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A stochastic (in contrast to kinetic theoretic) approach to the caleulation of correlation functions
in fully ionized plasmas is investigated. Formally different results are obtained. The question as to
whether or not the differences are qualitatively and/or quantitatively significant is raised, but not

answered.

1. INTRODUCTION

The purpose of this study is to attempt to place
the theory of fluctuations in plasmas in a slightly
different perspective. Specifically, less reliance is
placed on the conventional expansion in inverse
powers of the number of particles in a Debye sphere.
Instead, at a certain point in the analysis, a stochastic
assumption is introduced which enables the dy-
namical problem to be completely solved in terms
of static correlation functions. The question is thus
raised—though not answered here—as to whether
the formal solution so obtained is valid regardless
of the number of particles in a Debye sphere. But
whatever the answer to this question, the present
approach provides a framework in which new ap-
proximation schemes for the solution of problems
in kinetic theory can perhaps be developed.

A sort of derivative benefit to be gained from the
present analysis is mathematical compactness and
simplicity. Sometimes this can be a matter of some
consequence, for occasionally it exposes the physics
in new and clarifying perspectives.

In Sec. IT we give a statement of the problem to
be solved, and a brief discussion of the relevance of
the solutions to the interpretation of measurements.
Here we also present much of the notation and
formalism to be employed in the succeeding sections.

In See. I1I we obtain the formal solution to a fairly
general phase-space correlation problem.

In Sec. IV we discuss some of the implications
and applications of the solution obtained in Sec. III.

II. STATEMENT OF THE PROBLEM

In the present work we only employ classical
mechanics. The generalizations required for the
inclusion of quantum effects are largely accomplished
in a straightforward manner. These generalizations
are not ignored here because they add significant
complexity to the analysis, but rather because they

are apparently unnecessary for present purposes.

The quantity to be computed in this and sub-
sequent sections is a phase-space correlation func-
tion. Define a singlet density operator for particles
of kind A in phase space as'

Ny
g‘i(X, v, t) = Z 6[X - xd(t):’ 6[" - vq(t)L
or 1)
N4
91(Q, ) = 22 8[Q — Q°(1)],
where evidently Q = (%, v). For purposes of il-
lustration, we will assume a plasma containing
electrons and one kind of ion only. The generaliza-
tion required to account for an arbitrary number of

kinds of ions is formally trivial. Now define the
column matrix

E

wmmozﬁﬁ””y (2)
& v, 0

and take the Fourier transform in configuration

space and time to obtain

Tk, v, 0 = f dt Pz e T E(x, v, 1)

= {gE(ki v, w)\l . (3)
gl(k) v, w)

A correlation matrix of considerable utility is then
defined to be

A(ka V/) v, w) = <‘I,*(k) V/; w)\f/(k, v, w))
= [ ar v, v, K, v, 0), @

where p is the basic probability distribution governed
by the Liouville equation and dr is an element of

1 See, for example, T. H. Dupree, Phys. Fluids 6, 1714
(1963).
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volume in the 6(N” + N')-dimensional phase space
of particle coordinates and momenta. In (4), ¥*
is the complex conjugate of ¥ and ¥ is the transpose
of .

One of the more interesting and familiar applica-
tions of the correlation matrix defined in Eq. (4)
is to the interpretation of light scattering.® The
photon scattering cross section may be displayed as

FAw/20

olw, Q;w'; Q) = AO'T(Q Q) a sech hhw
wN*

26

%f dte"’“‘fdsv' e ([g" (%, V', 0), ¢"(x, v, D].).
(5)

The quantity o, is just the Thompson cross
section, and [ ], implies an anti-commutator. A
classical calculation of the scattering cross section
can now be accomplished by displaying

S [ (07 v, 0), 0%, v, 000

= fd"‘z;’ d fdt e (g (%, v, 0)g (%, v, 1), (6)

where now the operator ¢” is defined as in Eq. (1).
Note that, according to (4),

<gE‘(k) v/, w)gE(k: v, w))

r/2 Ts/2
—f dt ef diy et
- 1 2

~T/2 -1/2

(g%, v, g &, v, L), (7)

Ank, v, v, w) =

For stationarv systems (and, of course, for large T
(7) becomes

T/2 T/2
f dt f dt e—iw(lg—t:)
1 2
=T/2 -T/2

<gE*(k7 V', O)QE(ky v, t, — tl))
T/2

=T dte”*g" (&, v/, 0)g"(k, v, D)).  (8)

