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Executive Summary

Triangular prisms for edge-based vector finite element analysis of conformal
antennas
Describes the theory and validation of the new code FEMA_PRISM

A hybridization of finite element and high frequency methods for pattern
prediction of antennas on aircraft structures

This document gives an overview of the finite element codes (FEMA_CYL, FEMA_TETRA and
FEMA_PRISM) and the asymptotic code APATCH. The method of hybridization is discussed
along and measured results are presented for validating this hybridization.

Efficient finite element simulation of Slot antennas using prismatic elements
Describes the performance of the prismatic code for modeling narrow slot antennas and bandpass
radomes consisting of multiple slot and dielectric layers.

Design of planar absorbing layers for domain truncation in FEM applications
Provides the first design criteria for the new uniaxial artificial absorber. These were concluded after
an extensive study and although based on two dimensional numerical computations, the design
trends are expected to hold for three dimensions as well.



EXECUTIVE SUMMARY
Project Goal

The goal of this project is to develop techniques and codes for modeling
antennas and arrays on doubly conformal platforms. Of particular interest
is the integration of the developed antenna software with a high frequency
code for computing the antenna interactions with the substructures. The
development of the high frequency companion code is to be carried out by
DEMACO, Champaign, IL. At U-M, the plan is to first develop a code for
the characterization of antennas on a circular platform. The second year
and subsequent effort will then be devoted on developing a similar code for
printed antennas on doubly curved platforms and its integration with the
companion high frequency code.

Project Status

This report describes most of our activity during the second year of the
ultralow sidelobe project. During the first year we completed and validated
the antenna code for cylindrical platforms. This code, referred to as
FEMA_CYL was written by Leo Kempel as part of his graduate work. By
all measures, this code was a great success and generated accurate results
for scattering and radiation by uncoated and coated patch antennas and
arrays on cylindrical platforms. The theory and validation of this code is
described in the report 031172-2-T. User manuals (reports 031307-1-T
and 031307-2-T) were also written at the end of the first year. The code
FEMA_CYL was also interfaced with APATCH to obtain the results given
in a section of this report.

The emphasis during the past year has been on the development of a finite
element code for the characterization of antennas on doubly curved
platforms. This code, referred to as FEMA_PRISM, embraces several
features which are particularly attractive for printed antenna analysis:

e Employs prismatic elements rather than tetrahedrals. These elements
lead to substantial simplification of the mesh generation task without
compromising geometrical adaptability as was the case with bricks.

e Narrow slot antennas and details in printed elements can be modeled
with great ease.



e Mesh truncation is accomplished with the use of unique artificial
absorbers. Unlike ABCs, artificial absorbers can be applied
conformal to the surface and consequently antennas on doubly
curved platforms can be analyzed with the same ease as those on
planar and cylindrical platforms and without a need to employ a
Green’s function. Recent community emphasis on artificial absorbers
for truncating finite element meshes confirms our early choice to
follow this path.

After 15 months or so under development, the FEMA_PRISM code has
been completed and has been validated for input impedance and radiation
pattern calculations. The list of validations include:

e Eigenvalue computations for material loaded cavities

¢ Rectangular patches on planar and cylindrical platforms
¢ Circular patches on planar and spherical platforms

e Patches on conical surfaces

e Patches on ogival (doubly curved) surfaces

¢ Slot antennas and radomes

The latter validation is based on new measured data collected recently at
the Naval Weapons Center (by R. Sliva and H.T. Wang) for the purpose of
validating the FEMA_PRISM code. The model used for measurement was
specified by the University of Michigan and was manufactured at the Naval
Weapons Center in China, Lake.

As of this moment, FEMA_PRISM is a stand-alone code and can be easily
developed into a user oriented code since it is already interfaced with
automated mesh generation routines. Our plan over the next few months is
as follows:

e Write users manual

e Modify code to employ the new unixial artificial absorber for mesh
truncation

e Modify code to compute equivalent currents on a raised surface (not
necessary conformal to the platform). These set of currents are intended to
facilitate the interface with APATCH



e Complete interface with APATCH.

¢ Develop an improved hybridization of antenna with platform. This is
essential for computing low sidelobe patterns.

e Check and validate improved hybridization with APATCH. This will
involve the computation and integration of physical optics and asymptotic
currents due to antenna radiation

e Improve users interface
¢ Add/Develop mesh generator libraries for additional antenna geometries

¢ Incorporate improved feed modeling (aperture coupled, coax, etc. )
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Abstract

This paper deals with the derivation and validation of edge-based shape func-
tions for the distorted triangular prism. Although the tetrahedron is often
the element of choice for volume tessellation, mesh generation using tetra-
hedra is cumbersome and CPU intensive. On the other hand, the distorted
triangular prism allows for meshes which are unstructured in two dimensions
and structured in the third dimension. This leads to substantial simplifica-
tions in the meshing algorithm and many printed (conformal) antenna and
microwave circuit geometries can be easily tessellated using such a mesh.
The new edge-based shape functions presented in this paper are validated by
computing the eigenvalues of three different cavities (rectangular, cylindrical
and pie-shell). A number of examples are given to illustrate the effective-
ness of the new elements in analyzing conformal antennas on doubly-curved
platforms.



1 Introduction

The brick and tetrahedron are popular elements in finite element analysis of
electromagnetic problems. The first is indeed attractive because of its sim-
plicity in constructing volume meshes whereas the tetrahedron is a highly
adaptable, fail-safe element. It is often the element of choice for three di-
mensional (3D) meshing but requires sophisticated and CPU-intensive mesh-
ing packages. The distorted prism (see Figure 1) is another volume element
which provides a compromise between the adaptibility of the tetrahedron and
the simplicity of the brick. Basically, the distorted prism allows for unstruc-
tured meshing (free-meshing) on a surface and structured meshing in the
third dimension. An approach for growing prismatic meshes is illustrated in
Figure 2 and most volumetric regions in antenna and microwave circuit anal-
ysis can be readily tessellated using such a mesh. As seen, once the surface
mesh at the different surface levels is constructed, the prismatic mesh can be
generated by simply connecting the nodes between the adjacent mesh sur-
faces. This avoids use of CPU-intensive volumetric meshing packages and in
many cases the user/analyst can construct the mesh without even resorting
to a surface meshing package. Examples include printed circuits and anten-
nas on planar platforms. Moreover, because of their triangular cross-section,
the prisms overcome modeling difficulties associated with bricks at corners
formed by planes or edges intersecting at small angles.

A special case of the distorted prism is the right prism which is character-
ized by the right angles formed between the vertical arms and the triangular
faces [1]. The top and bottom faces of the right prism are necessarily parallel
and equal, restricting them to a limited range of applications, namely, ge-
ometries with planar surfaces. In contrast, the distorted triangular prism is
almost as adaptable as the tetrahedron with the exception of cone-tips which
are not likely to occur in printed antenna and microwave circuit configura-
tions.

In this paper, we introduce edge-based basis functions [2]-[4] for the most
general distorted prisms. These prisms have non-parallel triangular faces and
each of their three vertical edges can be arbitrarily oriented. In the following,
we first present the edge-based shape functions and then proceed with the
derivation of the finite element matrix. Eigenvalue computations as well as
antenna analysis results are included and used to validate the new edge-based
basis functions for prismatic elements.
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2 Vector Edge-based Basis functions

Consider the distorted prism shown in Figure 3. The prism’s top and bot-
tom triangular faces are not necessarily parallel to each other and the three
vertical arms are not perpendicular to the triangular faces. On our way to
specifying a set of shape functions for the prism, we proceed with the iden-
tification of a triangular cross-section of the prism which can be uniquely
defined given a point (z,y, 2) interior to the prism. The cross-section con-
tains this point as illustrated in Figure 3. A way to specify the nodes of such
a triangular cross-section is to use the parametric representation

r; =y +s(ri; —rp), 1=1,2,3, (1)

where r; are the nodal position vectors of the triangular cross-section (see
Figure 4(a)) whereas r;; and r; are associated with the top and bottom
triangular faces, respectively, and 0 < s < 1. Thus, for s = 0 r; specify the
nodes of the bottom triangle and for s = 1 r; reduce to the nodes of the top
triangle. Since s assumes values between these two limits, the cross-section
sweeps the entire volume of the prism. Clearly, each (z,y, z) point belongs
to one of the triangles specified by r; and consequently there is a unique
correspondence between s and a given point in the prism’s volume.
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Figure 4: (a) Nodal coordinates, (b) triangular cross-section with the local
coordinates & and 7.

To determine s in terms of (z,y,z), we first note that (1) represents
nine equations with ten unknowns (s and the coordinates of the three nodal
points). Thus, additional equations are needed and these are the equations
defining the plane coinciding with the triangle, viz.

Zi¥iZ = 0,i=1,23 (2)
a b c

z Y z _

—+ 7t Hl =0 (3)

in which the constants a, b, and ¢ correspond to the locations at which the
plane intersects the ,y, and z axes, respectively. Substituting in (2) the
values of z;, y; and z; obtained from (1) yields three equations involving four
unknowns a, 4, ¢ and s. Solving these three linear equations for 1 - 3 and 1
in terms of s and substituting them in (3), we end up with the third order
polynomial

azs® + azs? +a;s+ag=0 (4)

whose real root is the desired value of s. The expressions for the coefficients
a; can be given in closed form in terms of z,y, and z, but are rather lengthy
and bear no significance on the rest of the analysis. Therefore, they have
been omitted but can easily be derived as outlined above. The appropriate
solution of (4) in terms of ag 23 is [5]

as

8=(31+82)_§a_3 (5)
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where

s1 = [r+ (@ +7)3)3 (6)

s3 = [r—(¢®+r?)3]s (7)
1 1

r = —@(alaQ—Baoag)—E(ag/ag)B (8)
1 1

qg = 501—503 (9)

and this completely specifies s in terms of z,y, and z.

We next proceed with the derivation of the basis functions. We choose
to represent the field variation across the triangular cross-section (defined by
s) using the Whitney-1 form [6]. A simple linear variation will be assumed
along the length of the prism. Specifically, the vector basis functions for the
top triangle edges can be expressed as

N1 = d1 ( LQVLg - L3VL2 ) S
Nz = d2 ( L3VL1 — L1VL3 ) S (10)
N3 - d3 ( L1VL2 - LQVLI )S

and correspondingly those for the bottom triangle edges will be

M1 = d1 (L2VL3 - L3VL2 ) (1 - S)
M2 = dg(LgVL] '—L1VL3)(1 —8) (11)
M3 = d3(L1VL2 —-L2VL1)(1 —3).

