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Using the recently acquired exciton dispersion relations for crystalline naphthalene, we have calculated 
the density-of-states functions for heavily doped isotopic binary mixed crystals of naphthalenes with 
arbitrary compositions and various energy separations (trap depths). This constitutes the first attempt 
to extend the negative factor counting (NFC) method, developed originally for lattice phonons, to a 
real physical system of three-dimensional molecular excitons. In most calculations, a total of 1280 molecules 
were included. The exciton interactions, which included both the translationally equivalent and the inter­
change equivalent ones, involved all 16 neighbors. Calculations based on the coherent potential approxima­
tion (CPA) were also performed for comparison. It was concluded that these two sets of calculations 
compared very well except in the split-band limit and at low concentrations. Under these conditions the 
cluster or conglomerate states become important and the computer-simulated density-of-states func­
tions revealed some fine structure, which was completely indiscernible in the density-of-states function 
based on CPA. This fine structure is experimentally significant. The relationship between the Green's func­
tion method and the moment trace method was investigated in the light of these new results. Particularly, 
some of the lower moments were calculated for the density-of-states functions and compared with those 
calculated from the exact expressions in our previous paper. It was shown numerically that the CPA results 
indeed agree with the exact moments up to the seventh order. 

I. INTRODUCTION 

Recently, there has been a great interest in the elec­
tronic and vibrational exciton states of disordered mo-
lecular crystals. I In particular, a considerable amount 
of work has been done on the exciton states of iso­
topically mixed crystals because these systems are 
more amenable to theoretical treatment. Except for 
the heavily doped mixed crystals, which are of pro­
found theoretical interest in their own right, most 
other disordered systems were studied primarily with 
an aim to understand the ordered systems. Such 
studies have, thus far, provided vital information 
pertaining to the density-of-states functions,2 pairwise 
interactions,3 and complete band structures in organic 
solids such as benzene and naphthalene. 

In this paper, we shall be concerned mostly with 
the heavily doped mixed crystals. In the tight-binding 
approximation, the electronic and vibrational eigen­
states of disordered molecular crystals can be treated 
in a similar way as the normal modes (phonons) of 
a disordered lattice. Historically, the frequency spec­
trum of a disordered chain was first treated by Dyson.4 

Subsequent investigations on both one and multi­
dimensional systems, for both electrons and phonons, 
have been numerous. Various techniques have been 
devised.S These include the moment trace method, 
the phase theory, the Green's function method, and 
finally the negative factor counting (NFC) method by 
Dean.6 Dean's works are of particular importance. In 
absence of a complete theoretical analysis, such numeri­
cal calculations not only offer a substitute but also give 
an insight into the physics of the problem. Here, for 
the first time, the "spiky" nature of the frequency 
spectrum was appreciated and so was the source of 
difficulties associated with a complete analytical ap­
proach. 

Parallel to the development of the numerical tech­
niques, the Green's function method has also been 
applied to the study of disordered systems, mostly 
based on Lax's7 pioneering work on the multiple­
scattering formulation. The exact Green's function 
was obtained by Yonezawa and MatsubaraB who per­
formed the exact statistical averaging over all the 
possible impurity distributions. For actual applications, 
an approximate, k-independent self-energy was pro­
posed by Onodera and Toyozawa9 and used in their 
model calculations on electrons and excitons. Such an 
approximation was also independently proposed by 
TaylorlO and by Soven," who called it the coherent po­
tential approximation (CPA). In recent papers by 
Velicky et al. 12 and by Soven,13 the validity and the 
range of applicability of such an approximation were 
further examined. 

For Frenkel excitons in disordered molecular crys­
tals, Broude and Rashbal4 first treated the optical 
spectra, using a formulation which amounted to as­
suming periodic impurity distributions. Craig and 
PhilpottlS later took into account some random fluc­
tuations by averaging over different impurity distri­
butions within the "supercell." More elaborate 
analyses were carried out by Hong and Robinsonl6 

who extended Yonezawa and Matsubara's formulation 
to multiple-branched exciton bands within the restric­
ted Frenkel-Davydov limit.17 Furthermore, in the spirit 
of CPA, they adopted a self-energy which was both 
k independent and branch independent. Under this 
approximation, both the optical spectra and the den­
sity-of-states functions of mixed crystals depend only 
on the density-oj-states Junctions oj the corresponding 
pure crystals. Actual applications to the exciton states 
of IB2u naphthalene indicated that agreement between 
theory and experimentsl8 was quite satisfactory. 
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Although the pure crystal density-of-states function 
is completely determined19 if the pairwise exciton in­
teractions are known, the reverse is apparently not 
true. Information on the pairwise interactions was not 
called for in a CPA calculation. However, an exact 
calculation does demand such knowledge. Experimental 
efforts to determine the exciton dispersion relation 
and the complete band structure in IB2u naphthalene 
were attempted by Hanson.3a By analyzing the "reso­
nance pair" spectra with a first-order theory, Hanson 
obtained the "uncorrected" pairwise interactions di­
rectly. Subsequent refinements, involving the guest­
host superexchange effect, were introduced by Hong 
and Kopelman.3b ,e Reliable pairwise interactions were 
thus obtained, which agreed with all the known ex­
perimental facts such as the pure crystal density-of­
states function, the single-impurity level, the Davydov 
splitting, etc. It is felt that further analysis on the 
density-of-states functions of mixed crystals, based on 
our present knowledge of pairwise interactions, should 
be a worthwhile endeavour. 

In this paper, we report some random lattice cal­
culations on the density-of-states functions of isotopic 
mixed crystals of naphthalenes, using the negative 
factor counting method (NFC) by Dean.6a Our aims 
are as follows: (1) This is the first attempt to cal­
culate the eigenvalue distributions of a real three­
dimensional disordered system, with nontrivial inter­
change symmetry. In doing this, we hope that our 
results can be directly compared with physical ob­
servables in contrast to most of the other calculations 
which are basically model calculations. (2) We have 
also calculated the pure crystal density-of-states func­
tions based on the same pairwise interactions and 
used the former to calculate the mixed crystal density­
of-states function within the CPA. A comparison was 
made between the computer-simulated NFC results 
and those of CPA. This was done to broaden the 
testing ground for such an approximation to a three­
dimensional exciton system whereas previous calcula­
tions were mostly concerned with phonons and fre­
quently of one or two dimensions.20 (3) In a recent 
paper by Hong and Kopelman,2! analytical expressions 
for the moments of density-of-states functions were 
given for both exact and CPA solutions. These theo­
retical results are used here in two different ways. 
On the one hand, moments were evaluated both from 
the theory and from the NFC and CPA results in 
order to evaluate the qualities of the latter. On the 
other hand, the relationship among the exact solution, 
the CPA solution, and the moments is discussed in 
detail, using the present calculations as examples. For 
the first part, we find that our NFC results give 
reasonably good moments, indicating that our par­
ticular choice of samples is statistically sound. For 
the second part, we find that the method of moments 
is quite limited in its usefulness as a method for 
determining the density-of-states functions. Rather, 

moments are best used as criteria to test the use­
fulness of other methods. (4) Both qualitative and 
quantitative discussions are given on the nature of 
the localized states. "Spikes" in the density-of-states 
functions are identified with particular impurity dus­
ters, using previous work on dilute systems3b

