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Scale symmetries of spherical string fluids
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We consider homothetic maps in a family of spherical relativistic star models. A
generalization of Vaidya'’s radiating metric provides a fluid atmosphere of radiation
and strings. The similarity structure of the string fluid is investigated. 1999
American Institute of Physic§S0022-24889)03308-3

I. INTRODUCTION

Metric symmetries have always played a large role in the development of exact solutions to
the Einstein field equations. Often a choice of metric symmetry is made based on an assumed
symmetry of the matter distribution, i.e., spherical symmetry for astrophysical objects or cylindri-
cal symmetry for a simple strinfgA homothetic motion(homothety describes the symmetry of
scale transformations, and homothetic symmetry has been called “similarity of the first kind” by
Cahill and Taulf. One must distinguish betweageometricaland physical self-similarity. Geo-
metrical similarity is a property of the space—time metric, whereas physical similarity is a property
of the matter fields. These need not be equivalent and the relationship between them also depends
on the nature of the matter. Yavuz and Yilmaecently investigated inheritance symmetries
wherein the stress energy inherits metric symmetries of the type

LGap=2Y¥Jap,
where L, is the Lie derivative along the vectér Some of the possibilities are
T ="T(x?), £is a conformal Killing vector,
¥ =1, £is a homothetic vector,
V=0, ¢is a Killing vector.

Carter and Henriksénhave introduced the idea diinematic self-similarityin the context of
relativistic fluid mechanics and an extended analysis has been given by CAldynematic
self-similarity vector satisfies the conditions

Leu,=constug,,
Eghab: 2hab y

whereh,,=g.,— UaUy, is the first fundamental form of the three-spaces orthogonai®toThe
case constl is called “similarity of the second kind.”

In this work we apply the ideas of scaling and homothety to a string fluid atmosphere. Since
our primary interest is in the extended Schwarzschild mass funet{enr) and the related string
atmosphere, we apply scaling to the mass in two different ways. First, we assume diffusive mass
transport and investigate the symmetries of the diffusion equation and second, we investigate the
scaling properties of the metric and from those derive mass transport equations.

In Sec. Il we briefly describe the Schwarzschild string fluid atmosphere. Section 11l studies the
symmetry map which takes the diffusion equation to an ordinary differential equation. New
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diffusion solutions are found. Geometric symmetries, homothetic and conformal, are developed in
Sec. IV. Mass transport is discussed in Sec. V. One of the results of the homothetic analysis are
new self-similar solutions to the Einstein equations.

Our sign conventions areA2.a,=AeR%ap, and Ry,=R®,pe. Latin indices range over
(0,1,2,3)=(u,r,9,¢). Overdots abbreviaté/du, and primes abbreviate/dr. Overhead carets
denote unit vectors. We use units whef@=c=1. Einstein’s field equations ar&,,
=—8wT,,, and the metric signature {s-,—,—,—).

II. STRING FLUID ATMOSPHERE

Recently, Glass and Kris&f showed that there can be a spherically symmetric string fluid
atmosphere outside a Schwarzschild horizon. The space—time metric is

dsa=A dw?+2du dr—r?(d9?+sir? § de?), 6h)

where A=1-2m(u,r)/r. Initially m(u,r)=mq provides the vacuum Schwarzschild solution in
the regionr >2m,. The metric can be written in a natural basis as

GK_ o o 22 2R3 A~
OJab =VaVp—Talp™ Fa¥p— Qady 2

where the unit vectors are defined by

Vadx=AY2du+A"Y2dr, 0%9,=A"",, (33
fadx@=A"2dr, Pi9,=A"Y%9,—AY%, (3b)

Jydx@=rdd, 9%,=—-r 19y, (30)
Padx¥=rsindde, §2d,=—(rsind) 1a,. (3d)

V2 is hypersurface-orthogonal with,;, the first fundamental form of the hypersurface,
haptXPdX°=(ggh —Va0p)dxPdX’= — A~ 1dr?—r?(d 92+ sir’ 9 do?). 4

The kinematics of th&? flow are described by

08,=a%p+ 0% — (O13)(F3F p+ 92Dy + 7%p), (5)
where
a®=[m/r+Ad,(m/r)]A-%%23, (6a)
0% =(0/3)(— 2F% ,+ 929+ p2%p), (6b)
O=(m/ir)A %2 (60)