The subscripts in these expressions identify the edge numbers as shown in
Figure 1 and the distance parameters d; are equal to the side lengths of the
triangular cross-section containing the observation point (see Figure 4(b)).

Also,

1
L1(§,7I) = 1_};16
cos & sin
La&m) = ——&= == (12)
cos o sin a
L3(€7 "7) = h3 2£+ h3 2 77'
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Figure 5: (a) Vector map of N, or M, (b) Vector map of K, (c) Variation of{\)
as a function of x, y, and z.

are the usual two dimensional scalar node-based basis functions [7] for the
same triangle with o; denoting the interior vertex angles and h; being the
node heights from the opposite side. The variables ¢ and n represent the
local coordinates and are illustrated in Figure 4(b). As required with all
edge-based shape functions, N; e €; and M; e é; have unity amplitude on the
1th edge whereas N; 0 é; = M; e¢é; = 0 for ¢+ # j. Their vector character
is depicted in Figure 5(a) and as seen they simply ”curl” around the node
opposite to the edge on which their tangential components become unity.

It remains to define the shape functions for the three vertical edges and
we chose to express these by the linear representations

Kl('fan) = 5(5,77)]41(5,77)
Ko(&n) = 9(&n) L2(é,m) (13)
Ks(&n) = (& n) Ls(€n)-

As before, L; are the node-based shape functions defined in (12) and a pic-
torial description of K; is found in Figure 5(b). Of particular importance
in (13) is the unit vector 0(¢,n). It is a linear weighting of the unit vectors
U1, U9 and 05 associated with the vertical arms (see Figure 5(c)), and is given

S

12



im1 Li(&m) 0
(&) = = (14)
| 2, Li(&m) i |
This particular choice of v is oriented parallel to the side faces of the prism
when evaluated on those surfaces and minimizes tangential field discontinuity

across the side faces. Another choice is

o(€,m) = Vs (15)

which is always pointed normal to the triangular cross-sections of the prism
and ensures tangential field continuity across the top and bottom triangular
faces. Both choices are equally useful. However, while the one in (14) can
be computed using a simple analytical formula, the evaluation of (15) has to
be carried out numerically. Therefore, in terms of accuracy, (14) is a more
efficient and accurate choice for 9.

Contrary to the rectangular brick, tetrahedron and right prism, the edge-
based vector basis functions for the distorted prism do not ensure tangential
field continuity across the faces, nor are they divergenceless. The same is true
for the curvilinear bricks [8] and, in the case of the distorted prism, the field
discontinuity and divergence increase with surface curvature (see Figure 2).
This is certainly an undesirable feature but in most cases (particularly when
sampling at 15 or so points per linear wavelength and the radii of curvature
are greater than a wavelength), the angular deviation of the vertical arms is
quite small. Consequently, for all practical purposes the field discontinuity
and divergence are negligible.

3 Eigenvalue Computation

In this section, we examine the validity of the presented edge-based func-
tions. Specifically, we consider the eigenvalues of three different cavities us-
ing the edge-based distorted prism as the tessellation element. We begin by
first deriving the matrix elements following Galerkin’s testing. The weighted
residuals of the vector wave equation are

N; o (VXxVXE—-EKE)V =0, 1=1,2,3, (16)
/1)
///VM“(VXVXE—ka)dV:O, t=1,2,3, (17)

13



///VKi-(VxVxE—kgE)dvzo, i=1,2,3, (18)

in which IN;, M; and K; comprise the nine edge-based vector basis functions
defined in the previous section and E is the electric field vector.
The matrix equations are generated by introducing the representation

3
E= Z [EiNN,'(I') + E,’MMi(I') + Ez'KKi(I‘)] (19)
1=1
where E;n, Eipr and E;x are the expansion coefficients, and correspond to
the average amplitudes of the field vector at the 7th edge.
Substituting (19) into (16)-(18), and invoking the divergence theorem
yields the element equations

3 3
Z EjN[NNC,'j — k‘ZNNDi]’] + Z EJ'M[NMCU — ngMDij] +

7=1 j=1

3
S E;x[NKCij— KXNKD;j]=0 (20)

=1

3 3
Z EjN[MNC,'j - k‘zMNDij] + ZE]'M[MMC,'J' - k‘ZMMDij] +
J=1 =1
3

E;x[MKCi; — E*MKD;] =0 (21)

7=1
3 3
2 EjN[I{NOij — kgI{NDU] + Z EJM[I{MC” — k‘ZI&,MDU] +
j=1 j=1

3
Y Ex[KKCij —k2KKD;;) =0, 1=1,2,3. (22

where
NNCi = / / /V (V x N;) o (V x N)dV (23)
NMC; = / / /V (V x Ni) o (V x M)dV (24)
NKCiy = / / /V (V x N;) o (V x K)dV (25)

14



MMCy = ///V(v x M;) o (V x M¢)dV (26)

MKCy = ///V(VXM,-)O(VXKg)dV (27)
KKCy = / / /V (V x Ki) o (V x Ko)dV (28)
NND;, = / / /V N; o NodV (29)
NMDi = / / /V N; o MydV (30)
NKDy = / / /V N; o KodV (31)
MMD;, = / / /V M; o M(dV (32)
MKD; = / / /V M; o K(dV (33)
KKD;y = / / /V K; o K.dV. (34)

The above integrals must be evaluated numerically and to integrate over the
volume, the prism is divided into three regions (see Figure 6) of triangular or
quadrilateral cross-section. In the case of the right prism, the integrals have
closed form expressions and are given in the Appendix.

Upon assembly of (20)-(22) and boundary condition enforcement, we ob-
tain the generalized eigenvalue system

[Al{z} = k;[Bl{z} (35)

in which A = k? represent the eigenvalues of the problem. The matrices [A]
and [B] are real, symmetric and sparse ([B] is also positive definite).

Example 1: Rectangular Cavity

The first example is the rectangular cavity shown in Figure 7(a). Results
based on brick, tetrahedron [9] and prism discretizations are given in Fig-
ure 7(b), where they are compared to the exact values. We observe that,
overall, the data based on the prism are better than those based on the brick
and, at least, as good as those associated with the tetrahedron. Figure 7(a)
displays the actual mesh used for both the brick and prism discretizations.
Number of degrees of freedom for the prism, brick and tetrahedron compu-
tations were 382, 270 and 260, respectively.

15



Region 1 (0<z<z,) Region2(z,<z<z,) Region3(z,<z<z,)

Triangular cross-section  Quadrilateral cross-section Triangular cross-section

_______

Figure 6: The three regions of integration over the volume of the distorted prism.
- =-=-- Prism volume, —— integration subregions, —— subregion cross-section.

-1
Mode k, cm % Error

(Exact) | Prism | Brick | Tetra.
TE oy |5.236 | 0.73 | -1.36 | 0.44
1o | 7.025| 2.32 | -2.23 | 0.70
TEq, | 7.531| 0.53 | -2.58 | 1.00
TE 5, | 7.531 | 0.64 | -3.13 | -0.56
™, | 8.179 | 0.22 | -2.09 | 2.29

(b

Figure 7: (a) Rectangular cavity discretized using right triangular prisms,
(b) eigenvalues for the air-filled cavity.
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Figure 8: (a) Circular cavity discretized using right triangular prisms,
(b) eigenvalues for the air-filled cavity

Example 2: Circular Cavity

The tessellation of the circular cavity (drum) is shown in Figure 8(a).
The mesh was constructed by first creating a surface grid of triangles at the
base of the drum. The prisms were then generated by growing the mesh
along the axis of the cylinder. In this case, the resulting volume element is
the right prism and the eigenvalues are given in Figure 8(b) along with the
exact. Except for the higher order mode T E;y;, the remaining eigenvalues
were computed to within three percent of the exact. The number of degrees
of freedom for this computation was 544.

Example 3: Dielectric ring resonator

Figure 9 shows a dielectric ring placed symmetrically inside a cylindrical
cavity and of interest is the computation of the resonance frequency in the
presence of the dielectric ring. The resonance frequency was measured [10)
using a loop antenna connected to a directional coupler as shown and the
cavity was excited by the same loop antenna. Since maximum coupling to
the cavity occurs at resonance, minimum power is returned to the detector
at this frequency. For computation, the cavity was modeled using a mesh

17



Height = 2.2cm
Inner diameter = 7.5cm ( Height = 13.84cm )

k Outer diameter = 11cm /_\ Diameter = 15.24 cm
€r=13.5 v Metal Cavity
Dielectric ring /

Measured = 1282 MHz
Computed = 1257 MHz
( Error = 2 %)

Directional Coupler

Figure 9: Dielectric Ring Resonator

similar to that for the previous example resulting in 1051 degrees of freedom.
The computed frequency was 1257 MHz (based on the smallest eigenvalue)
and this is within 2% of the measured frequency (1282 MHz).

Example 4: Pie-shell Cavity

The fourth example is a pie-shell sector as shown in Figure 10(a). It is ob-
tained by bending the rectangular cavity considered earlier and the resulting
volume element is the distorted prism with a vertical arm angular deviation
of five degrees. The computed and exact eigenvalues for the first five dom-
inant modes are given in Figure 10(b), and these testify to the accuracy of
the distorted prisms in modeling curved geometries. The number of degrees
of freedom involved for this computation was 382.

4 Antenna results

In this section, we will illustrate the effectiveness of the prisms in character-
izing conformal antennas on doubly curved platforms. Figure 11 illustrates
antenna modeling using the finite element method. It also shows how the

18



Mode k,cm'' % Error
(Exact) (Computed)

T™M,;, 4693 1.5

TM,, 6009 128

' TE ,, 6640 | 271 ’

TE 5. 7.513 -0.27 |

TE oy, 7.579 2.73
() (b)

Figure 10: (a) Pie-shell cavity discretized using distorted triangular prisms,
(b) eigenvalues for the air-filled cavity

mesh is terminated using metal-backed absorber. Note that the absorber
works on the principle of matched wave impedances across the interfaces and
therefore different absorber sections must be used to absorb surface waves
supported by diffent superstrates and substrates. Accuracy of this termi-
nation scheme has already been demonstrated for scattering problems [11].
Examples given below establish its efectiveness for radiation problems.

