lines of bulkiness and hydrophobicity, represents the f
naturally occurring amino-acids. Both Monte Carlo alphab
had each interaction, whether pair–contact or solvation,
dependently drawn from a Gaussian distribution. As pre
,
-
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d
-

ri-
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s
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ous mentioned, Monte Carlo sampling represents a num
cal calculation of the exact structure designabilitiesVk in
their respective energy models in the limit of isotropic d
tribution of sequences in interaction space.

For all two-letter amino-acid alphabets, we exhaustiv
screened every possible sequence (225;33 million),
whereas;20 million sequences were selected at random
the remaining higher amino-acid alphabets. Conformati
were considered degenerate if their energies differed by
than 1024. In all cases, our sampling was large enough
suppress statistical fluctuation. Naturally, given the larger
versity of interactions, random sequences constructed f
larger amino-acid alphabets had less ground-state dege
cies than their smaller counterparts~See Table I!. For each
sequence folding into a ground-state structure, we calcula
the foldability F and energy gapD10 of that sequence. Nor
mally, all F are dimensionless and amino-acid composit
independent, but for explicit comparison to previous desi
ability results we left D10 unnormalized and sequence
dependent.29 Fopt

k and Zd
k @as defined in Eqs.~13! and ~14!#

were also calculated for each structurek within their respec-
tive energy model. For aesthetic reasons, we normalized
structure designabilities within a given amino-acid alpha
with the following constraint:

(
k

Vk510 000. ~15!

We begin by looking at the pair–contact model resu
Validating the basic premise of Govindarajan and Goldste
Fig. 3 is a plot ofFopt

k versus designabilityVk . The striking
feature is the positive correlation across all amino-acid
phabets, although significantly better for higher-letter amin
acid alphabets~all statistical details are in Table I!. Figure 4
is a plot of Zd

k versus designabilityVk . As expected in its
construction,Zd

k exhibits a better correlation to designabili
than Fopt

k ; again, the correlation is significantly better pr
nounced for higher-letter alphabets. However, even
higher-letter alphabet, the correlation betweenFopt

k or Zd
k and

Vk is not perfect. Realistically, one could predicta priori
with confidence which lattice structures belong to which ti
Lowly designable, moderately designable, or highly desi
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FIG. 3. A plot ofFopt
k vs designability

Vk , calculated for various amino-acid
alphabets in a pair–contact model. Th
amino-acid alphabet is listed abov
each respective plot.
fo
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rge
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ble
he
able. This coarse resolution is an unavoidable trade-off
using simple, scalar measures and avoiding the explicit e
meration of all possible foldable sequences.

Concerning thermodynamically relevant measures,^F&
and ^D10&, we begin by earmarking those structures wh
are nondegenerate within Ejtehadi and co-workers solvat
r
u-

n-

like, linear interaction model (gM50) for explicit compari-
son to their results. There are only 661 of 1081 structu
with unique interaction patterns, which are drawn as la
triangles in Figs. 5 and 6. For two-letter amino-acid alph
bets, there is a striking division between highly designa
triangles and the remaining lowly designable structures. T
e
e

FIG. 4. A plot of Zd
k vs designability

Vk , calculated for various amino-acid
alphabets in a pair–contact model. Th
amino-acid alphabet is listed abov
each respective plot.
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FIG. 5. A plot of ^F& vs designability
Vk , calculated for various amino-acid
alphabets in a pair–contact model. Th
large triangles surround those 66
structures which are nondegenerate
the gM50 linear interaction model of
Ejtehadi and co-workers.
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significance of this segregation disappears for higher-le
amino-acid alphabets, as there is large-scale rearrange
in the relative designability of structures. The correlation b
tween^F& andVk exhibits dramatic sensitivity to amino-aci
alphabet size. Figure 6, a plot of^D10& versusVk , is consis-
tent with results of Ejtehadi and co-workers and Tang a
co-workers;33,52,53 namely, two-letter amino-acid alphabe
with a small mixing parametergM , such as the Li two-letter
code, have a discontinuous jump in^D10& between highly
designable and lowly designable structures. However, w
gM.gcrit;1, as for the HP two-letter andp two-letter code,
this discontinuity mostly disappears. Thus, in light of pre
ous results,gM.gcrit does not appear to affect the structu
designability of two-letter amino-acid alphabets, but rath
only the statistics ofF and ^D10& with regard toVk .52,53,50