,C as guid­
ance. Some irregular features which are familiar in the 
one- and two-dimensional systems are retrieved in 
the present three-dimensional case. Refined definitions 
of duster and duster state are introduced as well as 
the concept of conglomerate, which is convenient for 
the interpretation of exciton states in the shallow 
trap case. (5) Finally, some efforts are made to see 
if it is at all feasible at this stage to utilize the heavily 
doped mixed crystal data to gain information about 
interactions in ordered systems. In principle, the heav­
ily doped mixed crystal data promise the most ex­
tensive information about such interactions. In reality, 
however, due to the complexity of the problem, this 
aspect of mixed crystal study has not reached its full 
potential. Even so, our calculation already indicates 
that we can obtain important information which would 
otherwise be inaccessible. 

II. THEORY 

A. Frenkel Exciton States in a Randomly Disordered 
Binary System 

In the Frenkel-Davydov22 theory of excitons (the 
tight-binding approximation), we assume that there 
is a characteristic frequency of excitation (be it elec­
tronic or vibrational) associated with a site Rn in the 
crystal, The wavefunction of such an excitation can 
be written as 

(1) 

where the crystal function \f'* (Rn) is assumed to be 
a simple product of molecular wavefunctions, cf>* and 
cf>n's, where the latter are, respectively, the excited 
and ground state wavefunctions of the molecules in 
the site (i.e., properly adjusted for distortion due to 
the van der Waals or static23 interactions). The char­
acteristic frequency which is also called the "ideal 
mixed crystal level"23 is simply the diagonal element 
of the total Hamiltonian matrix in such a localized 
basis set, or 

Note that we have set the ground state energy to zer024 

so that Hnn corresponds directly to the energy of ex­
citation. By the same token, the excitation exchange 
in teractions (the dynamic in teractions23) are just the 
off-diagonal elements: 

Hnm= ('l1*(R,,) I H I 'l1*(Rm). (3) 

In ordered systems (pure crystals), we have 

(4) 
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TABLE I. Intermolecular exciton interactions in IB,u naphthalene. 

Inter­
action 

Ma 
Mb 
Me 
Ma+c 
MI , 

Position 

a 8.24 
b 6.00 
e 8.66 
a+e 7.96 

5.10 

Set 1 Set 2 Set 3 
(em-I) (em-I) (em-I) 

-0.6 -4.3 -1.2 
-3.9 1.9 1.6 
-3.7\" -6.1\" -8.9\" 

6.1f 6.0f 6.0f 
18.0 18.0 18.0 

widths. Therefore, their shapes will differ and they 
always overlap. The consequences of such a difference 
on the density-of-states functions of disordered sys­
tems can be best illustrated by comparing recent cal­
culations of Julienne and Choi6e with those of Dean6• 
or Payton and Visscher.6b 

B. Density-of-States Functions of Disordered Systems 
by the Method of Negative Factor Counting 

Ha+b) 
M12' Ha+bHe 7.89 2.0 1.0 1.0 To determine the density-of-states function of a 

heavily doped mixed crystal, we have to solve the 
• Notice that the values for Me and Ma+c can be interchanged without secular determinant of the following formz5 

affecting the pure crystal density-oi-states function. monomer or dimer 
energies, and mixed crystal density-of-states function; see discussions in detS(E) =0, (7) 
Ref. 3 (c). where 

i.e., all the oscillators are in exact resonance, while 
in simple disordered systems (isotopically mixed crys­
tals), we have 

(5) 

etc., depending on the number of components present. 
The Hnm's are assumed to be invariant. 

In this and previous papers,16,Zl binary systems are 
treated, whereby the diagonal elements take up either 
€A or €B randomly while the concentrations of each 
component, CA and CB , are used as constraints. 
Diagonalization of such a Hamiltonian matrix will 
yield the desired density-of-states functions of dis­
ordered systems. 

Since the similarities between this problem and the 
normal modes of a random lattice with two different 
masses have been emphasized5 in the past, it might 
be helpful to point out here some of the differences. 
For example, the normal modes of a disordered chain 
of atoms coupled harmonically to its nearest neighbors 
can be solved by the diagonalization of the matrix A 
defined by6a 

and all other 
Aij=O, (6) 

where mi is the mass of the ith atom and k i is the 
force constant between the atoms i and i+ 1. It is 
apparent that: (1) The introduction of impurities not 
only alters the diagonal elements but also the off­
diagonal elements, both being dependent on mi. In the 
exciton case only the diagonal elements are assumed 
to be affected. (2) In the exciton case, the pure crys­
tal density-of-states functions of the two components 
are congruent to each other. With regard to energy, 
they can be either overlapping or separated. In the 
phonon case, the density-of-states functions of both 
components always start from zero with different band-

SeE) = X-E. 

X is the Hamiltonian matrix introduced in Eqs. 
(2)-(5). The density-of-states function peE) is related 
to the trace of the Green's function16 

peE) = (N7f')-l 1m TrG(Z) 

== (N7f')-l 1m L: (Z-An)-t, (8) 
n 

where An'S are the eigenvalues and Z==E-iO+. If we 
introduce the integrated density-of-states function 
M(E), which is really the number of eigenvalues 
smaller than E, 

M(E) = L: p(E')dE', 

it IS readily shown that 

M(E) = (N7f')-l 1m Tr f~ G(Z')dZ' 

= (N7f')-l ImL: 10g(Z-An) 

(9) 

= (N7f')-l 1m log [detS(Z)]. (to) 

FIG. 1. Crystal structure and intermolecular exciton inter­
actions in the naphthalene crystal. The pairwise interactions 
are indicated here by arrows originating from the origin (the 
shaded molecule) and terminated at its neighbors. For simplicity, 
only one unit cell is shown. It should be noted that each molecule 
is coupled with all 16 neighbors, eight of them are translationally 
equivalent, and the rest are interchange equivalent with respect to 
the molecule in question. The upper right figure depicts the 
shape of the crystallites used in our calculations. 
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FIG. 2. Density-of-states 
functions for mixed crystals 
of naphthalene-h. and -d. with 
various compositions. The 
histograms and the solid curves 
are, respectively, density-of­
states functions calculated 
from the NFC method and the 
CPA. Spikes marked I, II, 
III, I', II', III' are identified 
as conglomerate states shown 
in Table III. The upper left 
figure contains both the pure 
crystal density-of-states func­
tions (for the B component, 
or naphthalene-dB) calculated 
from the NFC method 
(histogram) and from the 
dispersion relation ( dots) . 
Conglomerate states in the 
dilute mixed crystal are also 
shown in the same figure. 
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In the last step we have used the equality: 

detS(Z) = II (Z-An). 
n 

(lla) 