First the surface grid is created. Then the volume mesh is grown along
surface normals as illustrated in Figure 2. Resulting volume element is the
distorted prism. Process of assembling finite element equations is the same
as for the eigenvalue computations since here also the termination boundary
is entirely metallic.

Example 1: Cavity-backed rectangular patch on planar platform

Figure 12 shows a rectangular patch backed by a rectangular cavity re-
cessed in a planar ground plane. Input impedance as a function of frequency
has been computed. It is in excellent agreement with the more regirous finite
element-boundary integral technique(FE-BI). In FE-BI technique, only the
cavity volume is modeled by finite element technique and the mesh is termi-
nated at the cavity aperture using the half-space Green’s function, making
it an accurate technique [12]. Note the dominant mode distribution of the
field under the patch.

19



(a) Cavity-backed antenna

Ebz Es.(l-j2.7) £ Eaz o= 1-j2.7
}lb= ]-_]27
EL i

PEC

(Actual geometry) (FEM Simulation)

(b) Microstrip antenna

S €= o= 1-2.7

c v €p= €5 (12.7)
€5 Up= 142.7

&= £c(1-2.7)
],lb = 1-_]27

(Actual geometry) (FEM Simulation)

Figure 11: Finite element - metal backed absorber technique for antenna modeling
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Input Impedance vs Frequency
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Figure 12: Ractangular patch backed by a rectangular cavity recessed in planar platform,: (a) input

impedance computations, (b) antenna geometry and mesh termination, (c) radiating sides

of the patch.
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Example 2: Cavity-backed circular patch on planar platform

Figure 13 shows a circular patch backed by a circular cavity recessed in a
planar ground plane. Again the input impedance computation is compared
to the FE-BI solution and the disagreement in resonant frequency is about

1%.

Example 3: Microstrip circular patch on sphere

Figure 14 shows a microstrip circular patch placed on a sphere. Here the
input impedance as a function of frequency is computed and compared to
a moment method result [13]. The disagreement in resonance frequency is
1.7%. This is a very good result in terms of the accuracy of the finite element
modeling considering that the referance solution only considers the current
distribution of the dominant mode T'M;; whereas the finite element solution
models the entire physics of the problem.

Note that the field distribution under the patch resembles the one for the
cavity-backed pacth on planar platform implying that the surface curvature
causes little difference in the field structure. Hoever, as will be illustrated
later, the curvature does change the resonance frequency.

Example 4: Microstrip sectoral patch on cone

Having established the acccuracy of the new technique, we have chosen
this example to illustrate the capabilities of the new technique as an analysis
tool for characterizing conformal antennas on doubly curved polatforms. Fig-
ure 15 shows a microstrip sectoral patch placed on a cone. Input impedance
as a function of frequency is computed. The predicted resonance frequency
is 3.115 GHz. Cavity model predicts 3.214 GHz. Finite element result is the
more reliable one as the cavity model is a simplistic one.

Note that the field distribution under the patch is different from the rect-
angular patch case given in Example 1. This is because two radiating edges
are not of the same length.

Example 5: Cavity-backed rectangular patch on ogive

This is another display of capability of the new technique to model an-
tennas on doubly-curved platforms. Figure 16 shows the set-up, where a
rectangular patch is placed on the aperture of a rectangular cavity recessed
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in an ogival ground plane. Antenna region has been again modeled as in
Example 1. Upon obtaining the tangential electric fields on the cavity aper-
ture, cavity aperture is sealed with metal and equivalent magnetic currents
(M = FE x n) are placed where the cavity aperture used to be. To pro-
duce the results given in Figure 16¢c, physical Optics approximation has been
used, i.e., the magnetic currents have been doubled in strength and allowed
to radiate in free-space. Computed radiated power is plotted against the
measured data [14]. For f-polarization, agreement is good. However, for ¢-
polarization, the computed pattern follows the same trend as the measured
pattern but with substential disagreement. This is not surprising since we
have not properly accounted for the platform interactions when radiating
currents. Results also point out that #-polarized radiation is not as sensitive
to the shape of the platform as the ¢-polarization. To improve especially
the ¢-polarization results, true shape of the platform must be taken into
consideration when radiating magnetic currents. This can be accomplished
in two ways: In addition to the direct radiation from the antenna, one must
also consider creeping waves which radiate while creeping on the surface of
the body. Another way is to use high frequency codes such as APATCH to
include platform interactions [15].

Example 6: Effect of curvature on the resonant frequency of patch anten-
nas

One of the most important design parameters of antennas is the resonance
frequency. For patch antennas, resonance frequency, to large extent, depends
on the dimensions of the patch. However, it also depends on the curvature of
the patch surface. Figure 17 shows the shift in the resonance frequency as a
function of the platform curvature for rectangular as well as circular patches.
It is shown that the shift in the resonance frequency is larger when the patch
is curved such that the radiating sides get closer to each other.

5 Conclusions

The distorted prism is an indispensable tool for the analysis of many doubly
curved antenna and microwave geometries. It provides simple volume mesh-
ing without compromising accuracy (see the comparison with the tetrahe-
dron in Figure 7(b)). In this paper, we introduced a set of edge-based shape
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functions for the distorted prism and used them to generate the element
equations. For validation purposes, the eigenvalues of three different cavities
(rectangular, cylindrical and pie-shell) were computed and compared to the
exact solutions. In almost all cases, the error was less than three percent.
Validation has also been carried out for a number of antenna configurations.
Eigenvalue and antenna computations together leave no doubt about the ef-
fectiveness of the prisms. Results pertaining to antennas on conic and ogival
surfaces have been included in order to illustrate the capabilities of the new
technique to model antennas on doubly-curved platforms.

Appendix

For the right prism, closed form expressions of the integrals in (23)-(34) are
possible. Referring to Figure Al, we have
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c;)lj},iin Xem + _g E%% stnfik $infmn )
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ol b s g
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E'MMC,‘@ = ENNCM
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1 Abstract

This paper considers the hybridization of the finite element and high
frequency methods for predicting the radiation pattern of printed
antennas mounted on aircraft platforms. The finite element method
is used to model the cavity-backed antennas whereas the interac-
tions between the radiators and the substructures are treated via a
high frequency technique such as the GTD, PO/PTD or SBR. We

present comparisons between measurements and calculations along
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with a qualitative description of the employed finite element and
high frequency codes.

2 Introduction

Placing antennas on aircraft inevitably introduces distortion (of-
ten significant distortion) in the resulting radiation pattern. This
distortion has-important implications both for on-board communi-
cations and remote sensing systems. For example, once the antenna
is mounted, one may not get the desired coverage for effective com-
munications. In the case of a radar antenna, pattern side lobes may
be generated which reduce capability for isolating and locating tar-
gets (see Figure 1). An accurate prediction capability for pattern
distortion is thus of high value to system designs. This application
is also part of a wider class of military and commercial problems
involving antennas mounted on any type of scattering platform, in-
cluding satellites, buildings, and ground vehicles.

One aspect of pattern prediction common to all of the above appli-
cations is the requirement for a characterization of fine geometrical
details in the presence of large structures. At the small scale, sim-
ulating the behavior of the antenna is best done using a rigorous
technique such as the finite element method (FEM) [1]-[6] or the
method of moments (MOM) [7]-[9]. This may include features of
the geometry immediately surrounding the antenna to predict load-
‘ing, which will affect both the antenna current distribution and the
terminal impedance. At the large scale, the platform on which the
antenna is mounted often spans tens or hundreds of wavelengths in
all three dimensions. It is not therefore computationally practical
to apply rigorous methods to such large scatterers. Instead, one can
use a high- frequency technique which takes advantage of the large
scale geometry. Methodologies in this category include geometrical
optics (GO) with geometrical theory of diffraction (GTD) [10] and
physical optics (PO) with physical theory of diffraction (PTD) [11].
A total solution to the platform mounted antenna thus calls for a hy-
brid approach, one that uses both low-frequency and high-frequency
methods.
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This paper presents a straight-forward hybridization of the FEM and
two high-frequency codes, one based on uniform theory of diffraction
(UTD) and one based on PO and the shooting and bouncing rays
(SBR) [12], SBR being a multiple bounce implementation of PO.
The FEM code analyzes the antenna in the absence of large-scale
structures such as wings, fins, engines, or surface details. The com-
puted pattern or aperture currents for the "free-space” antenna are
then used as the source(s) for the high-frequency code. The high-
frequency code radiates these sources in the presence of the aircraft
to produce the overall radiation pattern. In the following sections,
we first give a qualitative description of the particular FEM, UTD,
and SBR codes employed as well as the major features of those
methodologies. We then present details of the hybridization pro-
cedure. Finally, the effectiveness of this hybridization is evaluated
by comparing results of analysis with measurements for a patch an-
tenna radiating on a finite cylinder (i.e., a fuselage) in the presence
of an attached flat plate (i.e., a wing), as shown in Figure 2.

3 Finite Element Code Description

Several finite element codes have been developed at the Univ. of
Michigan for the analysis and design of printed antenna configura--
tions. Typically, the printed antenna configuration is assumed to
be recessed in some metallic or coated platform and the various
codes differ in the element used for the tessellation of the antenna,
the type of platform assumed in the analysis (planar, cylindrical or
doubly curved) and the closure condition employed for terminating
the finite element mesh as illustrated in Figure 3 (cylindrical and
doubly curved platform). The following codes are available for an-
tenna radiation and scattering analysis.

In all of the above codes, the FEM is used to model the cavity region
and the boundary integral or absorbing boundary conditions (ABC)

or artificial absorbers are employed for truncating the mesh.

FEMA-CYL: Code employs cylindrical shell elements (see Fig-
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ure 4) and is therefore best suited for cavity-backed rectangular
patch antennas recessed in metallic or coated cylindrical platforms(see
Figure 3). Its main advantage is simplicity of mesh generation done
automatically and quickly after the specification of the few geomet-
rical parameters.

FEMA-PRISM: Code employs distorted prisms for modeling the
computational domain. As a result, doubly curved platforms (see
Figure 5) can be simulated without much difficulty in creating the
volume mesh. Once the mesh is created on the surface of the in-
terface containing the patches, the volume mesh can be generated
by growing the prismatic elements above and below the surface of
the printed antenna. Any patch shape can be modeled using prisms
since the faces of the prismatic elements bordering the patches are
triangles. The mesh is terminated using artificial absorbers.