The string distribution is described by a string bivecky;,. Spherical symmetry demands
that the averaged string bivector will describe a world-sheet in eitheiutheor the (19,¢) plane.
The string bivector is timelike and given by

Eac:faoc_fc\'}a, (7)

where3 23, P=¢2yP— 3P, The two-surfaces spanned By, are orthogonally transitive to the
two-surfaces spanned by the dual bivector

S5 =Yabp— Dpda, ®)
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which follows from the Frobenius surface-forming condition satisfie@®hy. It is also true that
332 5p=VaVt Pabp -
The Einstein tensor computed froft) can be written as a two-fluid syste®y + GTR"e",

Gap=(2M/1?)l ol = (2M'/12) (020, = F oF p) + (M"/1) (Do Do+ Bado), ©)

wherel ,dx*=du. The Einstein field equatiorG?®, ,=0 are satisfied for arbitrary(u,r).
In Glass and Krisch’ mass transport was modeled by diffusion, and the diffusion equation
used is given by

p=Dr‘2a,(r2(9,p), (10

whereD is the positive coefficient of self-diffusiotiaken to be constant

[ll. SIMILARITY MAP OF THE DIFFUSION EQUATION

There is a similarity technique explained by Bluman and &tiat maps the diffusion equa-
tion into an ordinary differential equation. Our primary interest is in the Schwarzschild mass
functionm(u,r). New functional solutions fom(u,r) are new solutions to the field equations for
the parameter extended radiating atmosphere. The behaviofwf) describes the string fluid
atmosphere beyond the Schwarzschild horizon through the relationd=Dr?p’ and 4mp
=m’'/r2. The mass function obeys a diffusion equation

m="Dr?9,(r ~%4,m) (11

with homogeneous solutiomy,.(r)=mgy+ 371 3py Which can be added to each time-dependent
solution.

The similarity techniquéfor a fully general analysis see Bluman and Kuthegquires one to
introduce an independent dimensionless variable. A standard choice in diffusion problems is the
Boltzmann transformatiot?’

n=r(4Du) "2 (12
[Note that as a mapping frofu,r) to (u~ 2 5) the Jacobian is singular implying a breakdown of
the 1— 1 mapping along.] The argument of the equatiom(u,r), is replaced by a dimensionless
function F(#7): We look for a general solution of the form

m(u,r):=cor “UPF (7). (13

The constant, is intended to map the dimensionsréiu? to mass for arbitrary constantsand
B. Upon substituting Eq(13) into the diffusion equatioril1) we obtain the ordinary differential
equation

Fopt2l(a=1)n 4+ 9]F +[a(a—3)p *~4B]F=0, (14)

whereF ,, abbreviatesiF/d 7.
There are many analytic solutions of E44) which depend on the values afand 8. The
choicea= =0 has the differential equatidn,,+2(»— 1/5)F,=0 with solution

F()=kot ko[ — ne™ 7 +(Vm/2)erf(n)], (15)

where erf@y)::(ZIJ;)fgexp(—sz)ds lim,_,o erf(y)=27/\/m. This is the mass solution given in
Eq. (40) of Glass and Krisch(with k,=0 and with the homogeneous solutiog,,,, added. At
fixed timeu, it describes a mass with value,,,+ cok; as n—o. At late timescgk; is radiated
away. There is no length scale in this description sorthg,, atmosphere is unbounded.



J. Math. Phys., Vol. 40, No. 8, August 1999 Scale symmetries of spherical string fluids 4059

Other choices can be made, for examplen, S=—n/2. This choice has const™u"?
=" and one can solve Eq414) or see directly from Eq(13) that

F(p)=n "

If we write F(#7)= % "H(7%) thenH(7) satisfies the case= =0 and we have a new family of
solutions parametrized hy.

F(n)=7"Tko+ki[ — ne~ 7 +(Nm/2)erf()]]. (16)

Solution(15) is included here when=0.