Let us assume that detS(Z) can be factorized into 
another form: 

detS (Z) = II Qn (Z). (l1b) 

From Eq. (10) we have 

M(E)=(N1I")-IJmlog[IIQn(Z)]. (12) 
n 

Alternatively, we can rewrite Eq. (12) as 

M(E) =11"-1 1m fo::: P[Qn(Z) J log [Qn(Z) JdQn(Z), 

(13) 

where P[Qn (Z) J is the density distribution function 
of the quantity Qn (Z). Integrating by parts and dis­
carding the term without an imaginary part, we have 

M(E)=1I"-IJm L:="'M'(Qn) o Qn-1dQn, (14) 

where 

is a function similar to M for the quantity Qn'. Con­
sequently, we have 

M(E) =M'(Qn=O) = i:=o P(Qn')dQn'. (1S) 

Equation (1S) states that the number of eigenvalues 
smaller than E is exactly equal to the number of 
negative Qn'S, if we can factor the determinant in the 
form of Eq. (11 b). This is the theorem underlying 
the method of NFC first proposed by Dean.6a 

To achieve the factorization in Eq. (llb), Dean6
& 

used a method formally identical to the reduction 
process of Gaussian elimination.26 The NXN sym­
metric matrix of SeE) is first partitioned as 

(16) 
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TABLE II. Sample sizes and actual concentrations used in calculating peE) in Figs. 2-5. 

'B Total Resolu- Total Resolu-
(em-I) CA· fA b no,C 

315 0.1 0.088 1280 
0.2 0.195 1280 
0.3 0.291 1280 
0.4 0.399 640 
0.5 0.5 640 
0.6 0.613 320 
0.7 0.735 320 
0.8 0.845 320 
0.9 0.931 320 

1350 0.7 0.735 320 
274 0.7 0.735 320 
251 0.7 0.735 320 

1350 

a Nominal concentrations. 
b Actual concentrations. 

where Xl is the upper left element of the original 
matrix (a submatrix of order unity) and Zl is of 
order N -1. YI is a row vector and YIT is its trans­
pose, Now detS can be reduced into 

detS=detXI detV2}, (17) 
where 

(18) 

Here V2) is the submatrix obtained by eliminating 
all but the first element of the first column of detS, 
using elementary determinant theory. This process is 
continued and a sequence of submatrices is obtained: 
VIl, V2), "', VN). Each time the order of the sub­
matrix is reduced by one until finally we have VN) 

which is of order unity. The formula to obtain L(j+l) 
from LU> is simply a generalization of Eq, (18), 

(19) 

where X j is, of course, the upper left element of LW. 
In this way a factorization of detS is obtained: 

detS=detXI detX2 •• ·detXN • (20) 

Since all determinations on the rhs are of order one, 
we have 

N 

detS= rrXn • (21) 

As a direct consequence of the theorem proven above 
[Eq. (15)J, we obtain M(E) by simply counting the 
number of negative Xn'S in the rhs of Eq. (21). The 
density-of-states function peE) is then obtained by 
differentiation of M (E), 

If molecules are numbered first along a, then b 
and then c, where a, b, c are crystallographic axes, 
we can see that the total number of computations 
necessary to achieve the form of Eq, (20) is roughly 

tus. Nas·Nbs. Nc, 

tiond 
CB • fB b no.C tiond 

5 0.9 0.901 640 5 
5 0.8 0.825 320 10 
5 0.7 0.723 320 10 
5 0.6 0.613 320 10 

10 0.5 0.5 640 10 
10 0.4 0.378 640 5 
10 0.3 0.291 1280 5 
10 0.2 0.194 1280 5 
10 0.1 0.088 1280 5 
10 0.3 0.291 1280 5 
10 0.3 0.283 640 5 
10 0.3 0.283 640 5 

0.5 0.5 1280 5 

C Total number of molecules =U XXa XNc Xllib. u, 1\"0, Sc always equal 
to 2, 4, 4. l\"b = 10,20, 40 when the total number equals .no, 640, 1280. 

d In units of em-I, 

0.01 
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0 
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0 
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EA =200 em-I 
E8=251 em-I 

300 400 
E8= 1350 em-I 

1300 140.0. 

FIG. 3. Density-of-states functions for 70:30 mixtures with 
various trap depths. The bottom one corresponds to the deep 
trap case. The other three are, from the top: naphthalene-hg/ad., 
naphthalene-hg/M., and naphthalene-h8/d., respectively. Cluster 
and conglomerate states are not marked here but are included in 
Table III. 
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where Na, Nb, Nc are the numbers of unit cells along 
a, b, c, respectively, and u is the number of molecules 
within the unit cell. To reduce the cost of computa­
tion, it is common practice to choose a crystallite 
elongated along a particular direction, such as c in 
this case, so that the cost will only increase linearly 
with the increasing total number of molecules. 

As it has been demonstrated, this method can be 
used for ordered systems [Eq. (4) J, disordered sys­
tems with two or more components [Eq. (5)J, and 
more complicated systems such as amorphous systems 
or liquids. In the present case the off-diagonal ele­
ments are taken from recent information of pairwise 
interactions3 and the diagonal elements (equal to either 
EA or En) are put in with the help of a random number 
generator (URAND), which generates random numbers 
between 0 and 1.0, in the University of Michigan 
MTS library. This process is identical to the one 
previously described by Dean.6a All computations were 
performed on the IBM 360 computer. 

III. RESULTS AND DISCUSSIONS 

Ao Calculations of Density-of-States Function of 
Isotopically Mixed Crystals of Naphthalenes 

The random lattice calculations were perfomled on 
the heavily doped mixed crystals of naphthalenes in 
the IB2" excited state. The dispersion relation and the 
band structure of this particular exciton band has 
been studied recently by Hong and Kopelman.3b •c 

Although three sets of interactions were obtained, as 
shown in Table I, most of our calculations were done 
on the first set because of its consistency with the 
octupole modeI.27 We discuss later some of our cal­
culations with the other two sets, together with the 
potential use of heavily doped mixed crystal data to 
distinguish different models of exciton interactions. 

