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Scale symmetries of spherical string fluids
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We consider homothetic maps in a family of spherical relativistic star models. A
generalization of Vaidya’s radiating metric provides a fluid atmosphere of radiation
and strings. The similarity structure of the string fluid is investigated. ©1999
American Institute of Physics.@S0022-2488~99!03308-3#

I. INTRODUCTION

Metric symmetries have always played a large role in the development of exact solutio
the Einstein field equations. Often a choice of metric symmetry is made based on an as
symmetry of the matter distribution, i.e., spherical symmetry for astrophysical objects or cyl
cal symmetry for a simple string.1 A homothetic motion~homothety! describes the symmetry o
scale transformations, and homothetic symmetry has been called ‘‘similarity of the first kind
Cahill and Taub.2 One must distinguish betweengeometricaland physicalself-similarity. Geo-
metrical similarity is a property of the space–time metric, whereas physical similarity is a pro
of the matter fields. These need not be equivalent and the relationship between them also d
on the nature of the matter. Yavuz and Yilmaz3 recently investigated inheritance symmetri
wherein the stress energy inherits metric symmetries of the type

Ljgab52Cgab ,

whereLj is the Lie derivative along the vectorj. Some of the possibilities are

C5C(xa), j is a conformal Killing vector,

C51, j is a homothetic vector,

C50, j is a Killing vector.

Carter and Henriksen4 have introduced the idea ofkinematic self-similarityin the context of
relativistic fluid mechanics and an extended analysis has been given by Coley.5 A kinematic
self-similarity vector satisfies the conditions

Ljua5constua ,

Ljhab52hab ,

wherehab5gab2uaub is the first fundamental form of the three-spaces orthogonal toua. The
case constÞ1 is called ‘‘similarity of the second kind.’’

In this work we apply the ideas of scaling and homothety to a string fluid atmosphere.
our primary interest is in the extended Schwarzschild mass functionm(u,r ) and the related string
atmosphere, we apply scaling to the mass in two different ways. First, we assume diffusive
transport and investigate the symmetries of the diffusion equation and second, we investig
scaling properties of the metric and from those derive mass transport equations.

In Sec. II we briefly describe the Schwarzschild string fluid atmosphere. Section III studie
symmetry map which takes the diffusion equation to an ordinary differential equation.

a!Permanent address: Physics Department, University of Windsor, Ontario N9B 3P4, Canada.
40560022-2488/99/40(8)/4056/8/$15.00 © 1999 American Institute of Physics
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diffusion solutions are found. Geometric symmetries, homothetic and conformal, are develo
Sec. IV. Mass transport is discussed in Sec. V. One of the results of the homothetic analy
new self-similar solutions to the Einstein equations.

Our sign conventions are 2Ac;@ab#5AeR
e
cab , and Rab5Re

abe. Latin indices range over
(0,1,2,3)5(u,r ,q,w). Overdots abbreviate]/]u, and primes abbreviate]/]r . Overhead carets
denote unit vectors. We use units whereG5c51. Einstein’s field equations areGab

528pTab , and the metric signature is~1,2,2,2!.

II. STRING FLUID ATMOSPHERE

Recently, Glass and Krisch6,7 showed that there can be a spherically symmetric string fl
atmosphere outside a Schwarzschild horizon. The space–time metric is

dsGK
2 5A du212 du dr2r 2~dq21sin2 q dw2!, ~1!

whereA5122m(u,r )/r . Initially m(u,r )5m0 provides the vacuum Schwarzschild solution
the regionr .2m0 . The metric can be written in a natural basis as

gab
GK5 v̂av̂b2 r̂ ar̂ b2q̂aq̂b2ŵaŵb , ~2!

where the unit vectors are defined by

v̂adxa5A1/2du1A21/2dr, v̂a]a5A21/2]u , ~3a!

r̂ a dxa5A21/2dr, r̂ a]a5A21/2]u2A1/2] r , ~3b!

q̂a dxa5r dq, q̂a]a52r 21]q , ~3c!

ŵa dxa5r sinq dw, ŵa]a52~r sinq!21]w . ~3d!

v̂a is hypersurface-orthogonal withhab the first fundamental form of the hypersurface,

habdxadxb5~gab
GK2 v̂av̂b!dxadxb52A21dr22r 2~dq21sin2 q dw2!. ~4!

The kinematics of thev̂a flow are described by

v̂ ;b
a 5aav̂b1sa

b2~Q/3!~ r̂ ar̂ b1q̂aq̂b1ŵaŵb!, ~5!

where

aa5@ṁ/r 1A] r~m/r !#A23/2r̂ a, ~6a!

sa
b5~Q/3!~22r̂ ar̂ b1q̂aq̂b1ŵaŵb!, ~6b!