—T/2

Evidently, therefore,

2 For theory see for example: E. E. Salpeter, Phys. Rev.
120, 1528 (1960); M. N. Rosenbluth and N. Rostoker, Phys.
Fluids 5, 776 (1962); D. F. DuBois and V. Gilinsky, Phys.
Rev. 133, A1308 and A1317 (1964). For measurements see
for example: P. W. Chan and R. A. Nodwell, Phys, Rev
Letters 16, 122 (1966); S. A. Ramsden and W. E. R. Davies,
ibid. 16, 303 (1966); O. A. Anderson, ibid. 16, 978 (1966); and
8. A. Ramsden, P. K. John, B. Kronast, and R. Benesch,
ihid. 19, 688 (1967). .
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Cl)/
U(w: Q; o', Q,) = —c_u_ ‘7'1'(Q°Q,)
FAw/20
"T]T sech R ] d%" d% Ay (e, v/, v, Aw)/T, (9)
e

in the imit as 7' — o,
Note also that current—current correlation tensors
can be obtained from
f %" d% vl Alk, Vv, V, w). (10
Such tensors are useful for the study of plasma con-
ductivities and absorptivities.

II. CALCULATION OF THE CORRELATION
MATRIX

The equations describing the density operators
in fully ionized plasmas in the absence of external
fields are well known, e.g.,

3 .7 3 .7
( +u,a >g,(xv ) — UEav fd d

OVIU|x — X)) e . Lo
oz x,v,x, v/, t) — A, o,
f de/ dgl)’ %X'l)
dz;

(11)

where the doublet density operator is defined anal-
ogously to Eq. (1), i.e.,

'gfl(xa v, X', V,y t) =

Na Ngp’

2 2 olx — x'(1)
<8v — v(8)] 8lx’ — x“(®)] 8lv/ — v(t)].

The prime on the double sum means delete terms
o = aif A = B. We rewrite Eq. (11) in a compressed
notation as

gl;B(X7 v) xl7 V,) t) =

(12)

(;% + D(1>>9E1<1, D+ 9°°(1, 2gF5(1, 2, 1)

+ 971, 2)g;'(1, 2, 1) = (13)
Fluctuation operators are now defined by
8ga(1, ) = ¢5(1, O) — (g3(1, 1), (14a)
and
8g:"(1,2, 0 = ¢°(1, 2, ) — (g2"(1, 2, )
= (g5(1, 1)) 8932, D)
+ 80451, (952, B) + 8G37(1, 2, 1), (l4b)
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Using (13), (14a), and (14b), we find that
(2 + ) srta, o

+ (1, 2[(g2(1, 1) 8912, )
+ 891(1, (g2, O)]
+ 24701, 2)[(g1Q, 1) 8952, 1)
+ 8911, (g2, 1)]
= —Q"(1,2) 8G;*(1,2, 1)
— 0*%(1, 2) 8G4%(1, 2, )
S4(1, O — v 8g1(1, B). (15)

Except in the limit » — 0, the function S*(1, ¢) is
somewhat ill-defined; hence all results will be
evaluated in this limit. Thus the term containing »
is to be regarded as of purely formal significance—
introduced solely for the purpose of simplifying
certain steps in the subsequent analysis. It is tempt-
ing, however, to interpret » as a collision frequency.

If the averaged densities can be assumed to be
functions of velocity only, i.e., (¢(1, t)) = f(v),
then the Fourier transform of Eq. (15) appears as

597
(% +v - z'k-v) sgik, v, ) + iU (&, v)
[ v st v, 0+ U, v)
J v gt v, 0 = S v, 0, a0
where
AB . g4
UAB(k’ V) — V (k)lyi Vv/ (V) (17>
M,
Now note that
E E
Yk, v, ) = (20’ a(k){f W 4 (5”‘“" LI
f'w) 3g:(k, v, )
and may be taken to be
E b
Wk, v, {) = 6g.(k, v, t)J (19)
bg1(k, v, t)

if we are interested in correlations characterized
by k # 0 only.
Define the operator matrix