In Fig. 1, various intermolecular exciton interactions 

68= 1350 em-I 

QOIO C8 =0.3 

ill 
<:< 0005 
(/) 
UJ 
>-
~ (/) O~----~----~---J~~ 

~ 
>­
t-
U) 0005 z 
~ 

1300 1400 
ENERGY (em-I) 

FIG. 4. D~n~ity-of-~tates functions for a deep trap case with 
two compOSItions. Smce the two subbands are essentially 
decoupled, only one of them is shown here. 

(/) 
w 
>-
~ 
(/) 

FIG. S. Conglomerate states of ~ 
naphthalene-h8 for 10% mixed)­
crystals of naphthalene-h8 in d8 ~ 
with various sets of exciton inter- ~ 
actions: (a) Set 1 (b) Set 2 (c) ~ 
Set 3 in Table 1. 

in the naphthalene crystal are shown. It is noted that 
eight translationally equivalent interactions and eight 
interchange equivalent interactions are included in 
our calculations. Since our samples are of finite size, 
choices have to be made as to the particular axis to 
be elongated in order to get good results within a 
reasonable cost limit. As shown in Fig. 1, we finally 
settle for samples elongated along the b axis. Cyclic 
boundary conditions have been imposed only along 
the other two axes. That this particular choice does 
yield satisfactory results can be seen from Fig. 2. 
In the first figure (marked Cr -70, Cn~1.0) two 
density-of-states functions are shown: one (the histo­
gram with 10 cm- l resolution) calculated from the 
NFC method for a sample of the size 2X4X4X 10=320 
(uX"YaX.YcXNb ); the other (dots) calculated ana­
lytically by using the dispersion relation3c for the pure 
crystal of naphthalene (with 432000 molecules): 

€(k±) = 2Ma cos(koa) +2Mb cos(kob) +2Mc cos(k o c) 

+2Ma+c cos[k o (a+c) J± 14M12 cos(koa/2) 

Xcos(k o b/2) +4M12{cos(k o c) cos(k o a/2) 

Xcos(kob/2) -sin(koc) sin(k oa/2) 

Xcos(kob/2)J), (22) 

where the M's are the pairwise interactions listed in 
Table I and the signs refer to the interchange group 
designations. 16 Good agreement is noted. Furthermore, 
for Cn =0.9, it is expected that the density-of-states 
function for the B component should be very similar 
to that of the pure crystal (Cn= 1.0). Calculations 
for a bigger sample (2X4X4X20) show that (second 
figure in Fig. 2) even at higher resolution (5 em-I) 
NFC results agree with analytical results. In later 
sections, we shall show that our ~FC results also yield 
satisfactory moments and cluster states. We have thus 
ample evidence that our samples are good approxi­
mations to infinitely large crystals. Notice that, be­
cause of the large M12 term, the present three di­
mensional exciton actually possesses some laminar 
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TABLE III. Conglomerate states in dilute and heavily doped mixed crystals of naphthalenes (em-I). 

Naphthalene-hal ds N aphthalene-dsl hs 

Assign- Assign-
Dilute" mentb H.D." Dilute" mentb H.D." 

213) 
343] 

to II 
to ~ II' 208 340.2 (12)+ 

207.5 (12)+ 338J 

196.5 b- 333) 
193] 332.6 c+ 

192.5 a- I 329.9 a+ 
to ~ I' 190.7 c+ 

to f I 
328.2 (a+c)-

190.5 (a+c)- 326.5 b+ I 
186.5 M 325.7 M I 
183.0 (a+c)+ 

183J 
325.0 b-

I 324.5 (a+c)+ 

I 
182.5 c- 322.3 a- I 
181.5 a+ 318.9 c+ 

318) 178.5 b+ 

173] 308.1 (12)-

to ~ III 171.5 (12)-
308) 

168J 
to III' 

303 

"Taken from Fig. 6 of Ref. 3 (c). 
b (12)+ =plus state of interchange equivalent dimer; a+ =plus state of 

translationally equivalent dimer along a axis. M =monomer. etc. The 
conventions used here are those of Ref. 3(c). 

properties. This is why, in doing actual calculations, 
we find that computations based on an elongated a 
axis are equally good, whereas those based on an 
elongated c axis are completely unacceptable. 

In Table II we list the sizes of samples which we 
use in calculating the density-of-states functions in 
Figs. 2-5. It is noted that, because of the finite sizes 
of samples, the actual concentrations are not exactly 
equal to the nominal concentrations.6a Since fine struc­
ture is expected in the guest region, larger samples 
are used to obtain better resolution. This introduces 
errors in normalization. No corrections are made in 
preparing Figs. 2-5; however, renormalization is car­
ried out when moments are calculated and compared 
with analytical result (vide infra), by multiplying 
both the density-of-states functions and the concen­
trations with the common factor l/(jA+fB). This 
process is not required in a 50:50 mixture. In this 
particular case, the density-of-states functions of both 
a given system (e.g., .. ·AABABB···) and its in­
verted system (i.e., " ·BBABAA···) are computed. 
The final density-of-states functions are taken as the 
average of the two and hence automatically renor­
malized.6a Typical computation time for the largest 

N aphthalene-pd4/ hs ~ aphthalene-ad4/ ha 

Assign- Assign-
Dilute" mentb H.D.d Dilute" mentb H.D.-

305\ 
287] 

302.0 (12)+ to 284.0 (12)+ to) I 
300) 282 

292.0 M 276.0 M 

290) 272) to to 
285 267 

257] 

274.0 (12)- 253.0 (12)- to ~ 
I 

270) 
247) 

to 
265 

e Heavily doped. taken from Fig. 2. 
d Taken from Fig. 3. EB =274 em-I. 
_ Taken from Fig. 3. EB =251 em-I. 

samples (1280 molecules) is around 1 min for each 
point. Consequently, a complete scan of a density-of­
states function requires 20-30 min. To reduce the 
storage space, matrix elements are generated at the 
time they are actually called for. 