Q5~ṁ/r !A23/2. ~6c!

The string distribution is described by a string bivectorSab . Spherical symmetry demand
that the averaged string bivector will describe a world-sheet in either the~u,r! or the~q,w! plane.
The string bivector is timelike and given by

Sac5 r̂ av̂c2 r̂ cv̂a, ~7!

whereSacSc
b5 v̂av̂b2 r̂ ar̂ b. The two-surfaces spanned bySab are orthogonally transitive to the

two-surfaces spanned by the dual bivector

Sab* 5q̂aŵb2q̂bŵa , ~8!
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which follows from the Frobenius surface-forming condition satisfied bySab . It is also true that
Sa*

cScb* 5q̂aq̂b1ŵaŵb .
The Einstein tensor computed from~1! can be written as a two-fluid systemGab

null1Gab
matter.

Gab5~2ṁ/r 2!l al b2~2m8/r 2!~ v̂av̂b2 r̂ ar̂ b!1~m9/r !~q̂aq̂b1ŵaŵb!, ~9!

wherel adxa5du. The Einstein field equationsGa
b;a50 are satisfied for arbitrarym(u,r ).

In Glass and Krisch6,7 mass transport was modeled by diffusion, and the diffusion equa
used is given by

ṙ5D r 22] r~r 2] rr!, ~10!

whereD is the positive coefficient of self-diffusion~taken to be constant!.

III. SIMILARITY MAP OF THE DIFFUSION EQUATION

There is a similarity technique explained by Bluman and Cole8 that maps the diffusion equa
tion into an ordinary differential equation. Our primary interest is in the Schwarzschild m
functionm(u,r ). New functional solutions form(u,r ) are new solutions to the field equations f
the parameter extended radiating atmosphere. The behavior ofm(u,r ) describes the string fluid
atmosphere beyond the Schwarzschild horizon through the relationsṁ54pDr 2r8 and 4pr
5m8/r 2. The mass function obeys a diffusion equation

ṁ5Dr 2] r~r 22] rm! ~11!

with homogeneous solutionmhom(r )5m01 4
3pr 3r0 which can be added to each time-depend

solution.
The similarity technique~for a fully general analysis see Bluman and Kumei9! requires one to

introduce an independent dimensionless variable. A standard choice in diffusion problems
Boltzmann transformation:10

h5r ~4Du!21/2. ~12!

@Note that as a mapping from~u,r! to (u21/2,h) the Jacobian is singular implying a breakdown
the 121 mapping alongr.# The argument of the equation,m(u,r ), is replaced by a dimensionles
function F(h): We look for a general solution of the form

m~u,r !ªc0r aubF~h!. ~13!

The constantc0 is intended to map the dimensions ofr aub to mass for arbitrary constantsa and
b. Upon substituting Eq.~13! into the diffusion equation~11! we obtain the ordinary differentia
equation

Fhh12@~a21!h211h#Fh1@a~a23!h2224b#F50, ~14!

whereFh abbreviatesdF/dh.
There are many analytic solutions of Eq.~14! which depend on the values ofa andb. The

choicea5b50 has the differential equationFhh12(h21/h)Fh50 with solution

F~h!5k01k1@2he2h2
1~Ap/2!erf~h!#, ~15!

where erf(h)ª(2/Ap)*0
h exp(2s2)ds, limh˜0 erf(h)52h/Ap. This is the mass solution given i

Eq. ~40! of Glass and Krisch7 ~with k050 and with the homogeneous solutionmhom added!. At
fixed timeu, it describes a mass with valuemhom1c0k1 ash˜`. At late timesc0k1 is radiated
away. There is no length scale in this description so themhom atmosphere is unbounded.
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Other choices can be made, for examplea5n, b52n/2. This choice has const3rnu2n/2

5hn and one can solve Eq.~14! or see directly from Eq.~13! that

F~h!5h2n.

If we write F(h)5h2nH(h) thenH(h) satisfies the casea5b50 and we have a new family o
solutions parametrized byn:

F~h!5h2n@k01k1@2he2h2
1~Ap/2!erf~h!##. ~16!

Solution ~15! is included here whenn50.

IV. SYMMETRIES

Because the string fluid naturally lives on a two-dimensional world sheet, the question
symmetries of these two-dimensional subspaces is interesting. We examine how the mas
bution and stress energy content reflect the separate two-surface symmetries

Lj~ v̂av̂b2 r̂ ar̂ b!52m~ v̂av̂b2 r̂ ar̂ b!,
~17!

Lj~ q̂aq̂b1ŵaŵb!52n~q̂aq̂b1ŵaŵb!.

For similarity of the second kind, the map action must be

Ljv̂a5g v̂a , gÞ1,

Lj r̂ a5 r̂ a , ~18!