FEMA-TETRA: Code employs the more general tetrahedral el-
ements for modeling the cavity volume (see Figure 6). Use of this
element makes the code adaptable to any antenna geometry recessed
in a cavity residing in planar platforms. However, this necessitates
use of sophisticated finite element mesh generation packages such as

SDRC I-DEAS and PATRAN [13]-[14].

The theoretical background of FEMA-CYL is described in [15] and
[16], and the code has been validated for antenna and scattering
applications. An example calculation is illustrated in Figure 7. The
measured data given in Figure 7 were obtained at NASA-Langley
[17] with the patch antenna placed on the cylindrical section of the
ogive+cylinder structure as illustrated in the Figure. For this cal-
culation, the cylinder Green’s function of the second kind was em-
ployed for truncating the finite element mesh to generate a combined
finite element-boundary integral system. The latter is solved using
the biconjugate gradient [18] or QMR [19],[20] iterative solver and
the FFT is used to speed-up the matrix-vector product evaluation
in the solver [21]. Consequently, in spite of the fact that the bound-
ary integral matrix is fully populated, the code’s computational and
memory requirements remain at O(N). The system solution gener-
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ates the fields within and on the surface of the antenna cavity.

In all codes, for the radiation and scattering pattern calculations
only the surface electric fields are used to generate equivalent mag-
netic currents. These are subsequently substituted in the radiation
integral with the appropriate platform Green’s function to gener-
ate the antenna parameters. For antenna excitation, a probe or a
coaxial cable feed model is employed and in the case of scattering
the excitation becomes the aperture fields due to the incoming field.
When a probe feed model is used, the input impedance is the line
integral of the electric field along the length of the probe divided
by the magnitude of the probe current. When a coaxial feed is em-
ployed, the excitation is introduced by setting the fields coinciding
with the edge elements bordering the opening of the coax cable equal
to AV/AL, where AV is the given potential between the outer and
inner surface of the cable and AL = b— a, where b and a correspond
to the outer and inner radius of the cable, respectively. The center
conductor is modeled by setting to zero the field unknowns that are
associated with the edges coinciding with the conductor. The im-
proved results of this feed modeling approach are shown in Figure 8
and the details of the modeling are described in [22].

The codes can be used to include the effect of superstrate materials
(see Figure 3) which may extend over the antenna platform. To
avoid use of complicated Green’s functions, in this case the mesh is
extended a fraction of a wavelength over the cavity’s aperture and
an absorbing boundary condition (ABC) or an artificial absorber
is employed for truncating the FEM mesh [11]. With this type of
mesh truncation, the entire system is sparse and thus the memory
and CPU requirement are again O(N) without a need to make use of
the FFT. We have found that placement of the mesh at a distance of
0.3 wavelengths away from the coatings surface is sufficient to model
the antenna with reasonable accuracy as illustrated in Figure 7(b)
and in Figure 9. The data in the latter were obtained using FEMA-
PRISM and the data in the former was computed by introducing
equivalent electric and magnetic currents placed at the surface of
the dielectric coating.
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Results generated by using the FEM codes refered to above will not,
of course, include effects due to interactions between the antenna
and the substructures residing on the same platform. To include
these, the FEM codes are interfaced with the high frequency analy-
sis packages described next.

4 High Frequency Code Descriptions
GTD/UTD Code: The hybridization of GTD and low frequency

codes such as the moment method were considered in the early 1980s
[23],[24] for scattering and antenna radiation analysis. Typically, the
GTD was employed to account for diffraction contributions from
edges and corners near the radiating elements and a review of some
of this work was given more recently in [25]. In the case of scat-
tering, hybrid GTD and moment method codes have been used to
model small details on larger structures. Specific applications in-
clude uses of the moment method to model a small wire or a crack
in the presence of a large platform which is associated with sev-
eral scattering centers caused by geometrical optics reflections and
diffractions from edges and corners. For the most part these hybrid
codes have been restricted to specialized implementations where the
scattering substructure is hard-wired into the code and is charac-
terized by a few scattering centers. Also, for radiation analysis,
available GTD codes have been restricted to include a small class of
antenna elements such as narrow slots, monopoles and infinitesimal
current elements.

A well developed UTD code, referred to as NEC-BSC was developed
by Marhefka and Burnside [26] at the Ohio State University and was
used in conjunction with the FEM codes for printed antenna pattern
calculations on simple aircraft platforms. The UTD code computes
the interactions between current elements and the aircraft substruc-
ture using ray diffraction methods. In the employed UTD code the
fuselage is modeled as a truncated cylinder or an ellipsoid and the
attached wing and fins are modeled as combination of flat plates.
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The overall radiation pattern of the specified current element is then
computed by adding the direct. geometrical optics, and diffraction
(including surface waves) contribution from all possible primary and
secondary sources which arrive at the observer. Shadowing is also
performed as part of the pattern calculation. In our implementation,
the UTD code is supplied with the location and amplitude of the
magnetic surface current elements as computed by the FEM code
in the absence of the fuselage appendages. Consequently, these cur-
rents include all coupling effects internal to the antenna cavity and
among the antenna elements. However, they do not include cou-
pling effects due to substructure contributions which return back
to the antenna aperture. One way to include these effects is by
re-executing the FEM code with the secondary external diffraction
contribution as part of the excitation in addition to the feed. Al-
ternatively, reciprocity can be used to first compute the secondary
fields arriving at the antenna aperture due to plane wave incidence
before executing the FEM code.

APATCH Code: This code, developed at DEMACQO, Inc., com-
putes the radiation pattern of antennas mounted on electrically large
scattering platforms. Like its predecessor RCS code, XPATCH [27]-
[28], APATCH uses 3-D ray tracing on CAD models composed of
triangular facets to implement a PO/SBR [29] scattering solution.
There are several important differences between this approach and
a GO/GTD approach, which can be explained with the aid of Fig-
ure 10. First, the PO/SBR approach in APATCH starts by adding
‘the incident field at all observation points, whether blocked from
the source or not, and then adding the computed scattered field
to produce the total field, which is the net radiation pattern. In
GO/GTD, the observed fields start at zero and only receive a direct
contribution from the source if the path is unblocked. To rephrase
it, APATCH generates field shadowing and specular reinforcement
through wave interference, whereas GO/GTD generates these effects
through ray optics. Second, in the PO/SBR approach, many rays
are launched in all directions, and each ray contributes to each ob-
servation point by integrating the ray tube fields at the surface of the
scatterer. The ray trace is independent of the observation points. In
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GO/GTD, ray paths are found which directly or indirectly link the
source to each observation point according to the rules of specular
reflection and Keller cone diffraction. Hence, only a handful of rays
comprise the computed field at each observation point. The prac-
tical consequence of this difference is that GO/GTD gives better
solutions for geometries involving several canonical shapes, and will
compute those solutions relatively quickly. The PO/SBR approach
is better suited for complex scattering geometries described in CAD
files and not readily or accurately reducible to canonical shapes and
has correspondingly longer run times.

Figure 10 provides a 2-D illustration of the differences between
GO/GTD and PO/SBR for a point source and two observation
points in the presence of a curved surface and a plate. In the
GO/GTD formulation, only observation point # 1 gets a direct
contribution; observation point # 2 is blocked. However, both ob-
servation points get a reflection contribution. For clarity, we leave
out of the figure possible multi-bounce contributions between the
curved surface and the plate, as well as GTD contributions from
the two edges of the plate. In the PO/SBR formulation, the in-
cident field is added at both observation points. Although many
rays would be launched and traced until they escaped, only one is
shown in Figure 10. The dashed tracks labelled PO and SBR indi--
cate field/Green’s function convolution integrals over the scattering
surface and evaluated at the observation points. Note how the PO
contribution from the first bounce interferes with the incident field
at observation point # 2 to produce partial cancellation.

The first bounce contribution in APATCH is a PO computation. A
test ray is launched from the center of each facet back toward the
point source. If the ray path to the source is not blocked by other
surfaces, then the facet is directly illuminated, and the PO fields
are integrated to yield the scattered field. Otherwise, the facet is
shadowed, and no first bounce contribution is computed. Facets
which are electrically large are first systematically subdivided into
sub-facets, as shown in Figure 11. This addresses the problem of
partially illuminated facets. Also, by setting the maximum sub-
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facet size to a fraction of a wavelength (i.e. A/3), one can assume,
for the purposes of far-field scattering, that the incident field local
to each sub-facet is constant in magnitude and linear in phase. In
this way, APATCH achieves a uniform first bounce ray density over
the surface of the scatterer. Multiple bounce contributions are com-
puted in APATCH using SBR. This part of the solution starts by
launching ray tubes in the specular reflection direction from each il-
luminated sub-facet. In Figure 11, the shadowed sub-facets from the
first bounce blockage check are blackened. Each ray is then traced,
with specular reflection at each bounce surface, until either it has es-
caped or it has reached a set bounce limit, say 10 bounces. The ray
tubes diverge spatially as they propagate and the ray tube fields are
updated according to the Fresnel reflection coeflicients of the surface.
These coeflicients are in turn based on the material properties of the
surface coatings. At each bounce point, the ray tube is projected
on to the surface and the tube fields are analytically integrated over
this surface with free-space Green’s function for evaluation at all
observation points. The APATCH code accepts as input either the
antenna aperture magnetic current elements computed by the FEM
code or the corresponding far-field radiation pattern. The former is
more accurate, while the latter is less computationally expensive and
may be adequate if the major scattering fixtures are sufficiently far
away. If the source information is given by the magnetic currents,
the code generates rays with a short-dipole weighting. Further, scat-
tering surfaces near these sources will be illuminated according to
the near field representation of the short dipoles, including radial
components of the dipole field. Each current source is treated indi-
vidually according to superposition, and it is therefore appropriate
to group nearby sources for CPU time reduction. An example of an-
tenna analysis by APATCH is illustrated in Figure 12, which shows
a Cassegrain antenna with a rectangular guide feed. Each reflec-
tor consists of 3600 facets treated as perfect electrical conductors.
The rectangular guide is not part of the CAD model. Rather, a
vertically polarized parametric cosf source is placed at the mouth
of the feed with its main beam in the x-direction and no radiation
in the z < 0 half-space. The setting for power q in the parametric
pattern is 11.7 in both the E- and H-planes. In the first bounce
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blockage check, APATCH attempts 20,252 sub-facets and finds that
11,880 are blocked. These are the sub-facets on the Cassegrain pri-
mary reflector, which is not directly illuminated. Of these, 8,372
rays go on to illuminate the secondary reflector. For this problem.
the multi-bounce contribution is essential since that is the mech-
anism for including the effect of the primary reflector. The 8,372
rays incident rays reflect off the secondary, and all but 512 of these
rays go on to hit the primary. The ray tubes projected onto the
primary and secondary reflectors are integrated for all observation
angles and added to the free-space incident field from the feed to
give the radiation pattern of the Cassegrain antenna. A comparison
of Apatch PO/SBR results with measurement is given in Figure 13.

