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Numerical techniques have been used to study natural convection in a fluid subjected to axial
rotation. Axisymmetrical flows were studied in two different geometries for a variety of rotational
speeds. For case I (R; = 1.0, Ry = 2.5, H = 3.0), the computed flow patterns were qualitatively
compared with those which would be expected from the basic rules of physics, and good agreement
was obtained. Rotational speeds between @ = 0, and @ = 20 were studied for a Grashoff number
of 3000. Increased rotational speed was found to decrease the over-all heat transfer rate. For case II
(B: = 1.0, R, = 4.0, H = 1.0), rotational speeds of & = 0.0 to @ = 40.0 were studied at a Grashoff
number of 400. At low rotational speeds, a single convection cell was found, however, at higher
rotational speeds, the single cell became unstable, and changed to a two-celled pattern. This transition
resulted in a slight increase in the over-all heat transfer rate.

L. INTRODUCTION

As early as 1884, Vettin' reported experiments on
the convection patterns of a centrally cooled fluid
in a rotating basin. Later, Fultz® reported his studies
of water in a centrally cooled rotating pan. He
observed both axially symmetrical, and unsym-
metrical, but regular, convection patterns. The pan
used in these experiments was rather shallow be-
cause he was mainly interested in understanding
the large scale motions of the atmosphere.

In an attempt to develop an understanding of
the origin of terrestrial magnetism, Hide® performed
experiments similar to those of Fultz, but in much
deeper cylinders, and also observed patterns similar
to his. As Hide increased the rotational speed in
his experiments, he noted the formation of more and
more convection ‘“‘petals.”

Although Kuo* has made an excellent analysis
of the type of instability observed by Fultz and
Hide (i.e., the transition from one convection mode
to another), some simplifying assumptions were
necessary. This paper, and a recent paper by Wil-
liams,® represent an attempt to solve the equations
governing the flows studied by these authors nu-
merically. No simplifying assumptions, other than
the Boussinesq approximations, have been made. As
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a beginning, only axially symmetrical convection is
considered. It is hoped that in future studies axially
unsymmetrical flows will be studied at ever higher
rotational speeds.

II. MATHEMATICAL DESCRIPTION OF THE
PROBLEM

The model illustrated in Fig. 1 was used as the
basis for this study of free convection in a rotating
medium.

The central core r < r, is assumed to be solid
and is held at a temperature 6§ = 6,. The outer
boundary at r = 7, is held at constant temperature
6 = 0,. The bottom wall of the chamber at 2z = &
is a rigid surface, while the upper boundary z = 0
is assumed to be a free surface. The upper and lower
surfaces are assumed to be perfectly insulated against
heat losses. Thus, the fluid is confined within the
annular region r, < r < 1, 0 < 2z < h. The solid
boundaries of the chamber are subjected to a con-
stant angular rotation, and it is assumed that no
slip occurs on the solid boundaries.

Previous experimental investigation®? indicated
that the flows which developed in this geometry at
low rotational speeds were axially symmetrical.
However, at higher rotational speeds this sym-
metrical behavior broke down and a distinet varia-
tion of flow pattern with angular position formed.

In this study, numerical techniques are used to
solve the Boussinesq approximations to the equations
of motion and heat diffusion for axially symmetrical
flows. Although the methods presented herein may
be extended to cover nonaxially symmetrical flows,’
these calculations would have required considerably
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more computing time than was available at present.
It is hoped that the advent of higher-speed com-
puters, and better computing techniques for three-
dimensional flows will remove this restriction in the
near future.

The following dimensionless variables are defined:
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Where u, w, and v are radial », vertical z, and
tangential components of velocity; & is the thermal
diffusivity of the fluid; 6 its temperature at any
point, and 8 the coefficient of volumetric expansivity
(B = —1/p 9p/38). p' is the actual pressure at
any point minus the hydrostatic pressure in the
quiescent state. That is,

p'=p — (po + pg2).
The dimensionless form of the Boussinesq ap-
proximations to the equations of motion and energy

are then written as
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where Pr = ¢,u/k, the Prandtl number, and Gr =

K3gB(6, — 6,)/2+°, the Grashoff number. The dimen-
sionless heat transfer rate, or Nusselt number, is
then introduced as the ratio of the effective thermal
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conductivity to the actual thermal conductivity.