Lj~ q̂aq̂b1ŵaŵb!52~q̂aq̂b1ŵaŵb!.

A. Homothetic map

The similarity vector which preserves the distinct two-surfaces of the matter distributio
Eq. ~17! is

ja]a5@nu01~2m2n!u!] ]u1nr ] r , ~19!

with kinematic transformations

Ljv̂a5m v̂a , Lj r̂ a5m r̂ a , ~20a!

Ljq̂a5nq̂a , Ljŵa5nŵa , ~20b!

when the metric functionA satisfies (kª2m/n21)

cȦ/A1rA8/A1k2150, ~21!

with c(u)ªu01ku. The constraint~21! requires the mass function to have the form

r 22m~u,r !5c~22k!/k f ~c/r k!, ~22!

wheref is an arbitrary function.
If m5n5k51 then the map is homothetic withLjgab52gab .
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B. Another homothetic map

The casek50 requires a separate solution. The metric functionA satisfies

u0Ȧ/A1rA8/A51. ~23!

Constraint~23! has the integral

r 22m~u,r !5r 1e2u/u0 f̃ ~eu/u0r 0 /r ! ~24!

with f̃ an arbitrary function. Whenn51 andm51/2 theu dependence is eliminated fromja and
the transformation acts on the~q,w! two-surfaces homothetically

Lj~ q̂aq̂b1ŵaŵb!52~q̂aq̂b1ŵaŵb!

but preserves the scale of the string two-surfaces,

Lj~ v̂av̂b2 r̂ ar̂ b!5 v̂av̂b2 r̂ ar̂ b .

C. Interpreting the scale parameter

Under the action of the homothetyja]a5(u01u)]u1r ] r the acceleration ofv̂a, given in Eq.
~6a!, has the following Lie derivative: withab5ar̂b, aª@ṁ/r 1A] r(m/r )#A23/2,

Lja
b5S aj

a
21Dab, ~25!

whereajª@(u01u)]u1r ] r #a. Similarly the rate-of-shear given in Eqs.~6b! and ~6c! obeys

Ljs
a

b5S Qj

Q
21Dsa

b , ~26!

whereQj5@(u01u)]u1r ] r #Q.
There is no information to be gained by analyzing the scaling properties of the Raychau

equation

a;b
b 2sabs

ab2Q2/32Q ,av̂a52Rabv̂
av̂b,

since it is identically satisfied bygab
GK .

D. Conformal map

The casem5n5k51, with c5u01u, has an interesting conformal symmetry. We see fr
Eq. ~22! that A5(c/r ) f (c/r )5F(c/r ). Metric ~1! is written as

dsGK
2 5F~c/r !du212 du dr2r 2 dV2. ~27!

We define a new coordinateyªr /c and rewrite~27! as

dsGK
2 5@F~1/y!12y#du212c du dy2y2c2 dV2. ~28!

Now we factor outc2 and introduce a new time coordinatedwªdu/c to obtain

dsGK
2 5c2@~F12y!dw212 dw dy2y2 dV2#.

Upon choosingF(1/y)5122M (y)/y22y, M (y) arbitrary, we have
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dsGK
2 5e2w@~122M /y!dw212 dw dy2y2dV2#. ~29!

The argument above shows that the similarity transformation generated by vectorja]a5(u0

1u)]u1r ] r conformally relates the radiating string atmosphere of metric~1! to a previously
identified family of static string atmospheres,7 i.e.,

Ljgab
GK52e2wgab

static. ~30!

E. Similarity of the second kind

For similarity vectorja]a5(u1u0)]u1r ] r the metric functionA must satisfy

~u01u!Ȧ/A1rA8/A5g21. ~31!

Equation~31! has solution

r 22m~u,r !5r 2~u01u!gh@~u01u!/r #, ~32!

whereh is an arbitrary function andgÞ1.

V. MASS TRANSPORT

The mass functions found by similarity analysis obey certain transport equations. Most
transport equations have the form of the ‘‘telegrapher’’ equation. This can describe dispersi
lossy electromagnetic wave motion.11 Some forms have been interpreted by Kac12 as a random
Poisson process. Mass transport through the atmosphere is affected by the homothetic sym
The transport equations can be constructed from the similarity solutions of Sec. IV.

A. k50 homothety

Differentiation of Eq.~23!, a constraint on the mass function, yields an inhomogeneous w
equation

Ä23Ȧ/u02~r /u0!2¹2A522A/u0
2. ~33!

B. k51 homothety

Recall metric functionA5122m(u,r )/r . One can see directly from Eq.~22! that A
5(c/r ) f (c/r )5F(c/r ) with c5u01u. A, and thusm/r , satisfies a wave equation on the fl
tangents to thev̂av̂b2 r̂ ar̂ b two-spaces. Definingt5 ln(c) andz5 ln(r) we have

A5F~t2z!. ~34!