IV. SYMMETRIES

Because the string fluid naturally lives on a two-dimensional world sheet, the question of the
symmetries of these two-dimensional subspaces is interesting. We examine how the mass distri-
bution and stress energy content reflect the separate two-surface symmetries

‘Cg(\?a\?b_ Fafp) =21 (VU —T4lp),

17
Le(BaDp+ Gadp)=20(Fap+ Day).
For similarity of the second kind, the map action must be
LVa=YV,, y#1,
Lfa=Fa, (19

LAVt §adp) =2(FaDp+ o).
A. Homothetic map

The similarity vector which preserves the distinct two-surfaces of the matter distribution in
Eq.(17) is

E20,=[vug+(2u—rv)U)]dy+vré,, (29
with kinematic transformations
LNa=pVy, Lefq=ufa, (209
LeVa=vda, Lioa=vda, (20b)
when the metric functiom\ satisfies f:=2u/v—1)
YAIA+TA' A+ k—1=0, (21
with ¢(u):=ug+ xu. The constraint21) requires the mass function to have the form
r—2m(u,r) =2 5 (glre), (22)

wheref is an arbitrary function.
If u=v=x=1 then the map is homothetic with:g,,=20ap-
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B. Another homothetic map
The casex=0 requires a separate solution. The metric functosatisfies
UA/A+TA'IA=1. (23)
Constraint(23) has the integral
r—2m(u,r)=r,e?"/uf(e"vor,/r) (24)

with f an arbitrary function. Whem=1 andx=1/2 theu dependence is eliminated fro&i and
the transformation acts on th&,¢) two-surfaces homothetically

L Fadpt padp) =2(Fadp+ Padp)
but preserves the scale of the string two-surfaces,

Eg(va\?b_ ?afb) :oavb_ farb .

C. Interpreting the scale parameter

Under the action of the homothe&fd, = (uy+u)d,+rd, the acceleration of?, given in Eq.
(6a), has the following Lie derivative: wita®=at®, a:=[m/r+Ad,(m/r)]A~%?

,Cgab = ab, (25)

a
=1
a

wherea;:=[ (up+u)d,+rd,Ja. Similarly the rate-of-shear given in Eg$b) and(6c) obeys

Eaaz(%—l) a (26)
&0b o) 0 p,

where® =[(ug+u)d,+rd,|0.
There is no information to be gained by analyzing the scaling properties of the Raychaudhuri
equation

A%y — 0ap0?P— 02/3— 0 0%=— R, ,0%0°,

since it is identically satisfied bgSk .

D. Conformal map

The caseu=v= k=1, with y=uy+u, has an interesting conformal symmetry. We see from
Eq. (22) that A= (/1) f(&ir)=F(y/r). Metric (1) is written as

dsi =F(y/r)du?+2dudr—r2dQ2. (27)
We define a new coordinaie=r/y and rewrite(27) as
dsi =[F(1ly)+2y]du?+ 2y du dy—y?y? dQ2. (28)
Now we factor outy? and introduce a new time coordinadev:=du/ ¢ to obtain
dsi = y?[(F+2y)dw?+ 2 dw dy—y? dQ?].

Upon choosind=(14)=1-2M(y)/y—2y, M(y) arbitrary, we have
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dsi=e?"[(1—2M/y)dw?+2 dw dy—y2dQ?]. (29

The argument above shows that the similarity transformation generated by @eéter (u,
+u)d,+rd, conformally relates the radiating string atmosphere of meitjcto a previously
identified family of static string atmospherése.,

L0 =2e™"935". (30
E. Similarity of the second kind
For similarity vectoré?d,= (u+ug)d,+rd, the metric functionA must satisfy
(Up+U)A/A+TA'IA=y—1. (32)
Equation(31) has solution
r—2m(u,r)=r,(ug+u)*h[(upg+u)/r], (32

whereh is an arbitrary function ang# 1.

V. MASS TRANSPORT

The mass functions found by similarity analysis obey certain transport equations. Most of the
transport equations have the form of the “telegrapher” equation. This can describe dispersive and
lossy electromagnetic wave motibhSome forms have been interpreted by Kams a random
Poisson process. Mass transport through the atmosphere is affected by the homothetic symmetries.
The transport equations can be constructed from the similarity solutions of Sec. IV.

A. k=0 homothety

Differentiation of Eq.(23), a constraint on the mass function, yields an inhomogeneous wave
equation

A—3Alug—(rlug)?V2A=—2A/u3. (33

B. k=1 homothety

Recall metric functionA=1-2m(u,r)/r. One can see directly from Ed22) that A
=(ylr)f(plr)=F(ylr) with y=uy+u. A, and thusm/r, satisfies a wave equation on the flat
tangents to th& v, — 7,7, two-spaces. Defining=In(y) andz=In(r) we have

A=F(7-2). (34)
It is clear thatA, generated by homothet§f'd,= (ug+u)d,+rd,, satisfies the wave equation

A 9°A
P 49
Alternatively, we can find a wave equation on the curved manifold by writing
IFlgu=(1rF, aF/ar=—(ylIrdF
whereF is the derivative of with respect to its argument. It follows that
A=(1r2)E, (r2A") =(yrdF.