Therefore,
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The pressure terms in Eqgs. (1) and (2) may be
eliminated by cross differentiation and subtraction

to yield the vorticity transport equation
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The stream function ¢ is introduced so that the
continuity equation is satisfied:
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The vorticity is then expressed in terms of the
stream function as
1 (‘)(p]
R oR

e

[aR +
The boundary conditions for the problem are

expressed in terms of stream functions, temperatures,
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and tangential velocities as
Thermal
boundary Velocity boundary
Surface conditions conditions
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The vorticity, tangential velocity, and energy

equations [Egs. (7), (3), and (4), respectively] along
with the definitions of the stream function and the
vortieity, and the boundary conditions then rep-
resent a condensed formal statement of the problem.

II1. FINITE DIFFERENCE APPROXIMATIONS

In the numerical solution of a differential equa-
tion, the dependent variables are assumed to exist
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at a finite number of regularly spaced values of the
independent variables known as grid points. All
derivatives in the governing differential equations
are replaced by finite differences involving the
values of the dependent variables at the grid points.
The differential equations are then reduced to a
series of algebraic equations which may be solved
by conventional means using a digital computer.

Once a solution for the vorticity, angular velocity,
and temperature fields is known at any time (as
for example, at the start of a calculation when their
values are given by the initial conditions), then a
solution for a short time later may be evaluated in
several ways. The two-dimension implicit, alternat-
ing-direction method of Douglas, Peaceman, and
Rachford”™® was used in this work.

Radial and vertical velocities, and the values of
the vorticity on the wall (no vorticity boundary
conditions are available, and, therefore, the wall
vorticities cannot be calculated directly from the
governing differential equations), are held constant
throughout the time step at their values before the

time step began. Although this procedure introduces

error into the unsteady state results, this vanishes
at steady state and was of no concern since only
steady-state results were considered.

Once values of the vorticity at the end of the
time step are known, the new stream function field
must be determined. The stream function field is
related to the vorticity field by the differential
equation
1 (62<p
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Equation (11) greatly resembles a steady-state
heat-conduction problem with a nonuniform genera-
tion term (— 7). Therefore, this equation was solved
by converting it to the unsteady state form
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and integrating in ‘“‘time’’ with the alternating direc-
tion implicit procedure until the stream function field
no longer varied with time. Early experiments in-
dicated that large “time’’ steps could be used so
that steady state was approached rapidly—in most
cases within 1-5 iterations.

Once the new field of stream functions are eval-
uated, the wall vorticities and velocity fields must
7 J. Douglas, J. Soc. Ind. Appl. Math. 3, 42 (1955).
(19;%]). Douglas and D. W. Peaceman, A.I.Ch.E. J. 1, 505
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be updated. The wall vorticities were calculated
from the stream function field by the technique of
Churechill and Wilkes,"® and Churchill and Samuels."*

Four-point, central difference formulas were used
to evaluate U and W for grid points not adjacent
to a boundary. For grid points adjacent to a bound-
ary, four-point noncentral difference formulas were
used. A four-point difference formula was used in
the evaluation of (87/0R)z., for determination of
the Nusselt number.

IV. RESULTS

A computer program for the desired calculations
was written in the “MAD” computer language
and the calculations were performed at the Uni-
versity of Michigan Computing Center.

Previous studies performed at the University of
Michigan'®'* indicated that computations of natural
convection fields could be performed with Rayleigh
numbers (based on R, — R, rather than R,) up
to 20000 without encountering severe numerical
difficulties. Since this problem is more complex
than those which were previously attempted, the
Rayleigh numbers investigated in this study were
restricted to approximately 10 000 (based on B, —
R,). The Rayleigh number, Ra, is given by Ra =
L?gpB(0, — 6,)/2vk, where L is some characteristic
length, and « = c,p/k, the thermal diffusivity.