It is clear thatA, generated by homothetyja]a5(u01u)]u1r ] r , satisfies the wave equation

]2A

]t22
]2A

]z2 50. ~35!

Alternatively, we can find a wave equation on the curved manifold by writing

]F/]u5~1/r !F̂, ]F/]r 52~c/r 2!F̂

whereF̂ is the derivative ofF with respect to its argument. It follows that

Ä5~1/r 2!F9 , ~r 2A8!85~c2/r 2!F9 .

Thus
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Ä2vs
2¹2A50 ~36!

where¹25r 22(]/]r )r 2(]/]r ) andvs5r /c. The wave speed varies withu and r.
If vs were constantv, then Eq.~36! would have the general solution

A~u,r !5
f ~r 2vu!

r
1

g~r 1vu!

r
~37!

in terms of two arbitrary functionsf andg. SubstitutingA5 f /r into ~36! one finds

~v22vs
2! f950.

This reflects ‘‘damped, yet relatively undistorted, progressing wave solutions,’’13 a special case o
the telegrapher’s equation.

For new time coordinatet°u1u05et/t0 and withAtª]A/]t, Eq. ~36! transforms to

Att2At /t02~r /t0!2¹2A50. ~38!

C. k>2 two-surface symmetry

With A5122m(u,r )/r 5c (22k)/kr 21f (c/r k) we can write

A5r 12kH~c/r k!, Hª~c/r k!~22k!/k f .

Differentiation yields

Ä5k2r 123kĤ

and

~r 2A8!85~12k!~22k!r 12kH23k~12k!cr 122kĤ1k2c2Ĥ.

It follows that

~r 2A8!85~12k!~22k!A23~12k!cȦ1c2Ä.

Transforming to a new time coordinateet/t05c5u01ku yields the inhomogeneous wave equ
tion

Att1~223/k!At /t02~r /t0!2¹2A5~121/k!~2/k21!A/t0
2, ~39!

whereAtª]A/]t.

D. Similarity of the second kind

Differentiation of the constraint on metric functionA, Eq. ~31!, yields the homogeneous wav
equation

Ä1vsS g21

r D Ȧ2vs
2¹2A1vs

2S g21

r 2 D ~rA8!50, ~40!

wherevs5r /(u01u) andgÞ1. As above, the wave speed varies withu and r.

VI. DISCUSSION

Similarity is physically important since scaling behavior may offer clues about possible
tionships between macroscopic and microscopic physics~i.e., Ehrenfest’s classical adiabatic in
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variants and quantization rules!. Using scaling, one can model long term behaviors with sin
solutions to the field equations in which only the scaling variable changes as a function of
Self-similar behavior is an important aspect of many evolutionary processes both linea
nonlinear.14 The simplifications of the nonlinear field equations of general relativity are a g
example of the value of similarity methods. In addition, we have seen that the special hom
of fluid two-surfaces can be associated with self-similar behavior in the fluid parameters.

In this paper our primary interest is in the extended Schwarzschild mass functionm(u,r ) and
the related string atmosphere. We applied scaling to the mass in two different ways. Fir
assumed a mass transport and investigated the scaling properties and second, we investig
scaling properties of the metric and from those derived mass transport equations. In the firs
assuming diffusive mass transport with a Boltzmann scaling variable, we developed a new
of diffusive mass functions and the associated family of string atmospheres. In the second c
examined the scaling symmetries of the orthogonal two-surfaces~u,r! and~q,w!. A two-parameter
similarity generator acted separately on the~u,r! two-surface containing the string fluid and th
orthogonal~q,w! two-surface subject to the mass parameter obeying a constraining first
differential equation. The similarity map affects all metric components equally when the pa
eters are both equal to 1. For this case, where the transformation is a homothety for the
space–time, the mass constraint conformally relates a radiating string atmosphere and
atmosphere. Other parameter choices could be made, for example, the choices which remo
dependence from the generator. This time independent mapping acts on the~q,w! two-surface
homothetically while preserving the scale of the~u,r! string two-surface. For all the paramet
choices associated with the scaling action of the generator, a mass transport equation is i
This equation is, in general, the telegrapher’s equation. The telegrapher’s equation and the
sion equation have both macroscopic and microscopic interpretations.12,15,16 The appearance o
both of these mass transport equations in conjunction with the description of a macroscopic
fluid atmosphere is suggestive of the quantum nature of the fundamental string fluid bits
classical continuum fluid describes only the averaged fluid behavior, with the mass tra
equations suggesting the underlying quantum nature of the fluid.
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