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The time history of the velocity, size, and deformation of a bubble moving in the flow field around a
point source or sink is studied analytically. Consideration is given to the case where the changes in the
bubble velocity, size, and deformation are caused by the dynamic forces of the fluid, rather than the initial
perturbation of the bubble shape. The effect of viscosity and gravitation is neglected. The flow is considered
irrotational and the velocity potential is assumed to exist. The gas, vapor, or their mixture inside the bubble
undergoes a polytropic process. The governing equations for the translatory motion, size, and deformation
of the bubble are derived by perturbation theory. The analysis is general and may be applied to an initially
spherical as well as nonspherical bubble. It is disclosed that the time history of the bubble’s translating
velocity in a sink flow is monotonically increasing, while in a source flow it varies following two typical
patterns depending upon the initial velocity. In a sink flow, an initially spherical bubble can maintain a
nearly spherical shape over a rather long distance as it grows, while in a source flow, the bubble shape
varies with time in various ways, depending on the initial velocity. The analysis may also predict, by means
of numerical reduction, the moment corresponding to the threshold of instability from which the bubble will
attain an irregular shape. The mechanisms leading to the photographically observed behavior of a cavitation
bubble moving in a rectangular venturi tube diffuser by Ivany ef al. (1966) are revealed, in that the flow
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in a section of such a diffuser (or nozzle) closely resembles source or sink flow.

INTRODUCTION

The problems on the translatory motion and de-
formation of a bubble have been studied by a number
of investigators. However, due to the difficulty and
complexity of the problem, those investigations are
limited to some special cases: Plesset and Mitchell!
and Naude and Ellis?® considered the dynamics of a
stationary bubble in quiescent liquids with uniform
system pressure. Since the force acting upon the bubble
from the surrounding liquid is symmetrical, the insta-
bility problem may arise only when the bubble starts to
grow or collapse from an initially nonspherical form.
Furthermore, since there is no bulk flow of the liquid
and the bubble is not in translating motion, the per-
turbed dynamics equations are not coupled and thus
may be solved independently. Hartunian and Sears®
studied the instability of a translating bubble in a
liquid with uniform pressure. They obtained a set
of simultaneous coupled equations whose solution
may predict the onset of the instability in the bubble’s
translatory motion. Since the bubble being considered
remains constant in size during the course of trans-
lating motion, the equations determining instability
are independent of time. Walters and Davidson® inves-
tigated the deformation of bubble shape caused by
the translating motion and the pressure gradient in
the surrounding liquid. However, since the problem
dealt with the case where during the transient, the
volume of the bubble and the pressure gradient due

1 M) S. Plesset and T. P. Mitchell, Quart. Appl. Math. 13, 419
(1956) .
2C. F. Naude and A. T. Ellis, Trans. ASME J. Basic Engr.
83, 648 (1961).
( 3 R.) A. Hartunian and W. R. Sears, J. Fluid Mech. 3, 27
1957).
4J. K. Walters and J. F. Davison, Pt. 1, J. Fluid Mech. 12, 408
(1962); Pt. 2, J. Fluid Mech. 17, 321 (1963).

to gravitation in the liquid are both constant, the
acceleration of the bubble in the liquid is constant and
equal to 2g.

Recently, Ivany et @l° have photographically
studied the dynamics of cavitation bubbles in a liquid
flowing through a venturi. They observed “rebound”
phenomena in the translating motion, size and defor-
mation of the bubble during the course of its collapse.
These phenomena are quite complicated due to the
interaction among the liquid flow, the bubble’s trans-
lating motion, the collapse or growth of the bubble,
and the nonuniformity in the pressure gradient.

This paper is the extension of Ref. 3 to the case of
motion in a source or sink flow. While Ref. 3 considers
the problem of shape instability due to self-induced,
asymmetrical disturbances, the present work deals
with the dynamic behavior of a moving gas bubble
induced by the flow field with a nonuniform pressure
gradient. The analysis is general and may include self-
induced disturbances into consideration simply by
imposing nonzero ¢,.(0) as the initial conditions of
Egs. (29), which appear later in the text. Throughout
the paper “gas” refers to the gas, vapor, or their mix-
ture in the bubble, unless otherwise stated. Consider-
ation is given to the cases where the surrounding liquid
is a source flow, a sink flow, or their combination. The
problem is simplified through the assumptions of
constant liquid density, negligible effects of heat and
mass transfer, and polytropic processess for the fluid
inside the bubble in translatory motion in an ideal
liquid flow. The effect of gravitation is also neglected.
Analytical results are obtained for the time history of
the bubble’s size, shape, and translational velocity. The
characteristic behavior of a translating gas bubble

5 R. D. Ivany, F. G. Hammitt, and T. M. Mitchell, Trans.
ASME Ser. D: J. Basic Eng. 88, 649 (1966).
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disclosed in the study agrees with that observed in
Ref. 5.