Because of the limited computational time avail-
able for this study, it was necessary to restrict the
number of parameters which would be studied. Since
many free-convection problems of interest occur in
gases whose Pr are of the order unity, it was decided
to study only Pr = 1.0. (Previous work by this
author'' indicates that for some problems in natural
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TaBrLe I. Summary of geometries studied.
Number of
Case R, R, H grid points
Radial  Vertical
Case 1 1.0 2.5 3.0 10 20
Case 11 1.0 40 1.0 20 10

convection the effect of Pris quite small for Pr > 1.0,
and therefore, the results obtained for Pr 1.0
may apply for Pr > 1 as well.)

Two geometries, as summarized in Table I were
studied, case I geometries were studied in an effort
to compare the experimental results of Hide® with
values predicted by the numerical procedure; while
the case II geometries were studied since they are
more representative of the atmosphere of the earth.

The number of horizontal, and vertical grid
spaces used in the numerical calculations are pre-
sented in Table I. Although more accurate results
may be obtained with a finer grid, computational
time increases as the cube of the number of grid
spaces. Past experience with computations of this
type'®!" indicates that the grid sizes used in this
study represent a good compromise between ac-
curacy and computational time, when accuracy is
not critical, or if machine time is limited.

Time-step sizes were chosen at the maximum value
that would give stable results, and usually varied
between Ar 0.005 and 0.01. Steady state was
generally attained at dimensionless times ranging
between 7 1.0, and 2.0, and required between
8 and 12 minutes of computational time (IBM
7090) for a 10 X 20, or 20 X 10 grid.

Early calculations indicated that numerical dif-
ficulties were encountered at dimensionless rota-
tional speeds (@ = wr}/v, where w = rate of angular
rotation) greater than 40. Although it is felt that
smaller grid sizes and time-step sizes could have
reduced these difficulties, sufficient computational
time was not available to test this hypothesis.
Calculations are reported only in those instances
where little, or no, numerical difficulties were en-
countered, and in which a steady state was attained.

TasLE II. Summary of parameters studied.
Ra (based Ra (based
Case Pr on B, on By — Ry) e
Case 1 1.0 3000 10 100 0, 10, 20
Case 11 1.0 400 10 800 0, 10, 20, 40
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F1a. 2. Streamlines and isotherms for case I with @ = 20.

A complete summary of the ranges of parameters
studied is presented in Table II.

V. DISCUSSION AND RESULTS

Steady-state streamlines and isotherms for some
of the cases which were studied are presented in
Figs. 2-4. In Fig. 2 a typical streamline and isotherm
plot is presented for the case I geometry. From this
plot, it is seen that all outward bound flow (from
R, to R,) is confined to a thin layer along the bottom
surface. On the other hand, the return flow has
lower velocities, and covers a much larger portion
of the flow channel (height). This pattern results
from the interaction of three separate causes: the
geometry of the confining boundaries, the basic
natural convection field, and the centrifugal and
Coriolis accelerations caused by the angular rota-
tion. The outward-bound fluid covers less than

000, T
\
/{/_—4 ‘\I\
0.25) p—
(T =)
050 .
Ye-216
z Ve —
0.75} -~ 1_ -
100! ¥
100 75 200 225 250 275 300 325 350 375 400
R
000, E T T T
0.25] I ; o ” i R ; -
z ‘
0.50} ! R -
o g N ACRNEN 3\ o
d \’i ¥ g e u *
(g : - = Lt
A A AN ER
‘ ‘ \
10 i i |
100 125 150. 175 200 225 250 27‘5 300 325 350 375 400

R
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half of the flow channel in these cases because the
fluid is flowing into a region of expanding flow area,
and, therefore, requires less of the flow channel.
The inbound fluid, however, encounters a region of
decreasing area and, therefore, requires a greater
portion of the flow channel. Increasing rotational
speed tends to amplify this phenomenon slightly
since the outbound fluid is now accelerated by
centrifugal forces into a still thinner layer, while
the inbound fluid encounters an even greater re-
sistance, and tends to occupy a greater portion of
the channel height.