The discontinuous jump in̂D10& as observed by Liet al. is
clearly an artifact of having a two-letter amino-acid alpha
that is but a small perturbation of the solvationlike line
interaction model. However, unlikêF&, all amino-acid al-
phabets maintain a significantly positive correlation betwe
^D10& andVk , although much better for higher-letter alph
bets. All in all, in conjunction with our previous paper,50

these results indicate that two-letter amino-acid alphab
have irrefutable differences, not only with which structur
are highly designable~see Fig. 11!, but also inFopt

k , Zd
k , ^F&,

and^D10& versusVk , when compared to higher-letter amin
acid alphabets for pair-contact models. Of notable ment
the MJ 20-letter and Monte Carlo alphabet have nearly id
tical results and both reflect the exact pair–contact mo
unlike the smaller-letter codes. In short, two-letter amin
acid alphabets are plagued by artifacts that are in contra
the exact pair–contact model.
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The solvation model data, shown in Figs. 7–10, exhi
identical results to the pair–contact model forVk versus
Fopt

k , Zd
k , ^F&, and^D10& as a function of amino-acid alpha

bet size. However, there are a few notable differences w
exploring. As shown in Fig. 11 and 12, unlike the pai
contact model, the designabilityVk of specific solvation
structures across these different amino-acid alphabetsdoes
not significantly change! Namely, those structures which
highly designable for the HP two-letter solvation model a
also highly designable for the Monte Carlo alphabet. Ad
tionally, unlike the pair–contact model, the correlation b
tweenZd

k andVk in Fig. 8 is remarkably better than that o
Fopt

k . Paralleling this observation, the breakdown betweenZd
k

and Fopt
k is shown in Fig. 13, which is a plot of these tw

measures against one another in the pair–contact and s
tion model. Clearly,Fopt

k and Zd
k are correlated to one an

other, but remarkably more so for the pair–contact mod
This better correlation may be a consequence of the spa
ness of common interactions~even ‘‘rarer’’! of the pair–
contact model~16 pair–contacts/132 possible! compared to
the solvation model~9 buried/25 possible!. This phenom-
enon is certainly responsible for the larger range ofFopt

k and
Zd

k values for the pair–contact model compared to the so
tion model.

Given our suspicion that two-letter amino-acid alphab
in a pair–contact model could be solvation models in d
guise, how do the relative designabilities compareacross
energy models? Figure 14 is a scatter plot of the Monte C
solvation model designabilityVk

MC solution versus the structure
designabilities for the six different amino-acid alphabets i
pair–contact model. Even the hHYX four-letter code desig
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FIG. 6. A plot of ^D10& vs designabil-
ity Vk , calculated for various amino-
acid alphabets in a pair–contac
model. The large triangles are thos
661 structures which are nondegene
ate in the gM50 linear interaction
model of Ejtehadi and co-workers.
ar
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ir–
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ability exhibits strong correlation to the solvation model, p
ticularly those highly designable structures. Thus, in ret
spect, the HP two-letter designability results of Li and c
workers concerning proteinlike symmetries of high
-
-
-

designable structures are a consequence of a hidden solv
model, rather than reflecting properties endemic to a pa
contact model.

Concerning Kussell and Shakhnovich’s conclusio
FIG. 7. A plot ofFopt
k vs designability

Vk , calculated for various amino-acid
alphabets in a solvation model.
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FIG. 8. A plot of Zd
k vs designability

Vk , calculated for various amino-acid
alphabets in a solvation model.
r
te
a
th

gth
2D
about 2D structural features pertinent to designability fo
pair–contact model, we also calculated the number of in
action loops and strands for every pair–contact structure
divided them into six classes: loops, one-length, two-leng
a
r-
nd
,

three-length, four-length, and five1-length strands. Within a
class, we averaged over the designability^Vk& for those
structures containing a certain number of loops, one-len
strands, etc. Kussell and Shakhnovich postulated that for
FIG. 9. A plot of ^F& vs designability
Vk , calculated for various amino-acid
alphabets in a solvation model.
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FIG. 10. A plot of ^D10& vs design-
ability Vk , calculated for various
amino-acid alphabets in a solvatio
model.
al
a

s,
u
rt

nly
gth
and
is-
ger
lattice proteins constructed with a two-letter amino-acid
phabet, highly designable structures were expected to h
~1! no loops,~2! a maximum number of two-length strand
and ~3! a minimum number of larger-length strands. O
results are shown in Fig. 15. Of the three conditions set fo
-
ve

r
h

by Kussell and Shakhnovich for two-letter alphabets, o
loops are in agreement. Strangely, the number of two-len
strands for two-letter amino-acid alphabets gives vague
contradictory correlations to designability. In complete d
agreement with Kussell and Shakhnovich, having a lar
e
ct
FIG. 11. A plot of the exact design-
ability Vk

MC pair–contact vs various
amino-acid alphabets, listed abov
each respective plot, in a pair–conta
model.
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FIG. 12. A plot of the exact design-
ability Vk