5 Comparison of Measurements and Calculations

To examine the effectiveness of the proposed hybridization of fi-
nite element and high frequency codes, the cylinder+wing structure
shown in Figure 2 was constructed by Naval Air Warfare Center
Weapons Division (China Lake, CA)? and the University of Michi-
gan. The patch antenna geometry is shown in Figure 14 and was
placed on the cylinder’s surface at o = 28.7°, 45°, and 90° (see
Figure 2). The radiation patterns of the patch antenna in the pres-
ence of the wing were obtained at the facilities of Mission Research
Corporation (Dayton, Ohio) and are shown in Figure 15. It is seen
that the patterns at o = 28.7° and a = 45° are affected quite
substantially by the presence of the plate since the plate is visible
to the antenna. However, when the patch is on the cylinder’s top
(a = 90°), the plate’s effect diminishes and the overall pattern is
nearly identical to that in the absence of the plate.

The computations for the configuration in Figure 2 were done by
first using the FEM code to obtain the surface electric fields over
the non-metallic portion of the aperture housing the patch. These
were then grouped in patches of 3x3 pixels in size and turned into
equivalent magnetic current infinitesimal dipoles whose stength was
set equal to (M, + ¢My)a é¢ 6z, where M, and M, are the surface

2R. Sliva and H. Wang provided the original cylinder model with the antenna cavities.
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current densities over the pixel and a 8¢ 6z is its area. The calcu-
lated radiation patterns for the case where a = 45° are shown in
Figure 16 and seen to be in good agreement with measurements. In
particular, the pattern based on the UTD code is in better agree-
ment with the measured data in the shadow region (below the plate)
but both high frequency codes give nearly identical results in the lit
region. This is primarily because APATCH employs the less accu-
rate PO integration to obtain the fields in the shadow region below
the plate. In contrast, the UTD code uses geometrical optics and
diffraction theory which is known to be more accurate for flat plates
with straight edges. This better performance of the UTD code is
even more pronounced when the patch antenna is brought closer to
the plate’s surface as shown in Figure 17. Clearly, this is due to the
proximity of the patch to the plate’s surface (about 1), resulting in
stronger secondary currents on the plate’s surface and thus the PO
approximation is no longer accurate. The UTD pattern is in good
agreement with the measured data except near the shadow bound-
ary associated with the plate because the UTD diffracted fields ac-
count for the curvature of the near-zone antenna field. For practical
aircraft configurations, the antenna will be placed at far distances
from the wing and in that case the APATCH code is more attrac-

“tive because of its geometrical adaptability and capability to handle
materials in the context of the PO approximation.

6 Conclusions

We presented a rather simple hybridization of finite element and
high frequency codes for antenna pattern calculations in the pres-
ence of a complex structure such as an aircraft. Basically, the fi-
nite element code was employed to generate the aperture fields on
the antennas surface and these were then turned into equivalent
magnetic currents. These currents were subsequently used as the
sources to the high frequency codes and the antenna pattern was
calculated as the sum of the direct antenna radiation pattern and
that generated by ray interactions with the substructure. The ac-
curacy of this procedure was verified by comparing the calculated
results with measured data. Since the measured set-up consisted of
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canonical components, the hybridization with the UTD code leads
to more accurate results in the shadow region. However, for general
airframe configurations, the hybridization with the APATCH code
which combines the PO, PTD and SBR methods is more attractive
due to its geometrical adaptability and capability to handle material
coatings.

Although we did not consider antenna loading effects due to the
substructure re-radiation, this can be easily incorporated into the
analysis by executing the finite element code in the presence of the
antenna feed excitation and the secondary excitation arriving at the
antenna aperture after undergoing reflection and/or diffraction.
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Efficient Finite Element Simulation of
Slot Antennas Using Prismatic Elements

Jian Gong} John L. Volakis* and H.T.G. Wang!

Abstract

A hybrid finite element — boundary integral (FE-BI) simulation
technique is discussed to treat narrow slot antennas etched on a planar
platform. Specifically, the prismatic elements are used to reduce the
redundant sampling rates and ease the mesh generation process. Nu-
merical results for an antenna slot and frequency selective surfaces are
presented to demonstrate the validity and capability of the technique.

1 Introduction

It has been reported that a hybrid finite element—boundary integral tech-
nique [Jin, et. al. 1991, Silvester and Pelosi (1994)] can be employed for
characterizing conformal antennas of arbitrary shape [Gong, et. al. (1994)).
Indeed, planar/non-planar, rectangular/non-rectangular designs, ring slot
or spiral slot antennas with probe, coax cable or microstrip line feeds can be
simulated with this formulation. This is because of the geometrical adapt-
ability of tetrahedral elements used for the implementation. However, in
practice, certain configurations require extremely high sampling rates due
to the presence of fine geometrical details. Among them are a variety of
slot antennas (spirals, rings, slot spirals, cross slots, log—periodic slots, etc.),
where the slot width is much smaller than the other dimensions (cavity di-
ameter or inter—distance of slots). In these cases, the mesh is extremely
dense (with over 50, 100 or even higher samples per wavelength), whereas
typical discretizations involve only 10-20 elements per wavelength. This

*Jian Gong and John L. Volakis are with the radiation laboratory, University of Michi-
gan, Ann Arbor, MI 48109-2122.
'H.T.G. Wang is with the Naval Air Warfare Center, China Lake, CA 93555.
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dense sampling rate is especially severe for 3-D tetrahedral meshes, where
the geometrical details usually distort the tetrahedrals. The numerical sys-
tem assembled from this type of mesh often leads to large system conditions
due to the degraded mesh quality. Also, mesh generation is tedious and the
solution CPU time is unacceptably large.

In this paper, we propose a finite element-boundary integral formula-
tion using edge-based triangular prism elements. It can be shown that this
element choice is ideally suited for planar antenna configurations, including
spirals, circular and triangular slots. Among the many advantages of the
prismatic elements, the most important is the simplicity of mesh generation.
Also, much smaller number of unknowns is required for an accurate and ef-
ficient modeling of complex geometries. Below, we begin by first outlining
the finite element-boundary integral (FE-BI) formulation for slot antenna
modeling. A new, physically meaningful, set of edge-based functions for
prisms is then presented to generate the discrete system of equations. The
final section of the paper gives results for antenna radiation and transmission
through frequency selective surfaces. Comparisons with reference and mea-
sured data are given and the efficiency of the implementation is discussed.

2 Formulation

Consider the cavity-backed slot antenna shown in Fig. 1 where the cavity
is recessed in a ground plane. To solve for the E-field inside and on the
aperture of the cavity, a standard approach is to extremize the functional

F(E) = %//V{(VXE)-E“I-(VxE)—kg?E-E}dV
+ ///"E-(jkozoJ,-+vXﬁ'1-M,-)dV

+ jkOZo// E.(H x #)dS 1)
So+Sf

where € and 7@ denote the relative tensor constitutive parameters of the cavity
medium, Zy and kg are the free space impedance and propagation constant,
respectively, So represents the aperture excluding the metallic portions and
St denotes the junction opening to the guided feeding structures. Also,
V, is the volume occupied by the source(s) and H is the corresponding
magnetic field on Sp and Sy whose outer normal is given by #. The explicit
knowledge of H in (1) is required over the surface So and Sy (referred to
as mesh truncation surfaces) for a unique solution of E. Specifically, the
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Figure 1: Geometry of cavity—-backed microstrip antennas

magnetic field H over Sy may be replaced in terms of E via a boundary
integral (BI) or absorbing boundary condition (ABC), whereas H on Sy is
determined on the basis of the given feeding structure. In this paper, we will
employ the boundary integral method [Jin, et. al., 1991] for truncating the
mesh, a technique commonly referred to as the finite element — boundary
integral (FE-BI) method. In the context of the FE-BI, H is represented by
the integral

H=H+ //So [2 x E(r)] - G(r,1') ds/, (2)

where G is the electric dyadic Green’s function of the second kind [Tai
(1994)] such that # X (V x G) = 0 is satisfied on the (planar, spherical
or cylindrical) metallic platform. For the antenna problem shown in Fig. 1
where the platform is a planar ground plane, G becomes the half space
dyadic Green’s function

—jko |r—r'|
) ©

- ) -1
G = 2]’CQYO (I + —VV m,

kg

with r and r’ being the observation and integration points, respectively, and
I = 2% 4 99 + 2% is the unit dyad. In connection with our problem, i.e.
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that of a cavity recessed in a ground plane, H is equal to the sum of the
incident and reflected fields for scattering computations, or zero for antenna
parameter evaluations.

To discretize the functional (1), we choose to subdivide the volume region
using prismatic elements as shown in Fig. 2 and Fig. 3, The field in each
of the prisms can be approximated using the linear edge-based expansion
[Nedelec (1980), Webb (1993), Bossavit (1989)]

B = 30 BV = [VIT(E°), (4)
Jj=1

where [V]. = [{Vi}, {Vy}, {V2}], and {E®} = {E§, ES,...,E$}T. The vec-
tors {V,},u = z,y, 2, are of dimension m = 9 and they simply represent the
z,y,z components of V§ associated with the jth edge of the eth element.
Since V7 are chosen to be edge-based functions, the unknown coefficients
E? represent the average field along the jth edge of the eth element. A
corresponding representation for the aperture fields is

3
E(r) = ) E;Si(r) = [SI;{E°}, (5)

i=1

where [S], = [Sz,5y], and V(r) reduces to S°(r) when the position vector
is on the slot.

To generate the discrete system for E¥, (4) and (5) are substituted into
(1) and subsequently F(E) is differentiated with respect to each unknown
Ef. With the understanding that the surface field coefficients E are a
subset of Ef, we obtain

oFy Ny N, Ny N,
{ 9E* } = LIAHEY+ D [BHEY + ) (K} + ) (L} =0 (6)

e=1 e=1

where the sums are over the total number of volume or surface elements. In
this, the matrix elements are given by

e = [ff, {iDVider oV - BV a0 ()

Jia: Mi
Jiy ¢+ x 7'y Miy 7| dv (8)

w0 = fff s
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Figure 2: Illustration of tessellation using prisms
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where {L,} is removed in case of radiation problems and the same holds for
{K.} when the scattering problem is considered.