v — ik-v + U f d%’ iU’”fdsv’
M= (20)
1U™* f d*’ v — tk-v + U f d*’
and source matrix and
E
St v, 1) = (S (k, v, t)J ) @1) kv — w + W) = 8. (27)
I
Sk, v, 1) We may now further show that
Then Eqs. (16) are summarized by V(& @) = Q& w)s(k, o), (28)
(5‘% 4 M)\I/(k, v, i) = Sk v, 0. (22) where
By Fourier transformation in time, we obtain iAQ = {1 +o —a™ J , (29)
M + iU, v, 0) = S& v,0).  (23) =" 14
Defining A=1+4d"" +a", (30)
vk, w) = f d ¥k, v, w), (24) o'’ = —f d’ 1%, (31)
it is a straightforward matter to show that and where
Yk, v, v) = Tk, v, w)y(k, o) + ik, v, ), (25)
—_ 3
where the matrix T' is given by sk, @) = f v §k, v, o). (32)
EE ET 4 M s
kv — @ + )T = U U } ’ (26) Entering (28) into (25) yields
vy~ ¥ = I'Qs + 4¢. (33)
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Equations (28), (32), and (33) together imply that
f o1 =1+1iQ7", (34)

where I is the two-dimensional unit matrix. We
may further compact Eq. (33) by writing

Yk, v, w) = f & Hv, V)&, v, o),  (35)

where the matrix H is given by

H, v) =i (v —v) — Tk v, 0)Qk, w). (36)
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It is important to note that

[H(v, viyde = —Q, 37N
and hence that Eq. (28) is readily recaptured from
Eq. (35).

Up to this point our main preoccupation has been
with formulism and notation. No approximations
of any kind have been introduced. We now turn to
the task of calculating the correlation matrix; which,
by virtue of Eqgs. (4) and (35) is readily displayed as

Ak, Vv, v, w) = f &' d HE(V vk, v, o) Ek, v o) H (v, v

N f a' A H*(V', V”')<S*(k, V'”, w)g(k, v, Q)ﬂ}’ﬂﬂ
= (k'VI”

Recalling the definition of S in Eq. (15), we see
that all that we have accomplished so far is the
derivation of an explicit, rigorous, and compact
relation between the desired second-order correla-
tion function and a certain fourth-order correlation
function. The first approximation is now introduced
in the form of a stochastic assumption® concerning
the form of this fourth-order correlation funection.
According to Eq. (9), it is 77'A in the limit of large
T that is related to observables, so consider

L S* e, v, R, vy = 4 [,
r -

/2
f dty 'Sk &, v )8, v L)) (39)
~T/2

We introduce an approximation by assuming that
(S*(&, v, 1,)S(k, v", 1))

= gt, — )D&, V", v").  (40)

A Markoffian description of the system is achieved®
if we choose

gty — t) = 8(t, — to). (41)

A tractible, non-Markoffian description useful for
“modeling” calculations of plasma fluctuations is
obtained if we assume a Gaussian or Lorentzian
form for g(¢). Since the present work is preliminary,
for the time being we content ourselves with Eq.
(41), where we find that

* The many papers on the subject by Melvin Lax are
clarifying here, among which a few are: Rev. Mod. Phys, 32,
25 (1960); Phys. Rev. 145, 110 (1966); and Rev. Mod. Phys.
38, 541 (1966).

—w— kv — o+ w (38)

%(S*(k, v, @)Sk, v/, w)) = Dk, v, V'), (42)
Equation (38) for the correlation matrix now reads

% Ak, v, v, w)

&V —w— )&V —w+ W)

_ f o’ &' H*(v', v'") Dk, v, v'')H(v, ¥'")
(43)

Defining
Ak, w) = f d* d % Ak, v/, v, 0), (44
and recalling Eq. (37), we find that

Ak, w) = Q*

L dBUH/ dBI/'” D(k, V’”, V”) o -~ -
e =l ¢ W

Now defining
Ok, v, v) = ¥k, v/, t = OV, v, t = 0)), (46)

and making use of the solutions of Eq. (22) in the
time domain, we find that

ok, v/, v) = f dx exp [—zM*(k, v)]

-D(&, v/, v) exp [—2M(k, v)]. (47)
This equation i3 readily solved to obtain
Dk, v/, v) = M*k, v)0k, v/, V)
+ ok, v, ik, v). (48)
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This result, together with Eq. (45), provides a rela-
tion between the desired correlation function and the
static correlation functions which make up the
elements of the matrix €. This relation is subject to
approximation only by the implications of Eqs. (40)
and (41). Of course, such a relation merely represents
a formal solution for time behavior in terms of initial
values. Some possible implications of this result
are discussed in the next section.