Together with the NFC results, CPA results using 
the same interaction parameters are also given in 
Figs. 2-4. It should be pointed out that, contrary to 
the NFC method, CA and CB are now actual con­
centrations and the whole region is covered in a single 
calculation. The density-of-states function are thus 
automatically normalized (see later discussions on 
moments). The actual calculations were carried out 
by solving two simultaneous equations involving the 
CPA Green's function and the self-energy.IO.16 A trial 
and error method was used,28 based on Newton's 
iteration method described. lO •l6 The pure crystal den­
sity-of-states function used is shown in Fig. 2 (CB~1.0) 
with 1 cm-l resolution. Mixed crystal density-of-states 
functions are calculated with the same resolution. 
Solid curves are used for mixed crystal peE) because 
CPA calculations tend to smear out fluctuations which 
are discernible in the original pure crystal density-of­
states function. 
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B. Discussions on the NFC and CPA Results 

The mixeu crystal density-of-states functions for 
naphthalene-kg and -ds are shown in Fig. 2. For con­
venience, we have chosen the band center of naph­
thalene-hs as 200 cm-I while experimentally it is known29 

to be at 31556 cm-I • In Fig. 3, density-of-states 
functions for binary systems with various energy 
separations and fixed composition are shown. In Fig. 4, 
we examine the density-of-states function when the 
energy separation is large and the guest and host 
subbands are essentially decoupled. Except for the 
deep trap case, calculations are done for real systems, 
e.g., fB=274 cm-I corresponding to naphthalene-,Bd4, 

fB = 251 cm-I to naphthalene-ad4, etc. 
As we can see from Figs. 2 and 3, the CPA results 

agree well with the NFC results in the host regions. 
In the guest regions, the NFC results show very pro­
nounced fine structure, reminiscent of the "spiky" 
structure observed in one-dimensional systems.6a .6c 

These fine structures are smeared out by the CPA 
because the k, j dependence of the self-energy has 
been ignored.21 

It was first demonstrated by Dean6a that gues.t 
clusters (in his language "islands" of guests in the 
"sea" of host) are the origin of the "spikes" in the 
density-of-states functions of mixed crystals. This was 
explicitly shown for one- and two-dimensional sys­
tems6a and by implication for three-dimensional ones. 
The latter have been further discussed more re­
cently.6b.l0 

For three-dimensional exciton systems we find it 
necessary to be careful with our terminology. We 
define a guest cluster as a set of guest sites connected 
by nonvanishing (usually pairwise) interactions. This 
implies essentially short-range interactions and an ar­
bitrary cutoff. In our specific case of naphthalene we 
have assumed nonvanishing pairwise interactions only 
for the lattice translation R for which I R I is equal 
to the absolute magnitude of one of the vectors listed 
in the second column of Table 1. We note that this 
definition makes the set of possible clusters dependent 
on the specific energy band and its interactions. We 
also note that a guest cluster may have in it a host 
"hole," and there may even be a separate guest cluster 
inside the hole, etc. Using the same definition as for 
guest clusters, we call these "holes" kost clusters. Al­
though statistically host clusters are less probable, we 
do want to emphasize that such a "pond" of hosts 
in the island of guests usually cannot be considered 
as a part of the "sea" of hosts. 

In the deep-trap limit (say !),,2jLiMi2~ro, where 
Mi is any interaction) the excitation is completely 
localized ("trapped") inside the cluster. As long as 
the cluster is finite, this localized excitation has a 
discrete set of eigenvalues (even though it may be 
superimposed by a continuous band due to the ex­
citation of clusters of infinite extent, guest or host). 

In our picture the cluster states are influenced by the 
static field of the host (or the guest if it is a host 
cluster) but are dynamically completely "decoupled" 
from the latter and from the rest of the clusters (as 
if the cluster were in empty space). This means no 
quasiresonance29 or superexchange3b .3c interactions. 

For a guest-host energy separation (trap-depth) 
comparable to the bandwidth ("shallow trap case"), 
the cluster is dynamically coupled to the host and 
through the host to other clusters. In somewhat ar­
bitrary fashion one can now combine a given guest 
cluster with the surrounding host space to form a 
larger unit, an excitation region or "conglomerate." 
The arbitrary criterion is related to the "effective" 
confinement of the excitation inside the conglomerate 
(say 95%). At this point, we can bring in the tun­
neling effect. In principle, tunneling among the con­
glomerates is always present. However, with the same 
arbitrariness, we can choose to ignore it if the cou­
pling is, say, less than 5 cm-I (the present resolution). 
In cases where the coupling exceeds such a limit, two 
or more coupled conglomerates will have to be con­
sidered as a single conglomerate. A conglomerate is 
therefore characterized by the guest clusters it con­
tains and by the appropriate portions of the host 
space. If the conglomerate is finite (again assuming 
an infinite crystal), one still expects pseudolocalized 
excitations with quasidiscrete eigenvalues. In defining 
clusters and conglomerates, we are, therefore, looking 
for a workable scheme of decoupling so as to reduce 
the number of bodies involved. It is within the afore­
mentioned context that we speak of monomer, dimer, 
etc. (i.e., conglomerates with one, two guests, etc.) 
in heavily doped mixed crystals, despite the fact that, 
strictly speaking, conglomerates are never really de­
coupled. We also make a distinction between the 
cluster and the conglomerate states, the former for 
infinite trap depth and the latter for trap depths that 
are comparable to the bandwidth. Later, we shall 
demonstrate how such concepts can be used in prac­
tice to discuss the eigenstates of a disordered system. 

We define as "percolation point"3o the lowest guest 
concentration at which an infinitely extended guest 
cluster is likely to form. We note that this limit 
depends again on the set of interactions (Mi), which 
is specific not only to a given crystal but also to a 
given exciton band. In the deep-trap limit we expect 
the density-of-states function (in the guest region) 
to be discrete below this percolation point and to 
develop continuity at the point. For finite trap depths 
we define an "effective percolation point"-the lowest 
concentration at which an infinitely extended guest 
conglomerate is likely to form. Obviously one expects 
at this point a "transition" from quasidiscrete to con­
tinuous eigenvalues in the density-of-states function. 
The observation of any such transition will, of course, 
depend on the resolution with which the density-of­
states function is viewed, and on the nonoverlapping 
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TABLE IV. Comparison between the exact moments' calculated from Eq. (23) and those of 

Conc (CA ) 0.1 0.3 
Trap depth" 115 cm-1 115 cm-1 

Moment" E.M.d %e E.M. % 

!J.o 1.0 0.04 1.0 -0.03 
!J.IXlO-2 0.4600 0.20 0.2300 0.00 
J.!2XlO-4 0.4726 0.19 0.4726 -0.11 
!J.3XlO-6 0.3329 0.33 0.1589 -0.19 
)LjXlO-8 0.3748 0.37 0.3436 -0.18 
J.!5X 10-10 0.3192 0.63 0.1458 -0.28 
!J.6XlO-12 0.3649 0.74 0.03028 -0.20 
!J.7X10-14 0.3509 1.02 0.1520 -0.33 

• Calculated by using the following values for the moments of the 
pure crystal density-of-states function: J.!2(0) =0.142 Xl0', !J.3(0) = -0.152 X 
10', !J..(0)=0.455Xl07, !J.,(O) = -0.106Xl0', !J.,(O) =0.191 X lOll, J.!7(0)= 
-0.649 X 1012• The nth moment has the dimension of (cm-1)n. 

of discrete and continuous eigenvalues (quasidiscrete 
states may be found located inside a continuous 
band). In either case percolation implies an effective 
delocalization of the cluster or conglomerate excita­
tion and the probable disappearance of sharp energy 
spikes from the density-of-states function. 