ANALYSIS

For an incompressible fluid, the equation of con-
tinuity can be written as

v.V=0, (1)

where V is the velocity vector. If the flow is irrotational
then the velocity potential & exists, that is,

V=-—VJ,
and Eq. (1) becomes

Vip=0. (2)

Consider a bubble in translatory motion with the
velocity Vyin the flow field of a point source of strength
g (>0 indicates a source, p<0 indicates a sink).
At time ¢, the bubble is located at distance r; from the
source, as illustrated in Fig. 1. Under these circum-
stances, the bubble surface is subject to nonuniform
pressure from the surrounding liquid. As a result,
an initially spherical bubble cannot retain a spherical
shape as it travels with the flow. It is postulated that
bubble shape may be expressed in the spherical coor-
dinates (r, 8, ¢) with the origin fixed at the center of
the bubble and moving with the bubble as

R(+Y an(t) P

n=1

7:(1,8) = w(cosh), (3)
in which 7, is the radial distance from the center to the
surface of the bubble, R(#) is the radius of unperturbed
bubble, a, are the time varying coefficients to be
determined, P,.(cosf) are the Lengendre polynomials,
and @ is the angle measured from the reference line,
defined as connecting the bubble center and the point
source (Fig. 1). Then the solution of Eq. (2), in moving
coordinate systems at an arbitrary location P(r, 8, ¢)
in the flow field, may be obtained as

P=p Z

P (cosf) — Vi cosf

& b & Cu
+ 2 Pt ;1 P

where 7. equals 7 if r<r, or 7. equals 7 if >ry; 7>
equals 7 if #>r; or 75, equals 7, if »<7,. The constant co-
efficients b, and ¢, are to be determined. Equation (4)
indicates that the velocity potential consists of four com-
ponents. The first term on the right side of Eq. (4) ex-
presses the velocity potential at P in the absence of the
bubble. The second term, —Vyr cosf, signifies the com-
ponent induced by the motion of the coordinates. The
third term,

&b,

—s rn-H
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Fic. 1. Coordinate systems for analyzing the dynamics of a
bubble moving in a source or sink flow.

is the contribution to the velocity potential due to the
presence of a spherical bubble with radius R(#). There-
fore, the coefficients b, are determined by substituting
Eq. (4), without the last term, into the condition

R(t) = —(89/0r) =, (5)

where the dot denotes the time derivative. It is followed
by comparing terms of the resulting equation. Now,
Eq. (4) may be rewritten as

RR Rfpu
b= pzr +1P Vlrcos0+-——-+w(~——V1>

2r? 1’12

o nﬂR2n+"
G

Xeosbt 2 o

The last term

n+1 n+ Z

00 cﬂ
of Eq. (4) expresses the component induced by the
deviation of the bubble shape from a spherical form.
The determination of the coefficients ¢, is explained
below,
If the surface of the perturbed bubble (3) is repre-
sented by

F(7,,0,t)=r,—R— ianPn=0; (7)

n=1

then it requires that the condition
DF/Dt=08F/8t+ (V) yur,(1/7.) (3F /36)
(V) =y, 0F/3r,=0 (8)

be satisfied at the bubble surface. In Eq. (8), V, and
Ve are the velocity components defined as —a®/or
and —(1/r)0®/30, respectively. Now, Eq. (6) is sub-
stituted into Eq. (8) followed by comparing terms
multiplied by P,. It must be noted that the second-
or higher-order terms involving ¢, and Ry/7 are neg-
lected. The neglect of higher-order terms of a, will be
justified later from the numerical evaluation of the a,.
The higher-order terms involving R/r; may be negli-
gible if the distance between the bubble and the source
or sink is large compared with the bubble radius. Now,
using the recurrence formulas for sin?fP,’, cos§ P, and
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P3P, 57 one obtains

o, urct R2R R( ) nu Rt
P, o+ —— (2 i) ot D
2y Do Vi cosit =g, 1) ot 2 (1) (rra) ™