IV. APPLICATIONS AND DISCUSSION

As mentioned earlier, the principal application of
the above analysis to the interpretation of experi-
ment is to photon scattering. In order to be explicit
and to compare it with the work of others,” we first
make use of an approximate solution to the equations
for the relevant statie correlation functions which
yvields the conventional formula for the photon-
scattering cross section. We define a doublet density
as

2LV x, v, ) = (g, VL R, Y D)
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Na Np’

={ X Z olx" — x'(1))

<8[v — v(B)] 8[x — x“(8)] 8[v — V“(t)]>, (49)

where (as before) the prime on the double sum means
delete the terms for ¢ = a if A = B. Note that if
we label the elements of the matrix Q@ by Qus,
we have

Qisk, v, V)

= F*&, v/, v) + 8,5V 8(v' — vfi(v),  (50)
where
(&, v, v)

= f d'sx dax/ eiko(x-x’)f;'ilf(xl’ V’, X, V, 0), (51)

and where singlet densities have been assumed in-
dependent of space and time. The quantity V
appearing in Eq. (50) is the system volume. An
equation which describes fi* (ignoring electro-
magnetic fields) is

é_ N4 j‘ _@) AB (o1 ’ _1_ aVAB(|x, — X|) af;B(x,y Vl, X, v, t)
<6t g TG &YX 0 = g oz, av,
L aViix —xpefiavixv.) L 5 f ot o VX = x7])
My 9z; d; M, < ’ ax;
ABC (o1 ot "oyt f 1 BC ) ABC (o1 ! ot
O,V VXL 0 4 i z[d3x,, g 2V <|;(T ') oFT &, v X% Y. (52)
i c T .

We now examine the steady-state versions of these
equations in accordance with the following approxi-
mations and/or assumptions”:

@ 5, v, x, v, 2, v, 0)
= IV &, v, X7, ")
+ fiwfEE, v, %7, v)
+ R, VL x, v (53)

(i) All singlet densities are functions of velocity
only; (iii) All doublet densities are functions of

inter-distances in configuration space only, i.e.,
;B(X’) vly X, V) = szB(lx, - X], v V), (54)

(iv) the doublet densities in the terms on the left-
hand side of Eq. (52) containing the potentials are
approximated as, e.g.,

f2P &, v, %, ) =~ [(V)f(9). (55)

* The work of Rosenbluth and Rostoker mentioned in
Ref. 2 is particularly relevant here.

1

The resulting equations are then Fourier transformed
in accordance with Eq. (51), and then compared
with Eq. (48). It is then found that

Dy (&, v, v) ~ 2Viiv) 8(v — V) + 2F" 5k, v/, v)

+ k(v — MV 8 — fi(v),  (56a)
D12<k7 V’; V) = QVFEI(ka V,, V), (56b)
Dyy(s, v/, v) >~ 2F""(k, V', V), (56¢)

Dy(k, v/, v) ~ V() 6(v/ —v) + 2F"(k, v/, V)
+ k(v — W)V (v — Vfi(v). (56d)

Entering these results into Eq. (45) and taking the
limit as » — 0, we obtain [recalling Eq. (29)]

9-N® 11 112 .
Ak, ) = ﬂ-k ]M.Za [ d’ 6(k-v —%)ME(V)
27T‘NI aEI’!Z f . ( . 9> 1
+ A TE d’ 8| (kv — 2 M (v), (57)

where N¥ and N’ are the numbers of electrons and
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ions in the system, M*(v) and M'(v) are velocity
distributions for electrons and ions normalized to
unity, and k = k/k. Equation (57) is the result
obtained previously by a variety of arguments.”

Alternatively, we may enter (29) into (45) and,
making use of the fact that

Di(k, v/, v) = Dk, v, V'), (58)

obtain directly

2

1+ a"
A

. d' d% Dll(k) V’, V) + :‘LEI ’
(k-v’ —w — iv)(k'v — w4+ w) ( A
f d%’ d% Dzz(u,y V) i
&V — o —a)kv— o+ w)

— TA—%IE Re |:(1 —+ a”)*am

Ak, w) = i

OSBORNXN

kv —w — )&V —w+w

This equation reduces immediately to Eq. (57)
after use of Eqgs. (56a), (56b), and (56d) and taking
the limit » — 0. But Eqs. (56) are subject to certain
approximations, discussed above, which in fact may,
or may not be implied by the relation (59). The
question is thereby raised as to whether or not the
result contained in Eq. (59) has a greater validity
and a wider range of applicability than the explicit
solution exhibited in Eq. (57). Further study of
this matter is required and is being undertaken.

(59
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