The concepts of cluster and conglomerate can now 
be used in discussing our results in Figs. 2-4. It is 
apparent that in the limit of infinite dilution, all the 
clusters and conglomerates are completely "isolated" 
from each other. The corresponding cluster or con­
glomerate states are well defined and appear as 0 func­
tions in p(E). At slightly higher concentrations, 
broadening will take place. In the case of cluster 
states, the broadening comes from the increase in the 
cluster size whereas in the case of conglomerate states 
the increased size of conglomerates and/or the cou­
pling among them cause the broadening. In practice, 
however, such broadening is frequently so small that 
identification of "spikes" in peE) with the isolated 
cluster or conglomerate states in the dilute limit is 
still possible. It is exactly because of this that we 
find it convenient to define clusters and conglomerates 
in the way we did above. Conglomerate states in the 
very dilute (;s 1%) isotopically mixed crystals of 
naphthalene have been studied both theoretically3b,3C 
and experimentally.3a In Table III resonance pair 
conglomerate states for dilute mixed crystals of naph­
thalene are tabulated,31 together with the peaks ob­
served in Figs. 2 and 3. It should be pointed out 
here that both the quasiresonance effect and the 
superexchange effect3b ,3c have been taken into account 
for monomer and dimer conglomerates. We notice 
that, in each case, the fine structure in the density­
of-states function can be satisfactorily identified with 
the appropriate conglomerate states in the dilute limit. 
Thus the way we define clusters and conglomerates 
enables us to establish a 1: 1 correspondence between 

0.5 0.7 
115 cm-1 115 cm-1 

~-~--~---------

E.M. % E.M. 

1.0 -0.05 1.0 
0.0 O.OOOl f -0.2300 
0.4726 -0.13 0.4726 

-0.01515 0.46 -0.1892 
0.3426 -0.18 0.3715 

-0.03560 0.20 -0.2250 
0.3051 -0.20 0.3741 

-0.05908 0.20 -0.2953 

b Defined as fB-fA . 

"The nth moment has the dimension of (cm-1 In. 
d Exact moments from Eq. (23). 

% 

-0.04 
0.00 

-0.08 
0.16 

-0.14 
0.09 

-0.11 
0.03 

clusters and conglomerates in heavily doped mixed 
crystals and those in the dilute mixed crystals. 

It can be seen in Fig. 2 that, while we have six 
distinguishable resonance pairs [only five are listed 
in Table III, the sixth one with separation equal to 
H a + b ) + c can be ignored together with all other 
nonnearest neighbors, because of small interactions], 
only the interchange dimer states (peaks in Fig. 2 
marked II, III, and II', III') are resolved from the 
main monomer peaks (marked I and I' in Fig. 2). 
This is so not only because of the large M12 but also 
because there are four identical interchange dimers 
[with separations: Ha+b), Ha-b), H-a+b), 
H - a - b)] as compared to only two for each trans­
lation pair. As a matter of fact, within the present 
resolution, we can redefine our clusters as consisting 
only of molecules coupled through the large M12 term. 
Thus a pair of guests connected by, say, the relatively 
small Ma term will be considered as two weakly cou­
pled monomers rather than a dimer. Such a procedure, 
although somewhat arbitrary, does offer a satisfactory 
and consistent way of describing the energy in heavily 
doped mixed crystals. As we can see from Fig. 2, ini­
tially the presence of more guests results in the creation 
of more localized conglomerate states (such as mono­
mers and dimers) rather than the enhancement of the 
degree of delocalization. As the guest concentration is 
further increased, the density-of-states function de­
velops a continuous background, indicating that larger 
conglomerates are being formed. Apparently, the crea­
tion of new conglomerates and the expansion of the 
existing ones are two competitive processes. The com­
petition continues until at a certain concentration all 
the conglomerates are coupled to form delocalized 
states, with the disappearance of fine structure in 
peE) at such a concentration, indicating that "effec­
tive percolation" (vide ultra) has been reached. Two 
interesting points to be noted here arc: (1) The 
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the mixed crystal density-of-states functions based on the CPA (solid curves in Figs. 2-4). 

0.9 0.7 0.5 0.7 0.7 
115 cm-1 1150 cm-1 1150 cm-1 74 cm-1 51 cm-1 

E.M. % E.M. % E.M. 

1.0 -0.02 1.0 -0.07 1.0 
-0.4600 -0.09 -2.300 -0.04 0.0 

0.4726 -0.02 33.20 -0.06 33.20 
-0.3632 -0.06 -77.04 -0.05 -0.01515 

0.4305 0.07 1 114 -0.09 112 
-0.4224 -0.21 -2 626 -0.04 -2.516 

0.5120 0.27 37 720 -0.05 37 550 
-0.5697 -0.37 -91 020 -0.08 -234.9 

e Percentage error = 100 X (moment of the mixed crystal density of 
s.tates function-exact moment)/absolute value of exact moment. 

f Differences in moments, not percentage error. 

monomer peak is identifiable above the continuum 
even at an appreciable concentration ("-'30%) in­
dicating that localized states persist up to such a 
concentration. (2) Localized states do exist inside the 
band, contrary to the conjecture by Economou and 
Cohen32 that such states only exist at the band edges. 
This picture actually agrees qualitatively with the 
experimental observations of Hong and Robinson. ls 

Basically, this result is due to the fact that exciton 
interactions involved here are short range. Where long­
range interactions such as dipole-dipole interactions 
are dominant, it is expected that the fine structure 
will be smeared out even at the lower concentrations. 
Finally, we notice that, at least in our present case, 
conglomerates based on larger clusters such as trimers, 
quadrumers, etc. (three or four guests coupled through 
the M12 interaction), do not contribute in a major 
way to the fine structure in p(E). A self-consistent 
theory which takes into account the pair effects would 
probably be sufficient for some purposes. Attempts 
have been made along this direction with some success.33 

In Fig. 3, results for different energy separations 
(trap depths) at fixed composition are shown. From 
the study of dilute systems, it is well known that, 
with smaller energy separations, guest levels are not 
completely localized.34 Consequently, the radii of the 
excitations are extended to cover at least the nearby 
hosts. The fine structures of p(E) in the guest (B com­
ponent) regions are now associated with the conglom­
erates, which are definitely larger than the clusters, 
due to delocalization. The net effect is that delocalized 
states can now be formed at comparatively lower con­
centrations. It can be seen from Fig. 3 that, with an 
energy separation of 51 cm-I, the erosion of fine struc­
ture at 30% is already apparent. Prominent peaks in 
Fig. 3 can also be identified with the conglomerate 
states in dilute systems as shown in Table III. 