{Ls}

3 Edge-Based Elements

Consider the right angled prism shown in Fig. 3 whose vertical (z—-directed)
sides are parallel (right-angled prism). The height of the prism and the
triangle area will be designated as

L
h=¢- -2X(r-r;), Se=§‘é;-2><(r—r,') (12)

where r; denotes the location of the ith node, é; is the unit vector along
the ith triangular edge, l; denotes the length of this edge and r is any
position vector terminated inside the triangle. One way to obtain an edge-
based field representation for the prism is to utilize the nodal basis functions
[Zienkiewicz (1989)] and then apply the procedure discussed in [Nedelec
(1980), Bossavit and Mayergoyz (1989)]. However, an alternative and more
physically meaningful approach can be employed for the construction of the
edge elements. Referring to Fig. 2, it is evident that if r is in the x—y plane,
then S, in (12) gives the area of another triangle 12’3’ such that the lengths
of edges joining the nodes 2 — 3 and 2’ — 3’ are equal. With this definition
of r, the vector

l;
25

Si= —%x(r—r;) (13)
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has a magnitude which is equal to the ratio of the areas of the triangle 12’3
to that of 123. We observe that (13) is simply the edge-based expansion
for the triangular elements [Rao, et. al. (1982)] and is the appropriate
expansion to be used in (5). The corresponding volumetric basis functions
can be obtained by inspection, viz.

V; =(i?—zAi)si i=1,2,3

v, =EF8z=e 45 (14)
Az

Vi =3 k=789

where (i is the triangle simplex coordinate associated with the kth prism
vertex at (zk, yk). As illustrated in Fig. 3, z. and A = Az represent the offset
coordinate and the prism height, respectively. When (14) are substituted
into (7), the resulting integrals can be evaluated in closed form as given in
the Appendix. However, the integrals resulting from the substitution of (13)
into (10) must be carried out numerically, except the self—cells which must
be performed analytically as discussed by Wilton (1981).

4 Applications

Radiation and scattering by an Annular Slot: To evaluate the ac-
curacy and efficiency of the prismatic mesh and the aforementioned imple-
mentation, we first consider the analysis of the narrow annular slot (0.75cm
wide) shown in Fig. 4. The slot is backed by a metallic circular cavity 24.7
cm in diameter and 3 cm deep. The FE-BI method is quite attractive for
this geometry because the slot is very narrow and most of the computational
requirements are shifted on the finite element portion of the system. The
calculation shown in Fig. 5 were carried out using the prismatic and tetra-
hedral elements [Gong, et. al. (1994)]. As seen, they overlay each other.
However, only 1024 prisms were needed for modeling the cavity, whereas
the number of the tetrahedral elements for this homogeneously filled cavity
were 2898 for acceptable element distortion. If a multi-layered structure was
considered, or a similar system condition was used as a criterion for mesh
generation, then much more tetrahedrals than prisms would be needed for
modeling such a structure. Moreover, the prismatic mesh is trivially gen-
erated given the slot outline. In contrast, substantial time investment is
required for generating and post—processing the tetrahedral mesh.
Frequency Selective Surfaces (FSS): FSS structures [Pelton and
Munk (1979), Mittra et.al. (1988)] are arrays of tightly packed periodic
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Figure 5: Scattering: Bistatic (co-pol) RCS patterns computed using the
tetrahedral FE-BI code and the prismatic FE-BI code. The normally in-
cident plane wave is polarized along the ¢ = 0 plane and the observation
cut is perpendicular to that plane. Radiation: X-pol and Co-pol radiation
patterns in the ¢ = 0 plane from the annular slot antenna shown in figure 4.
The solid lines are computed using the tetrahedral FE-BI code whereas the
dotted lines are computed using the prismatic FE-BI code. The excitation

probe is placed at the point (y=0) marked in figure 4.
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elements which are typically sandwiched between dielectric layers. The pe-
riodic elements may be of printed form or slot configurations designed to
resonate at specific frequencies. As such, they are penetrable around the
element resonances and become completely reflecting at other frequencies.
To meet bandwidth design specifications, stacked element arrays may be
used in conjunction with dielectric layer loading.

Here we shall consider the analysis of FSS structures (with slot elements)
via the FE-BI method. Because of the fine geometrical detail associated
with the FSS surface, the finite element method has yet to be applied for the
characterization of FSS structures, but use of prismatic elements makes this
a much easier task. Of particular interest in F'SS design is the determination
of the transmission coefficient as a function of frequency, and since the array
is periodic, it suffices to consider a single cell of the FSS. For computing the
transmission coefficient T', the periodic cell is placed in a cavity as shown
in Fig. 6 and the structure is excited by a plane wave impinging at normal
incidence. Assuming that near resonance the wave transmitted through the
FSS screen will retain its TEM character, the transmission line concept can
be used to find the scattered field

3 aT?
“1-aR

where T is the transmission coefficient of the FSS, R =1 — T and « is the
reflection coefficient associated with the cavity base. To reduce the multiple
interactions within the cavity, it is appropriate to terminate the cavity with
some absorber, thus reducing the value of & to less than 0.1. Then, since R
is also small near resonance, a good approximation for T is

ES

s

T\ = 10log ‘%

and upon considering the next higher order cavity interactions, we have
Tup ~ Tg + 10log [1 - o(1 - TO)] .

A more direct and traditional computation of T;p would involve the place-
ment of the FSS element in a thick slot [Jin and Volakis (1991)]. However,
this requires enforcement of the boundary integral over the entire lower
surface of the slot, leading to a much more computationally intensive imple-
mentation.

The above FSS modeling approach was applied for a characterization
of single layer and multi-layer FSS structures. In both cases, the periodic
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Figure 6: Illustration of the setup for computing the FSS transmission co-
efficient Upper figure: periodic element (top view); Lower figure: periodic
element in cavity (cross-sectional view)
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Figure 7: Calculations and comparisons of transmission through the FSS
structure shown in Fig. 6

element was a slot configuration. The geometry of the single layer periodic
element is shown in Fig. 6 and consists of a planar slot array on a dielectric
layer 0.0762 cm thick and having ¢, = 4.5. The FE-BI calculation using
prismatic elements is given in Fig. 7. Clearly, our calculations are in good
agreement with the measurements and data based on the more traditional
PMM approach [Berrie (1995), Henderson (1983)].

The geometry of the multilayer radome considered in our study is given
in Fig. 8. The total thickness of the FSS was 6.3072cm and is comprised
of two slot arrays (of the same geometry) sandwiched within the dielectric
layers. For modeling purpose, a 1.54cm thick absorber is placed below the
FSS as shown in Fig 8. From the calculated results, it is seen that the
results generated by the FE-BI method are in good agreement with the
measurements.

5 Conclusion

A hybrid finite element-boundary integral (FE-BI) formulation was pre-
sented for modeling narrow slots in metal backed cavities. Prismatic el-
ements were used in connection with the FE-BI implementation, and in
contrast to the tetrahedral elements, these offer several advantages. Among
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Figure 8: Upper figure: geometry of the multilayer frequency selective sur-
face (FSS) used for modeling; lower figure: measured and calculated trans-
mission coefficient through the FSS structure
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them,low sampling rates are needed for generating meshes and the mesh gen-
eration process is substantially simplified. Other advantages of the prismatic
elements over the tetrahedral elements include better system conditions and
faster pre/post data processing.

The explicit expressions for FE-BI implementation of prismatic elements
were tabulated and numerical results for slot antennas and frequency selec-
tive surfaces were presented to demonstrate the validity and capability of
the technique.

Appendix
For FEM implementation, the following quantities are required
P, = VXVg, -VXxV,dV (15)
Ve
em = Vi Vo dV (16)
Ve
where the curls are given by
l; R .. .
V xV; __QSeAZ[(x_x’)z+(y—y1)y_z(z_20)] 2—1,2,3
L . - :
VxV; = QS—CA;[(:I: — )i+ (y—v)i+ 5z + Az - 2)] j=4,56 (17)
1 . .
Vx Vi =g (@e = 2i)E + (g2 — Yk1)9] k=1,8,9

To this end, we follow the notation defined in (13) and (14), where 4,1'=1,2,3
represent the top triangle edges, j, j'=4,5,6 denote the bottom triangle edges
and k,k'=7,8,9 stand for the vertical three edges. It is found that (16) and
(17) can be analytically evaluated and we tabulate the results as follows

})iil = Ci.“l [D“IAZ + %SC(AZ)S] (18)
Py = ij: [DjjrAZ + %SB(AZ)B] (19)
AZ Tk Tk
y = —=[". 2
Py 4531 l ( 0)
P; = Pj=-Cj [DijAz — %SG(AZ)3] (21)
_ o li ~ 7k . ~ Tk .Qe
Pi = Pui=-qoo [6- T (SX - 2:5%) + § - T(SY — i )| (22)
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[ _ -
P = Puy= o [8-TMSX — 2,559 + 9 I(SY - ;5% (28)

T A(sey
Az)3 .
Qi = ( ;) Cii Dyt (24)
(Az)°
Qij = ~—3—Ci Dy (25)
Qi = AzS Ty (26)
(Az)3
Qi; = Qji= T)CijDij (27)
Qixk = Qr=Qx=0Q =0 (28)
where
T = 1/6 fork=k'; 1/12 fork #Fk
L
“i T qEaay 29)
Di; = SXX-(zi+2z;)SX +2z;5°+SYY — (yi +y;)SY + yiy; S©

The remaining quantities in the above list of the expressions are defined as

S¢ dzdy

Se
SX = /xdzdy

SY = ydzdy
Se
SXX = / 22 dzdy

/ y? dedy
Se

SXY = /mydwdy
Se

SYY

Il

These integrals can be expressed in terms of the global coordinates of the
three nodes (X;,Y;), (X;,Y;), (Xm, Ym). Specifically, assuming that the three
nodes i,j and m of a triangle are in counterclockwise rotation, we then have,

1 1 =z w
S§¢ = . dzdy = 3 1 z; vy
1 z; Ym

SX = /zdmdy:%(X;+Xj+Xm)
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SY = /Sydzdyz—53—(Yi+Yj+Ym)
Se
_ 2 - X 2 P X4 X2
SXX = /e:z: d:rdy— 12{(X1+X]+Xm) +<‘X¢ + j+ m)}