Thus
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A-v3v2A=0 (36)

whereV2=r"2(a/ar)r?(aldr) andvg=r/i. The wave speed varies withandr.
If v¢ were constant, then Eq.(36) would have the general solution

_ f(r—vu) N g(r+vu)

A(u,r) ;

(37)
in terms of two arbitrary functionfandg. SubstitutingA=f/r into (36) one finds
(v2—v)f=o.

This reflects “damped, yet relatively undistorted, progressing wave solutioha,$pecial case of
the telegrapher’s equation.
For new time coordinate—u+ uy=e"'o and with A,:=9A/dt, Eq. (36) transforms to

Ay—Altg— (r/tg)?V2A=0. (39)
C. k=2 two-surface symmetry
With A=1-2m(u,r)/r=¢@ < =1 (y/r*) we can write
A= H(gIr"),  He=(glre) @ 9lxt,

Differentiation yields

A= k2rt=3«f
and
(F2A") = (1= k) (2= K)r* " *H=3k(1— k) pr* 2H+ ?yH.
It follows that
(r?A") =(1—k)(2— k) A—3(1— k) A+ J2A.

Transforming to a new time coordinaé¥'o= y=u,+ xu yields the inhomogeneous wave equa-
tion

Ayt (2—-3IK) A Itg— (r/tg)2V2A=(1—1/x)(2/k— 1) Alt3, (39
whereA;:=dJA/dt.

D. Similarity of the second kind

Differentiation of the constraint on metric functidy Eq. (31), yields the homogeneous wave
equation

L )(rA'>=o, (40

. —1).
A+vg YT A—VvIVZA+V2

wherevg=r/(ug+u) and y# 1. As above, the wave speed varies witndr.

VI. DISCUSSION

Similarity is physically important since scaling behavior may offer clues about possible rela-
tionships between macroscopic and microscopic phy@ies Ehrenfest's classical adiabatic in-
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variants and quantization ruledJsing scaling, one can model long term behaviors with single
solutions to the field equations in which only the scaling variable changes as a function of time.
Self-similar behavior is an important aspect of many evolutionary processes both linear and
nonlineart* The simplifications of the nonlinear field equations of general relativity are a good
example of the value of similarity methods. In addition, we have seen that the special homothety
of fluid two-surfaces can be associated with self-similar behavior in the fluid parameters.

In this paper our primary interest is in the extended Schwarzschild mass funtfign) and
the related string atmosphere. We applied scaling to the mass in two different ways. First, we
assumed a mass transport and investigated the scaling properties and second, we investigated the
scaling properties of the metric and from those derived mass transport equations. In the first case,
assuming diffusive mass transport with a Boltzmann scaling variable, we developed a new family
of diffusive mass functions and the associated family of string atmospheres. In the second case, we
examined the scaling symmetries of the orthogonal two-surfagesand(dJ,¢). A two-parameter
similarity generator acted separately on the) two-surface containing the string fluid and the
orthogonal(9,¢) two-surface subject to the mass parameter obeying a constraining first order
differential equation. The similarity map affects all metric components equally when the param-
eters are both equal to 1. For this case, where the transformation is a homothety for the entire
space—time, the mass constraint conformally relates a radiating string atmosphere and a static
atmosphere. Other parameter choices could be made, for example, the choices which remove time
dependence from the generator. This time independent mapping acts 6}, ¢ghewo-surface
homothetically while preserving the scale of ther) string two-surface. For all the parameter
choices associated with the scaling action of the generator, a mass transport equation is implied.
This equation is, in general, the telegrapher’s equation. The telegrapher’s equation and the diffu-
sion equation have both macroscopic and microscopic interpretafioh& The appearance of
both of these mass transport equations in conjunction with the description of a macroscopic string
fluid atmosphere is suggestive of the quantum nature of the fundamental string fluid bits. The
classical continuum fluid describes only the averaged fluid behavior, with the mass transport
equations suggesting the underlying quantum nature of the fluid.
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