B i Sn(n—2) wR* &, n(n—1) (1}) (ﬁ —V)a
= 2 =1) (2t 1) i Proam 225 2 G e 7y

(P::

uR+ 1 Rn+2( )
anPr nt2
+ ,; (2n— 1) (217,—1—3) i + = nt1 rt 2R

(nt-1) R ( ) (1) (n+2) uRrH
s EQHI s \pp TV 0P ”“HSE (13) (2t 1) n s Ee )

This result includes the special cases of Refs. 1-3, e.g., Eq. (9) for =0 and V1=0 reduces to the case analyzed in
Rel%eic.t, the equation of motion for an irrotational flow may be written in an accelerating coordinate system, as

V(—0®/0t+V?/2+p/p) = —a, (10)
where a is the acceleration vector of the coordinate system. Its r-component equation

(9/0r) (—3%/9t+V?/24-p/p) = —ax,

where a,=— (dV1/dt) cos in the system shown by Fig. 1, is integrated from the bubble surface r=7, to infinity
7=, The pressure distribution on the bubble surface results as

p(r) = p () +pL —0%/01+(V?/2) Te5—p(dV /dt) [r cosh =S, (11)
where ¥2/2, the kinetic energy per unit mass, is
§V=}(~ve) (12)
The 0®/0¢ term may be evaluated with the aid of Eq. (9). It is found that
(09/3t) s, = — ((dV1/dE) 7 cOSB) y—, (13)
which cancels out the upper limit of the last term of Eq. (11). Equations (12) and (9) yield
FV2=3V7,

as r—o, which is to be expected for a moving coordinate system. One can also write
((dV1/dt)r cos) ey, = (dV3/dt) (R+ 2, anPy) coOSH. (14)
n=1

Since the liquid pressure at infinity is not affected by the presence of the bubble in the flow field, the application
of the Bernoulli’s equation yields

p() =pot5(u/r)%, (15)

where 7, is the distance between the bubble and the source or sink at zero time, and p, and u/7¢* are the liquid
pressure and velocity, respectively, at =7, Thus, (r,), the liquid-pressure distribution over the bubble surface

"1];26M Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill Book Company, New York, 1953), Chap. 10,
p-

"33E1 T. Whittaker and G. N. Watson, Modern Analysis (Cambridge University Press, New York, 1927), 4th ed., Chap. 15,
p-
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may be evaluated by substituting Eqs. (9) and (12)-(15) into Eq. (11). Tt yields

(n) RR+3R2+ Poy [(m )2 - <£‘-')2] i

2 ) 1 2
§<.iq _Vl) pog S PV HD)
4\rs? m=0

T 2m—+3
+Samn &= ()
m=2 7 71

L
1 +1

The complete expression of Eq. (16) is not presented
here because of its length, but is available in Ref. 8.

In order to determine the time history of bubble’s
translatory motion, the bubble surface is defined as
the control surface. Let n be the unit normal vector
at a point (s, 6, ¢) on the bubble surface as shown
in Fig. 2. Then its components in the 7,, 8, and ¢ direc-
tion are Fr,/[Fp2 4 (Fo/r:) 1'%, (Fo/1)/[Fr 2+ (Fo/7:)"1",
and 0, respectively, where the subscripts 7. and 6
denote the derivatives with respect to 7, and 8, respec-
tively. If B is defined as the angle between the normal
vector n and the radial vector r, on the bubble surface,
then the 7, and § components of n become

F. /[ F 2+ (Fo/r)2 2 =cos(m, 1,) =cosf (17)
and
(Fo/rs) [LE. 2+ (Fo/r)* ]2 =cos(n, 8) = —sinB, (18)

respectively. The combination of Eqgs. (7), (17), and
(18) produces

cosf>=~1

(19a)

and

sinf~=R"1 ) ¢, P, sind.

n=1

(19b)

Now, since there is no mass transfer across the
control surface, Newton’s second law of motion can be

GAS INSIDE
BUBBLE

AS INSIDE

LIQUID UBBLE

BUBBLE SURFACE BUBBLE SURFACE
F16. 2. Unit normal and pressure on a bubble surface.