SYY = /Sey’dxdy= %{(K+1@+Ym)2+ (}?2+’32+Y31>}

SXY = /zyd:cdy=%{(Xi+Xj+Xm)(Yi+Yj+Ym)
Se
+(XY; + X;Y, + XY}
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Abstract

A metal-backed layer of absorbing material offers a number of advantages for trun-
cating the computational domain in a finite element simulation. In this paper we
present design curves for the optimal selection of the parameters of the layer to achieve
a specified reflection coefficient. The curves are based on one-dimensional finite element
simulations of the absorbers, and the optimization is therefore a function of the sam-
pling rate. Three types of material are considered, including the recently introduced
perfectly matched uniaxial material, either homogeneous or with a quadratic material
profile. A three-dimensional application to a microwave circuit is also presented and
used to examine the validity of the design curves.
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1 Introduction

In the numerical solution of electromagnetic scattering and radiation problems it is neces-
sarv to truncate the computational domain in a manner which ensures that the waves are
outgoing. This is true also in the analvsis for many microwave circuits. and the need to
terminate the mesh is common to finite element (FEM) and finite difference-time domain
(FDTD) methods. One way to do so is to enforce an absorbing boundary condition (ABC)
at a surface as close as possible to the scatterer or radiator. and a review of available AB(C's
has been given by Senior and Volakis [1]. Another way is to use a metal-backed laver of
isotropic absorbing material [2,3], but both schemes have limitations. For example. an ABC
requires a priori knowledge of the propagation constant which, in a microwave problem. may
not be the same in all section of the computational domain. Also, when used to terminate
an open domain, ABCs reduce the convergence rate and may be hard to implement on a
surface conformal to the scatterer or radiator. An isotropic dielectric laver alleviates some
of these difficulties, but its accuracy and aspect coverage are limited.

Recently a new anisotropic absorber has been proposed for terminating the domain. By
introducing an additional degree of freedom, Sacks et al. [4] have shown that a uniaxial
material can be designed to have zero reflection coeflicient at its interface for all angles of
incidence. If the material is also lossy, a thin metal-backed layer can be used to terminate an
FEM mesh, and though the material is no longer realizable physically, the associated fields
are still Maxwellian. This is often referred to as a perfectly matched layer (PML), and its
development was motivated by the non-Maxwellian layer introduced by Berenger [5] (see also
[6]) for FDTD problems. By choosing the parameters appropriately, it is possible to achieve
any desired level of absorption for almost all angles of incidence using only a thin layer, but
its numerical simulation is a more challenging task. Because of the rapid exponential decay
of the fields within the layer, there are large variations in a small distance, and it is difficult
to reproduce these in a numerical simulation. Thus, for a discretized PML, the numerical
sampling as well as the material properties affect the reflection coefficient that is achieved.

In this paper we consider the design and performance of three types of metal-backed pla-
nar layers for terminating FEM meshes: homogeneous isotropic, homogeneous anisotropic
(uniaxial), and inhomogeneous (tapered) uniaxial materials. Using one-dimensional finite
element simulations, their numerical performance is examined and compared with their the-
oretical capability. Not surprisingly, the sampling rate has a major effect on the reflection
coefficient. Based on a detailed numerical study, we identify scalable parameters in the
numerical model and use these to generate design curves and formulas for choosing the sam-
pling rate and material properties to achieve a specified reflection coefficient. As expected, a
tapered uniaxial material proves superior to the homogeneous one. The applicability of these
results to three-dimensional problems is then illustrated in the case of a simple microwave
circuit.
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2 Analytical Study

(‘onsider the metal-backed planar laver shown in Fig. 1(a). The surface + = 0 is the interface
between free space (in r < 0) and a lossy material (in = > 0) backed by a PEC at + = /.
For an incident plane wave

E.orH. = 6—]ko(rcoso+ysino) (“

the reflection coefficient is Rg(@) or Ry(¢). and the objective is to minimize these.
If the layer is composed of a homogeneous isotropic material whose relative permittivity
¢ and relative permeability y, are such that ¢, = g, = b= a — 73 (say). then

\/1 — b-2sin® ¢ — j cos ¢ tan(kobt\/1 — b=2sin? ¢)
Re(9) = e

- \/1 — b-2sin® ¢ + j cos than(kobt\/l — b-2sin? ¢) .
v/1 — b-2sin® ¢ — j cos ¢ cot(kobty/1 — b=2sin’ ¢)
Ry(¢) = - —— - — . 3)
\/1 — b=25sin® ¢ + j cos @ cot(kobt1/1 — b=2sin® @)

These differ because the presence of the PEC backing has destroyed duality, and at grazing
incidence (¢ = 7/2), Re = Ry = —1. lf singd > 1, i.e. ¢ = /2 + j6 with § > 0 so that
sin ¢ = cosh é and cos ¢ = —jsiné, |R| differs from unity by only a small amount for both
polarizations. The behavior of |Rg y(¢)| as a function sin ¢ is illustrated in Fig. 2. At
normal incidence (¢ = 0), (2) and (3) give

RE‘,H(O) — q:e—%koi(a—jﬁ) (4)

whose magnitudes are independent of a and can be made as small as desired by choosing
kot B sufficiently large.

As kot — 0o, Rg,n(¢) — 0 only for normal incidence, but Sacks et al [4] have shown that
a particular uniaxial anisotropic material has this property for all § < w/2. The result is an
example of a perfectly matched layer (PML), and if

% =7 = bl - (b— -)is (5)

where T is the identity tensor, then
RErH(¢) = :Fe_zjkot(a"jﬁ)Cos¢ (6)

which reduces to (4) in the particular case of normal incidence. If ko8 >> 1 the reflection
coefficients decay exponentially for all ¢ < 7/2, and since (6) is also valid for sin¢ > 1,
the choice @ > 0 ensures an exponential decay for these angles as well. The behavior of
|RE g (#)| is illustrated in Figure 2 for the same values of kot, o and 3 used for the isotropic
layer. Clearly, a major advantage of the PML is that its reflection coefficient remains low
for a wide range of angles of incidence.
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Although the outer surface of the laver is reflectionless for all o. the abrupt chanee in

the material properties’at r = 0 may produce a contribution in an FEM solution.  We
can eliminate the discontinuity by tapering the properties as a function of 1o produce an
inhomogeneous anisotropic layer. As shown by Legault and Senior [7]. if b = —{r~ir)} a

wave propagating into the material has the form

6—jko{rw(r)coso+y sino} (

-1
—

and when

2
7($)=1+(a—j5—1)<%) . ()

which tends to unity as £ — 0+, the reflection coeflicients of the layver are identical to those
given in (6). With this expression for 4(z), the attenuation is less where the field is larger.
i.e. close to the interface, and increases as the field is absorbed. A simplified version of (8)
is employed in Section 3.4.

3 Numerical Study

For all three types of layer the theoretical behavior of |R| is relatively simple. In the case of
the isotropic material, an increase in 3 and/or ¢ decreases |R(0)]. The uniaxial material has
this behavior for all real angles of incidence, and while o plays little or no role, large values
of a do produce higher absorption for complex angles. It follows that for a uniaxial layer of
given thickness ¢, a and f can be chosen sufficiently large to produce high absorption over
a broad angular spectrum, with angles near ¢ = 7 /2 providing the only exception.

Unfortunately, the analytical results do not immediately translate into numerical perfor-
mance. Because of the discretization inherent in an FEM implementation, the fields inside
the layer are reproduced only approximately, and this is particularly true for a rapidly de-
caying field. To design a good absorber it is necessary to understand the impact of the
sampling rate on the choice of ¢, 5 and t, and our objective is to find the minimum number
of sampling elements ( or discrete layers) to achieve a specified |R|. It is anticipated that the
errors introduced by the discretization will have a number of consequences. In particular,
for a given number N of discrete layers and given t, increasing 8 will ultimately lead to an
increase in |R| because of the inability to model the increasing attenuation, and an increase
in o will likely produce a similar effect. To obtain some insight into the roles played by N,
a, B and t, we now consider a simple FEM model of the layers.

3.1 Numerical Model

A simple one-dimensional FEM code was used to examine the numerical performance of the
absorbing layers. The computational domain was limited to the discretized layer structure

shown in Fig. 1(b), with the appropriate boundary conditions applied at the interface z = 0
and the PEC backing z = t.
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We consider first a homogeneous isotropic laver at normal incidence for which the the
theoretical reflection coefficients are given in (4). In spite of the fact that the magnitudes
are the same for both polarizations. a polarization dependence shows up in the FENM nnple-
mentation. This is illustrated in Fig. 3. and we note that as .\ increases. the FEM values
of |R(0)] converge to the common theoretical value for both polarizations.

3.2 Dependence on a and 3

For a layer of constant thickness the theoretical value of |R(0)| is independent of a and
polarization, but in the numerical implementation the behavior is much more complicated.
Figure 4 shows |R(0)| plotted versus a and f for a layer of thickness t = 0.25A¢ made up of
5 (=N) elements, where the darker tones indicate lower values. For small 5 the results are
in close agreement with theory. As evident from the level lines, | R(0)| is almost independent
of a and decreases exponentially with 3, leading to a linear decrease on a dB scale. For
large B, however, the behavior is quite different, and the most striking feature is the series
of deep minima whose spacing in «a increases with increasing o and decreasing 8. These
are numerical artifacts which are common to both polarizations and may depend on the
particular numerical code employed. The minima for the two polarization are interlaced,
and for H polarization the first minimum occurs at = 0, # = 1.6. Their locations
also depend on t and N. If N is fixed, the spatial sampling is inversely proportional to
t. Decreasing t results in better sampling, pushing the minima to higher values of # and
producing agreement with the theoretical values for larger # than before. Increasing ¢ has
the opposite effect. On the other hand, if ¢ is fixed, increasing NV improves the accuracy, and
shifts the minima to higher 8. Apart from the minima, the reflection coefficients for fixed 8
increase slightly with increasing «, and it is therefore sufficient to confine attention to the
lower values of o.