MC solvation vs various amino-
acid alphabets, listed above each r
spective plot, in a solvation model.
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number of three-length and four-length strands is syno
mous with higher designability for these two-letter alphabe
A possible source of two-letter alphabet deviation of t
analytical theory from our lattice protein simulation involv
the use of the REM assumption by Kussell and Shakhnov
to translate the energy spectrumnk(E), the number of se-
quences having energyE for structurek, into designability.
Their analytical results are contingent on the validity of t
REM. Yet, it is important to note that the REM is questio
able for two dimensional systems: That is, both for a repl
derivation of random heteropolymers in 2D12,58 and for a
nonreplica derivation from loop entropy arguments for d
signed, proteinlike sequences.47 In addition, it has also been
conjectured many times and numerically shown by Pa
and co-workers that the REM works far better for high
letter alphabets than for two-letter alphabets.61 Thus, it
should not be too surprising that the Kussell and Sha
-
.

h

a

-

e
-

-

novich theory in 2D with a two-letter code does not agr
very well with our lattice protein results. However, if Kusse
and Shakhnovich’s analytical model is more valid for high
letter alphabets, Fig. 15 hints that the following features
2D lattice proteins should be strongly correlated with larg
designability for higher-letter alphabets:~1! No loops,~2! a
minimum of one-length strands, and~3! a maximum of two-
length and three-length strands. Granted, four-length stra
also give positive correlations to higher designability f
larger-letter alphabets, but their signature is much weake
comparison.

CONCLUSIONS

Our results lend strong credence to the fact that we
starting to understand the principles of what makes a pro
structure designable. Based on the work by Govindara
d

FIG. 13. A plot of Fopt

k vs Zd
k across

both energy models: Pair–contact an
solvation.
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FIG. 14. A plot of the Monte Carlo
designabilityVk

MC solvationfor the solva-
tion model vs that across all amino
acid alphabets~listed above each re-
spective plot! for the pair–contact
model. These data substantiate th
claim that two-letter amino-acid alpha
bets in the pair–contact model are so
vation models in disguise.
th
u
le

tact

. For
an

r the
and Goldstein with pair–contact models and Liet al. with
solvation models, those structures farthest away from
bulk, which are also those with the smallest density of s
rounding structure vectors, are highly designab
Structurally-calculable measuresFopt

k andZd
k in Figs. 3 and 4
e
r-
.

and 7 and 8 demonstrate this principle across pair–con
and solvation models. Naturally,which structures are highly
designable depends on the particular energy model used
the pair-contact model, highly designable structures have
abundance of rare, long-range pair–contacts, whereas fo
er
,

s

r
l-
t
y

FIG. 15. A decomposition of pair–
contact structures according to numb
of loops, one-length, two-length
three-length, four-length, and five1-
length interaction strands plotted v
the average designabilitŷVk& over
structures containing these particula
features. The data from the various a
phabets are drawn with differen
curves and symbols, as described b
the legend in the two-strand plot.
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solvation model highly designable structure have many r
solvated residues found in those structures with protein
symmetries. In addition, consistent with the foldability de
ignability model, Figs. 5 and 6 and 9 and 10 demonstrate
both ^F& and ^D10& are sharply increasing functions of de
ignability Vk across both energy models. Hence, increa
thermodynamic stability and faster folding is a necessa
universal correlate with larger designability. Thus, in light
the hasty claim that the ‘‘designability principle’’ is an alte
native to the foldability model,62 our results indicate tha
they are inherently related across different energy mod
This correlation has ramifications for protein evolution
thermodynamic or folding properties on neutral networks,
recently applied to directed evolution.63

Consistent with our previous report, the correlation b
tweenVk andFopt

k , Zd
k , ^F&, ^D10& consistently breaks down

for smaller-letter amino-acid alphabets in both energy m
els. Universally, smaller-letter codes contain artifacts t
lead to deviant behavior from that of the exact energy mo
as calculated by Monte Carlo sampling. The real controve
and open problem in protein designability lies in understa
ing why two-letter alphabet results break down for a giv
energy model and explaining their differences from high
letter alphabets. Of specific interest, it was shown that
designability results of two-letter amino-acid alphabets
the pair-contact model are consistent with their being so
tion models in disguise. This was delineated by Ejtehadi
co-workers and explicitly shown in Fig. 14. This conv
niently explains the puzzle of why highly designable H
structures had proteinlike symmetries in spite their be
pair–contact models. Given that most naturally occuring p
teins have amazing fold symmetries, it is tempting to spe
late that this could primarily be due to dominant solvati
forces. In particular, it would be interesting to survey prote
folds and their prevalence in the database and crossc
against theirZd

k within a solvation model.
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