8 H. C. Yeh, Ph. D. thesis, Mech. Engr. Dept., The University
of Michigan (1967)
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written as

f=—mdV,/dt, (20)

where m; is the mass of the gas inside the bubble and
f is the z-direction force induced by the pressure
extending on the control surface, which may be ex-
pressed as

—/ p(rs) cos(8—PB)dA, (21)
where 4 is the area of the bubble surface and §—28 is
the angle of the directions of the liquid pressure and
the z axis (See Fig. 2.). With the aid of Eq. (19), the
quantity cos(f—@) in the integrand of Eq. (21) may
be approximated as

cos(§—B)=cosb+R Y, a, P, sin%, '

a=l1

(22)

where the prime denotes the derivative with respect
to cosf. dA4 on the bubble surface may be expressed as

A =2rr, sinb[r 2+ (dr./d6)¥]"2d8.
Since
dr

dp
it becomes obvious that the (dr./d§)? term consists of
the terms all involving ¢.2. The (dr,/d6)? term is, there-
fore, considered small in comparison with the 7?2 term
and the differential area d4 is approximated by

a, P, sing,

n=1

JASRL1+2 S (a./R) P,] sindds.  (23)
n=1

By substituting Egs. (22) and (23) into Eq. (21)

and neglecting m; in Eq. (20), one obtains

2 R? /T p(n)[coso— i (=3 ans

wm—1 R

n
n=32

(n+1) (n+4) app
+ ,LZ.; 2n+3 R
Now, Eq. (16) for p(r,) is substituted into Eq. (24),

n]d(cosﬁ) =0.(24)
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followed by performing integration utilizing the orthogonality property of Legendre polynomials:
1
P.(u) Pp(w)du=2/(2n+1) ifn=m
—1
=0 if n=m.

Hence, there results the expression for the bubble’s translating motion, which predicts r; and Vi(=dr/df):

3 .
LV o RBt2 (R) +25 (5) —3 Ry~ (R_E i§> A

3 di rt rt\n rin
e e A 2

=0, (235)

(m=3)m(m+1)(m+2) R\™2apy & (m=3)m(m+1) B u (R)"
Smé(zm 1)(2m+1)(2m+3)( >(r12> T“sém,—a,—x—) Gpateee

where B= (u/r?) — V1. The complete expression of Eq. (25) is available in Ref. 6.
One is now concerned with the time history of the bubble size and shape. The force balance on the differential
element of the bubble surface leads to the expression

O'(R 1‘*‘132_1) Pm(’s) Pout (1’,) (26)

where ¢ is the surface tension, R, and R, are the principal radii of curvature of the bubble surface, and pi, and
Pout are the pressures exerted on the inside and outside surfaces of the bubble, respectively. Assuming that the gas,
vapor, or their mixture inside the bubble is ideal and undergoes a polytropic process during the growth or collapse
of the bubble, one obtains

pin(?) =pin(0)LR(0) /R(1) 7, (27)

where pi(0) is the initial gas pressure and v is a constant for a polytropic process. For a perturbed sphere the
sum of the curvatures up to the first-order correction may be written as

Ri4R 1= Z + i (_”:P_(ﬂ

2 o @u P (28)

With the substitution of Egs. (16), (27), and (28) into (26), followed by equating terms involving P, to zero,
there results a set of second-order differential equations for R and a,: The coefficients of Py yield the equation for
Ras

.o a3 . 1. i 2_ 1 2 1 P Pm v
Rt J(2) (2] oams B2 22

5 u)z (R)2 1[ . ( RB 9B 4B,;) ]
—_ =) (= g —3
3(r12 n) T3 BT\ e o T 15

MR, (P Ry OB R T
3rp 3 3R 21n® 4 o

where B=pu/r?—
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The coefficients of Py yield the equation for g as
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R 2 fR\* _ BuR
}Ra—3RV+4RB— 3“ Vi 3(%) <—) —3 222 14k
ry 71 f
R 3uRV 9B* 3uB = 20Ru
—(7+ a ‘+ +~——L+——“—)al—%3a2
2 r 7’13 7716
. 6RB 21B 2 9uR
+§(3V1— K + S iz +—“V1)a2— ey ”
R r Trd
1/ 1SuB 27B*  36uB  56.52u2R  3uRV; 9u2R> 20uB 1.73u2R
- - =0. (29
+7( 7’13 SR 713 51’16 7‘14 n b 71’13 @ 1’14 o ( )

These equations are coupled not only among them-
selves, but also with Eq. (25). Therefore, it is necessary
to solve Eq. (29) together with Eq. (25) simultaneously
for r;, R and a,'s.