In Figure 5 the reflection coefficients are plotted as functions of 8 for the same layer with
a = 0 and a = 0.75. The curves correspond to vertical cuts through the patterns in figure 4,
and we also show the theoretical value obtained from (4). We observe that as § increases the
reflection coefficients decrease initially at almost the same rate implied by (4), but beyond
a certain point they begin to increase. The deep minimum at ¢ = 0 and § = 1.6 in Figure
4(a) is clearly seen, but for design purposes it is logical to focus on the worst case, i.e. the
polarization for which the reflection coefficient is larger. The upper curves in Figure 5 are
almost identical and constitute this case. Since they correspond to two different values of
a, either of them would suffice, but for reasons that will become evident later, we choose
a=0.

3.3 Dependence on 3, N and ¢

We now seek a connection between the values of 3, N and ¢ for which |R(0)| is minimized.
To this end, we first examine |R(0)| as a function of 8 and N for constant ¢, and the resulting
plot is shown in Figure 6 for E polarization with ¢ = 0.25A¢ and o = 0 as before. For fixed
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3 the reflection coefficient tends to its exact values as .\ increases. This is evident from the
level curves and. as expected. the convergence is better for the smaller 3. Cousider now the
behavior of |R(0)| for fixed .V. As 3 increases from zero. the reflection coetlicient decreases
to a minimum and then increases. The location of the minima is indicated by the solid line.
This is consistent with the behavior shown in Figure 5 and the upper curve is. in fact. just a
vertical cut through Figure 6 at N = 5. The solid line in Figure 6 therefore gives the value
of 3 at which |R(0)| is a minimum as a function of the number of elements.

If the process is repeated for other layer thicknesses. it is found that for minimum |R(0)|
the curve of Bt/Xo versus N is virtually the same for all thin layers. The observation that
Bt/ Ao is a scalable parameter is an important conclusion of our study. and by choosing a
constant layer thickness we can produce a universal curve for the optimal choice of N and J
in FEM simulations. Such a curve is shown in Figure 7 and can be interpreted as giving the
value of ft/\o for a specified N to minimize the reflection coefficient |R(0)|. For example.
if t = 0.20o and N = 3, then 8 = 2.13. If a smaller value of 3 is chosen, |R(0)| will be
larger (see Figure 5), and this can be attributed to the fact that the field reflected from the
metal backing has not been attenuated sufficiently. If 3 is set to a value larger than 2.13,
| R(0)| will still be larger because the chosen N is too small to reproduce the rapid field decay
within the layer.

Although the scaling property of 5t/A¢ has only been established for @ = 0, it holds to
a reasonable degree for small a # 0, but as « increases, the 8t/ Ao versus N curves become
increasingly dependent on a. The scalability also extends to the associated values of |R(0)|,
and this enables us to provide a simple design prescription for an absorbing layer.

3.4 Design Curves

Since the quantities ft/\o and |R(0)| are the same for layer thicknesses up to about 0.5\
at least, design curves can be obtained by plotting |R(0)| and N versus 5t/Ao on the same
figure as shown in Figure 8. To see how to use the figure, suppose that the desired reflection
coefficient at normal incidence is -50 dB. In Figure 8 we observe that the |R(0)| curve
intersects the -50 dB line at St/Xo ~ 0.58, and referring now to the N curve, the number
of elements required is N = 10. The value of 8 can then be found by specifying either the
element size or the layer thickness. Thus, for elements 0.025)¢ thick, we have ¢t = 0.25)¢
and @ = 2.32. By increasing N we can improve the performance up to the limit provided by
the theoretical value of |R(0)| which has been included in Figure 8. A good approximation
to the long-dashed curves in Figure 8 obtained by linear regression is

% = —0.0106|R] + 0.0433 (9)
0

N = 0.147exp[7.3535t/ Ao (10)

where |R| is measured in dB and N is the smallest integer equal to or exceeding the right
hand side of (10).
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So far we have considered only a homogeneous isotropic laver at normal incidence. but as
evident from (4). (6) and Figure 2. the important feature of the anisotropic (uniaxial) mate-
rial is that it provides almost the same reflection coeflicient for a range of angles of incidence
about normal. Thus. for the homogeneous uniaxial material. the design curves in Figure 3
are applicable for these angles of incidence as well. The performance can be improved by
making the anisotropic material inhomogeneous. and to illustrate this we consider the case

v(z) = -8 (%)2 for which the theoretical reflection coefficient is the same as before. The
scalability is still preserved and the resulting curve is shown in Figure 8. The fact that the
curve for the quadratically tapered layer lies below that of the homogeneous material con-
firms the improvement in performance. and we can now achieve a reflection coefficient of -50
dB by choosing 8t/Ao >~ 0.64 corresponding to N = 9. Approximations to the short-dashed
curves in Figure 8 are

t
f\’— = —0.0119|R| + 0.0451 (11)
0

N = 0.298exp [5.2638t/Xo] (12)

where |R| and N are as before. Compared with the homogeneous material the decrease in
the number of elements required becomes more pronounced as |R| is reduced.

4 Three-Dimensional Verification

As noted earlier, a PML is particularly attractive for terminating a finite element mesh
in the simulation of microwave circuits. For these applications a PML has an advantage
over a traditional ABC because it does not require a priori knowledge of the guided wave
propagation constant. It is therefore of interest to examine the performance of the layer when
used to terminate a microwave transmission line (see Figure 9) and to see how this relates to
the design curves generated on the basis of the one-dimensional simulations. The microstrip
line has width w = 0.71428 cm, substrate thickness 0.12 cm and relative permittivity e, = 3.2,
and is enclosed in a metallic cavity whose dimensions are shown in Figure 9. It should be
noted that the height of the cavity from the microstrip line is sufficiently large to suppress
any reflections from the cavity walls. As a result, the characteristic impedance of the line
should be that same as if the line was in free space.

The microstrip line was terminated using a two-section homogeneous uniaxial absorber
having material parameters €., i, in the upper section and 3.2€,, 7, in the lower section
to match the substrate. The calculations were carried out at several frequencies using an
FEM code [8] and we show the results for 4.0 GHz. At this frequency the element width was
0.05)¢ and a five layer absorber having a total thickness of ¢t = 0.25)¢ was used. With a =0
the computed reflection coefficient of the transmission line structure as a function of 3 is
shown in Figure 10. For comparison, with ¢t = 0.25)¢ and N = 5 the design formulas (9) and
(10) give 8 = 1.92 and |R| = —41 dB. However, these are based on matching free space, and
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in the present instance the optimum design .3 must be scaled. Recognizing that most of the

power is confined to thé substrate. the .3 required for comparison with the computed data is
1.92/v/3.2 = 1.07. and this is in reasonable agreement with the location of the minimum in
Figure 10. The fact that the minimum |R| is lower than predicted is. perhaps. not surprising.

We recall that the design curves are based on the worst case. i.e. the polarization providing
the largest minimum |R|, and the curve in Figure 10 resembles more the H polarization
curve in Figure 5 than the E polarization which constitutes the worst case.

5 Conclusion

A uniaxial perfectly matched layer provides a powerful means for truncating finite element
meshes close to the modeled structure. By properly selecting the material properties and
sampling rate, almost any desired level of absorption can be attained, and typically very few
samples (less than five) are needed to achieve a reflection coefficient of -40 dB over a wide
range of incidence angles. In this paper we described a detailed study of three types of layer
material including homogeneous and inhomogeneous uniaxial ones, and by identifying the
scalable parameters of the layers, universal design curves and formulas were developed. The
curves or formulas can be used to specify the numerical, geometrical and electrical parameters
of the PML to achieve a desired absorption down to -60 dB or lower. As expected, a lower
material loss requires a thicker absorber to produce the same reflection coefficient. On the
other hand, a higher attenuation rate requires more samples to attain a lower reflection
coefficient in a numerical implementation. As expected, an inhomogeneous (tapered) PML
is better than a homogeneous one since the material loss can be increased to larger values
close to the metal backing where the field is smallest.

To test the applicability of the design criteria in a three-dimensional setting, a shielded
microstrip line was considered. With the line terminated in a homogeneous PML, the results
were in reasonable agreement with prediction, and the discrepancies were no more than
could be expected in view of the conditions under which the criteria were established. These
conditions are:

(1) use of a particular one-dimensional FEM code

(ii) based on the worst case polarization, i.e. the polarization for which the minimum
reflection coefficient is largest

(iii) restriction to a range of angles of incidence about normal
(iv) assumption of a pure imaginary propagation constant, i.e. a = 0, in the layer.

Condition (iv) is a requirement for scalability, and though small values of « are still ad-
missible, the condition is clearly inappropriate if there is substantial power at complex angles
of incidence for which large a is required for absorption. If the polarization can be specified,
(ii) is also inappropriate, and the design criteria may underestimate the performance that
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can be achieved. In any given problem where there i1s the luxury of testing a vanety of Laver
specifications. it is probable that a performance can be achieved which 1s better than that
predicted by the criterion. but even then the design values are a logical place to start. T the
more likelyv situation where prior testing is not feasible. we believe that the design criteria
provide a logical basis. for specifying the parameters of the PML and its sampling.
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Figure 1 Geometry of the metal-backed absorber laver (at and its FEM implementation b,

Figure 2 Analytical results for homogeneous isotropic and anisotropic absorbing
lavers with ¢t = 0.250g and b =1 — j2: (- - -) isotropic E pol..
(- - -) 1sotropic H pol. and ( ) anisotropic.

Figure 3 Numerical results for a homogeneous isotropic layer with
t = 0.15Xp and b = —32.5. The top four curves are for E pol..
the bottom four for H pol.: ( ) exact, (- - -) N=3. (- - -) N=6
and (— —) N=12.

Figure 4 Plot of |R(0)| in dB for (a) an H polarized and (b) an E polarized wave
incident on a homogeneous isotropic layer with ¢t = 0.25A¢ and N = 5.
The solid curves are level lines.

Figure 5 |R(0)| with t = 0.250¢ and N = 5: (—) Exact, (— —) a =0 E pol.,
(---)a=0Hpol,(---) a=0.75 E pol. and (--+) o =0.75, H pol.

Figure 6 |R| as a function of 8 and N for E pol. with ¢t = 0.25) and a = 0.

Figure 7 Bt/)o computed from the E pol. case with a = 0:
( ) t= 015A0, (— —) t= 025/\0 and (- - -) t= 05/\0

Figure 8 Absorber design curves. The straight lines give |R| in dB, and the curved ones give
( ) exact |R|, (— —) homogeneous case and (- - -) inhomogeneous case.

Figure 9 Geometry for the microstrip line.

Figure 10 Computed |R| for the microstrip line at 4 GHz with a =0, t = 0.25A¢ and N = 5.
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