In Fig. 4, results in the deep trap limit (trap 

---------
% E.M. % E.M. % 

-0.04 1.0 -0.02 1.0 -0.02 
-0.00081 -0.1480 0.14 -0.1020 0.20 
-0.03 0.2789 -0.25 0.2070 -0.20 

-199.0- -0.09845 -0.29 -0.06523 0.29 
0.27 0.1572 -0.25 0.09577 -0.19 

-44.5" -0.08777 0.27 -0.04930 0.18 
-0.05 0.1164 -0.34 0.05892 -0.20 

-19.2" -0.08413 0.36 -0.03926 0.28 

- The percentage error is largely due to the fact that the moment is a 
small difference of two large numbers; see text. 

depth = 1150 cm- l ) are presented. The energy separa­
tion is such that the two subbands are almost de­
coupled and hence only one subband is shown. The 
density-of-states functions at two concentrations (30% 
and 50%) are strikingly different from those of the 
disordered chain6 in that most of the "spiky" struc­
ture commonly observed in the latter case is lost 
in the present three-dimensional case even though 
here the conglomerates are essentially reduced to their 
skeleton clusters. Although the present resolution is 
not very high, it seems very unlikely that conceptually 
different pictures would emerge from a study with 
improved resolution. The fact is that because of the 
large number of pairwise interactions actually used 
in our calculations, and hence the large varieties of 
clusters present, cluster states are more spreadout in 
energy than in the one-dimensional case or the multi­
dimensional case with fewer interactions. This reduces 
the strength of the "spikes" and smears out the fine 
structure in the density-of-states function. The 50% 
sample is especially interesting. Results by Payton 
and Visscher6b show that for the same concentration 
all the eigenstates are localized in disordered chains 
consisting of two very different masses, whereas in 
our case delocalized states apparently exist simply 
because more channels are available for excitation 
delocalization. 

Finally, we should also point out that, although 
many useful results have been obtained from phase 
theory in the case of linear chains, notably those 
concerning the special frequencies where the density­
of-states function vanishes, its applications to dis­
ordered 3-dimensional lattices remain to be explored. 
At our concentrations there are hardly any places 
where our density-of-states function vanishes (besides 
the region separating the two subbands). Even in the 
deep-trap limit (Fig. 4), no breaks in the host or 
guest regions are apparent for guest concentrations 
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TABLE V. Comparison between the exact moments' calculated from Eq. (23) and those of the 

Cone. (CA)h 0.089 0.29 0.5 0.72 
Trap depthh 115 cm-1 115 cm-1 115 cm-1 115 cm-1 

---~---- --------- -~--------- -~-~-----

Momentc E.M.d %e E.M. % 

!J.O 1.0 ••• h 1.0 
!J.1XlO-2 0.4726 -0.0 0.2450 2.8 
!J.2XlO-4 0.4726 -2.1 0.4726 -0.4 
!J.aXlO- 6 0.3425 -2.0 0.1702 1.7 
!J.4XlO-s 0.3773 -4.1 0.3447 -2.8 
!J..X 10-10 0.3285 -4.7 0.1573 -1.0 
!J.sX 10-12 0.3702 -7.0 0.3049 -5.3 
!J.7X1Q-14 0.3617 -8.1 0.1652 -4.4 

a-I See footnotes in Table IV. 

higher than 30%. Part of the reason may be the fact 
that we are dealing with excitons rather than phonons 
(see Sec. II.A). The usefulness of phase theory as 
applied to real disordered lattices might also be some­
what limited.30 

C. CPA and NFC Results vs Exact Moments of 
Density-of-States Functions 

In a recent paper, Hong and Kopelman21 calculated 
a number of moments for both the spectral density 
and the overall density-of-states function from the 
exact Green's function. 16 It was also shown that the 
density-of-states function based on the CPA yielded 
the correct eight lower moments. Furthermore, as 
expected, these lower moments of the mixed crystal 
density-of-states functions are expressible in terms of 
moments of the pure crystal density-of-states function: 

/-10= 1, 

111= f, 

/-12= 112/4+Jl2(0) , 

/-13= EI12/4+3fI12(0) +113(0) , 

/-14= 114/16+ (112+ 2E2) 112(0)+4EI13(0) +/-14(0) , 

/-15= fI14/16+SEI12112(0) /2+ (5112/4+5E2) 1l3(0) 

+ 5E/-I4 (0) + 110 (0) , 

1l6= 116/64+ (9114/16+3E2112/2+3xyI12/-12(0» J1.2(0) 

+ (9EI12/2+2E3)J1.3(O) + (3112/2+9E2)J1.4(O) 

+ 6EJ1.5 (0) + /-16 (0) , 

J1.7= EI16/64+ (2IEI14/16+ 7ExyI12112(0) + 7 XyI12J1.3(0» 112(0) 

+ (7114/8+ 2h2112/4) J1.3(0) + (7EI12+ 7E3) 114(0) 

+ (7112/4+ 14E2) J1.5(0) + 7E/-I6(O) +l1i(O) , 

where 

(23) 

E.M. % E.M. % 

1.0 1.0 
0.0 0.00334£ -0.2488 -1.2 
0.4726 -2.5 0.4726 -0.0 

-0.01515 46.0" -0.2034 5.1 
0.3426 -4.9 0.3752 -3.7 

-0.03560 29.5" -0.2409 9.6 
0.3051 -7.3 0.3828 -8.3 

-0.05908 23.6" -0.3162 13.0 

h Renormalizations have been done for both concentrations and 

is the nth moment of the pure crystal density-of-states 
function p(O)(E). Also, I1=EB-EA and E=CAEA+CBEB 
are, respectively, the energy separation and the 
weighted mean of the excitation energies EA, EB. We 
have put CA=x and CB=y to conform with previous 
notation.12 ,21 Notice that Eq, (23) is valid only if the 
moments are evaluated about the origin H EA +EB). 
Therefore now E= (CB-CA)I1/2. Higher moments for 
the density-of-states function based on the CPA will 
still be expressible in terms of pure crystal moments 
I1n (0), but those of the exact density-of-states function 
will not. 36 This is expected if one considers the fact 
that, while the pure crystal density-of-states function 
is the only parameter (except for trap depth) needed 
in a CPA calculation, the complete dispersion relation 
is required in an exact calculation. Analytical expres­
sions for some lower moments of the spectral density 
function were also obtained by Hong and Kopelman.21 

They will be discussed in a future work on the optical 
spectra of mixed crystals. 