The isotherms from the case I geometries indicate
the presence of a fairly strong convective motion.
The free surface on the upper boundary allows high
velocities at this boundary, which in turn leads to
high heat transfer rates. This is evidenced by the
small distance between isotherms in the upper
region near the inside boundary.

Increasing angular rotation in case I leads to
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Fre. 5. Plot of tangential velocity versus radial position
for case I with @ = 20.
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TasrLeE III. Nu for case I.
Q Nu
0 5.8
10 5.5
20 4.7

decreased convective strength as, since the increased
angular rotation causes greater flow inhibition in
the inward-bound fluid. This in turn leads to lower
convective heat transfer in the upper portion of
the flow channel and a slight decrease in the over-all
heat transfer rate. Although this phenomenon is
visible in the less distorted isotherms which occur
at higher rotational speeds, a more quantitative
measure of its effect is seen by examination of the
total heat transfer rate Nu as shown in Table III.

In Fig. 5, plots of the tangential velocity V
versus radial position are presented for several values
of Z, at a rotational speed of & = 20 in the case I
geometry. Examination of these plots yields the
following observations. In the upper portion of the
flow channel, the fluid (which is moving inwards) has
a higher tangential velocity than the fluid at the
bottom surface. The fluid in the lower part of the
region (which is moving outwards), on the other
hand, generally exhibits a lower tangential velocity
than the solid wall. These phenomena may be
explained on the basis of the principle of conserva-
tion of angular momentum. Thus, the fluid in the
upper portion of the region which is moving towards
the axis of rotation increases its tangential velocity
in a tendency to keep its angular momentum con-
stant. The fluid in the lower part of the region on
the other hand, which is moving away from the
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F1c. 6. Streamlines and isotherms for case II with @ = 40.
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center, tends to undergo a decrease in tangential
velocity. These tendencies are, however, modified
by the effect of viscosity. Thus, the outward flowing
fluid first experiences a slight increase in tangential
velocity owing to the effect of the fluid above it,
and the rotating bottom beneath it. However,
viseous effects then become less important, and the
aforementioned local decrease in V occurs until
the outside surface B = R, is approached. At the
top surface (assumed to be a free surface), where
the effects of viscosity are lowest, the fluid undergoes
a large increase in tangential velocity. As the inner
cylinder is approached, viscosity again becomes
significant and the tangential velocity decreases
rapidly to the value at the inner surface.

A somewhat similar behavior was found in the
tangential velocities for case II. However, since
the radial velocities for case II are significantly
lower than those encountered in case I, their effect
on the tangential velocity is much lower.

In Figs. 3, 4, and 6, the effect of increasing rota-
tional speed can be seen for case II. At very low
rotational speeds, a single convection cell forms.
As seen in Fig. 4, this cell is quite elongated in the
central region. As the rotational speed increases, the
elongated section of the convection cell breaks
away from the parent cell, and forms a second cell,
as shown in Fig. 6.

The isotherms for case Il are nearly straight
vertical lines, indicating that the strength of the
convective motions in these geometries is weaker
than those for case I. However, this effect is to be
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TasrLe IV. Heat transfer rates in the
case IT geometries.
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expected since the lengths of the hot and cold sur-
faces are smaller for case IT than for case 1.

In Table IV, the heat transfer rates for case 11
are presented. From Table IV, it may be seen that
at low rotational speeds, increasing rotation causes
a decrease in the Nu, as in the case I. However, as
the rotational speed is increased still further, the
heat transfer rate then increases. The increase in
heat transfer in case II at high rotational speeds is
apparently caused by the formation of the second
convection cell. This splitting of the flow pattern
tends to reduce the resistance to the inward bound
flow in the upper portion of the flow channel, and
leads to the increase in the heat transfer rate.
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