To evaluate the quality of our numerical calcula­
tions, we compare the moments of mixed crystal 
density-of-states functions shown in Figs. 2-4 with 
those directly calculated from Eq. (23), Moments for 
p(O) (E) (shown in Fig. 2) can be determined either 
from Eq. (24) or directly from the intermolecular 
exciton interactions.3c For example, in the present case 
we have [put R=O in Eq, (38) of Ref. 3(c)]: 

J1.2(0) = 2 (Ma2+Mb2+Mc2+Ma+c2) +4(M122+Ml2'2) , 

113(0) = 12 (MaM 122+ MbM122 + MaMcMa+c+ MbM12,2) 

(25) 

As shown in Table IV, the moments of our CPA 
density-of-states functions agree with those calculated 
from Eq. (23) to better than 1% in most cases, 
Notice that in a 50: 50 mixture with large energy 
separation the odd moments are differences of two 
larger numbers (one for each subband). This is why 
the percentage errors in such cases are much larger 
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mixed crystal density-of-states functions calculated by the NFC method (histograms in Figs. 2-4). 

0.91 0.72 0.5 0.72 0.72 
115 cm-1 1150 cm-1 1150 cm-1 74 cm-1 51 cm-1 

E.M. % E.M. % E.M. 

1.0 1.0 1.0 
-0.457 -0.6 -2.488 4.3 0.0 

0.4726 -1.1 33.20 4.9 33.20 
-0.3750 4.2 -83.35 3.4 -0.01515 

0.4356 -6.2 1 114 4.0 112 
-0.4362 9.5 -2840 2.6 -2.516 

0.5240 -11.7 37 750 3.2 37 550 
-0.5901 14.6 -98460 2.1 -234.9 

density·of-states functions (ef. Table II). 

than others. Most of the discrepancies appear to occur 
at the edges of the bands, where small contributions 
to the density-of-states function are either neglected 
or exaggerated in our program. This good agreement 
indicates that our CPA results are quite accurate. 
On the other hand, we have a numerical check on 
the validity of Eq. (23). 

The comparison between the exact moments from 
Eq. (23) and those of our NFC density-of-states func­
tions is shown in Table V. Notice that, while our 
histograms have a resolution of 5 cm-t, the moments 
have been calculated with 1 cm-1 increments. Notice 
also that renormalization has been done on both the 
density-of-states functions and concentrations (d. Ta­
ble II) in preparing Table V. Generally, the discrep­
ancies are roughly 1 order of magnitude larger than 
in Table IV. In 50: 50 mixtures, large discrepancies 
are again observed between the values for odd mo­
ments (even when the trap depth is only 115 cm-I ) 

because they are differences of larger numbers. Two 
sources of errors are apparent: (1) limited resolution, 
(2) limited size of sample. Nevertheless, because of 
the satisfactory agreement, we are inclined to believe 
that the present sizes of samples are adequate for the 
present resolution. This is, of course, also supported 
by the good agreement observed in Table III, where 
conglomerate states calculated from our samples (1280 
molecules at most) are compared with those from a 
much larger sample (16000 molecules) in the dilute 
limit. The conclusion is that our NFC results, except for 
their limited resolution, are quite satisfactory. Com­
parison between the moments has never been done in 
all the previous calculations on the random lattice 
problem. Dean6a has shown that we cannot satisfac­
torily determine the density-of-states functions from 
known moments (the moment trace method of Domb 
et al.37 ). However, moments are very useful as inde­
pendent criteria if density-of-states functions can be 
determined from other methods. Finally, we would 
like to point out that all the moments here are eval-

% E.M. % E.M. % 

1.0 1.0 
-0.000131 -0.1643 2.3 -0.1132 3.9 
-0.33 0.2789 -2.6 0.2070 -3.8 
-8.4'< -0.1076 10.6 -0.07074 10.9 
-0.63 0.1596 -8.8 0.09713 -10.2 
28. ()c -0.09533 16.5 -0.05312 15.8 

-0.93 0.1204 -15.0 0.06082 -15.8 
31.3' -0.09151 21.2 -0.04237 19.6 

uated using the mean of fA and fB as origin. Because 
of this "democratic" process, moments thus obtained 
are more representative of hosts than of guests. A 
method which yields correct host states, such as the 
CPA method, will compare more favorably than other 
methods. To emphasize the guest states, it might be 
desirable to evaluate moments about such points as 
the weighted mean, namely, CAfA+CBfB. 

D. NFC Results and Exciton Pairwise Interactions 

The density-of-states functions of heavily doped 
mixed crystals are completely determined by the en­
ergy separation and the exciton pairwise interactions. 
Consequently, one aspect of mixed crystal studies is 
either to extract information concerning such inter­
actions from the known density-of-states function, or 
knowing the interactions, to compare the calculated 
density-of-states function with experiments. One could, 
for example, study the mixed crystal density-of-states 
functions by a variation of the hot band spectroscopy2,18 
and through Eq. (23) learn about various moments 
of pure crystal density-of-states function. Alternatively, 
one could study the conglomerate states in the dilute 
mixed crystals.3 As pointed out by Hong and Kopel­
man,3b,3c such a study should also include a variation of 
trap depths in order to monitor the superexchange 
effect. Investigations along this direction are being car­
ried out in this laboratory. Here, we shall examine the 
feasibility of utilizing the mixed crystal data to elu­
cidate the exciton interactions. 

Although we have a slight preference for the first 
set of exciton interactions listed in Table I, because 
it can be satisfactorily fitted with octupole parame­
ters,27 the other two sets also agree with all the known 
pure and mixed crystal dctta. We have performed some 
calculations using the other two sets as shown in 
Fig. 5. Only the density-of-states functions in the 
guest region are shown; those in the host region are 
quite similar to each other and are not shown. As 
we can see from Fig. 5, the differences are probably 
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less significant than the similarities. In other words, 
all three density-of-states functions reflect the fact 
that the interchange equivalent interaction (M12 ) is 
the predominant exciton interaction in lB2u naphtha­
lene. Despite the fact that translationally equivalent 
interactions are different for different sets, little effect 
on the final density-of-states function can be observed 
because of their small magnitude. To distinguish be­
tween the three sets, refined calculations and experi­
ments with better resolution are needed. However, it 
is certainly feasible at this stage to confirm the large 
interchange equivalent interaction from the mixed 
crystal band-to-band transition. Emission experi­
ments of this kind were done by Hong and Robinson,1s 
except that phonon participation appeared to smear 
out most of the spectral fine structure at liquid ni­
trogen temperature. Similar fluorescence experiments,1s 
at helium temperature, indicated that only interchange 
equivalent dimer and trimer states were populated. 
A more sensitive method, such as the photoexcitation 
method recently employed by Castro and Robinson,3s 
might enable one to carry out the band-to-band ab­
sorption experiments at temperatures slightly above 
4.2°K without demanding too thick a sample. 
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