RESULTS AND DISCUSSION

All physical quantities involving the length, velocity
acceleration, time, pressure, and source strength may
be nondimensionalized by dividing by Ry, (o/pRy)'2,
a/pRe?, (pRe*/6)'", o/ Ry, and (aRi?/p)'2, respectively,
where R, is the initial radius of the bubble, or R(0).
The dimensionless velocity thus defined is exactly the
Weber number. With the introduction of these defi-
nitions, all equations in the previous section may be
nondimensionalized. Each resulting equation retains
an identical expression with the corresponding original
equation in dimensional form except that p and o are
dropped from the new set. In the following discussion
we always refer to the equations in dimensionless form.

Equations (25) and (29) were numerically inte-
grated by the Runge-Kutta method using an IBM
7090 digital computer. Twelve equations for a;, ag,-«,
up to aiz were involved in the numerical reduction.
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Fic. 3. The velocities u/72 and Vy and the radius R of a
spherical bubble moving in a sink flow with the initial conditions
r0=105, R(0) =1, V¢=200, and pi, (0) =4395. [The bubble shape
is predlcted by Eqs (25) and (29).]

All other equations involving g, with # greater than
twelve were considered of higher order of magnitude
and thus were ignored. However, it is disclosed from
the experimental study that sufficiently accurate
results may be obtained by retaining the first 12 equa-
tions in the computer program. Altogether, 14 simul-
taneous equations were programmed in the numerical
reduction for 7, R, and the first 12 g,. It is assumed for
the numerical computation that the bubble at the start
of the transient is in a spherical form. This is equivalent
to imposing the conditions that all ¢.’s and d,’s are
zero and Ry or R(0) is equal to unity. Under these
initial conditions, however, Eqs. (25) and (29b) be-
come identical at £=0. Therefore, the condition & (0) =
0 resulting from the condition of initial sphericity in
bubble shape must be added to the numerical pro-
cedure.

The physical situation under consideration corre-
sponds to a system temperature = 77°F, water density =
0.997 g/cm?, surface tension for water-air system =
71.97 dyn/cm, R(0)=1 and R(0) =0. The bubble is
initially spherical. The dynamics of its growth or
collapse while the bubble moves in three different
flows is studied: a sink flow, a source flow, and a “sink-
and-source” flow. The results are presented in Figs.
3-10.

Flow through a nozzle may approximately correspond
to the physical situation of a sink flow if the bubble
size is small in comparison with the cross sectional
area of the nozzle. Figures 3 and 4 show the dynamic
characteristics of a bubble moving in a sink flow for
the initial conditions of »(0) =103, R(0) =1.0, V;(0) =
200, p=2.2X10% and $:,(0) =4395. Under the specified
conditions, the liquid and bubble velocities are assumed
the same at the initial position of the bubble, r,(0) =
105. Numerical calculation was performed from r,(0) =
105 to n(¢) =100, where the liquid is at saturation
pressure. It is disclosed from Fig. 3 that both the
velocity Vi and the radius R increase monotonically
with the bubble’s position. The bubble’s translatory
velocity exceeds that of the liquid. Figure 4 shows the
time history of the bubble shape. The bubble retains
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F16. 4. The transient shape of an initially spherical bubble
moving in a sink flow with the initial conditions 7,=105, R(0) =1,
V=200, and #: (0) =4395.

a spherical shape for a distance and then starts to
flatten out at the downstream side.

In practice, flow through a diffuser may be approxi-
mated by a source flow. Figures 5-10 illustrate the
dynamic characteristics of a bubble moving in a source
flow with the initial conditions of »,(0) =100, R(0) =
1.0, $in(0) =195, and u=2.2)X10% Some representative
initial velocities between 240 and 260 were considered,
although more cases corresponding to different initial
velocities were studied in Ref. 8.

It was revealed from the study that the bubble’s
translating velocity and size may vary in two distinct
manners depending upon the magnitude of the initial
velocity V1(0). In other words, there exists a critical
value for the initial velocity beyond which the bubble
velocity and size may follow a different pattern: For
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Fic. 5. The velocities u/r? and V; and the radius R of a
spherical bubble moving in a source flow with initial conditions
70=100, R(0)=1, V=240 for three cases: (i) #in(0) =195,
y=14, (ii) pin(0) =195, y=1.0, and (iii}) pw(f) =0. [ The bubble
shape is predicted by Eqgs. (25) and (29).
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F16. 6. The velocities /72 and Vi and the radius R of a
spherical bubble moving in a source flow with the initial conditions
ro=100, R(0) =1, V;=250, and $;,(0) =195. [ The bubble shape.
is predicted by Egs. (25) and (29).] The value of v is 1.4.

the parameters specified in the present study, the
critical initial velocity is 249. When V1(0) is lower than
249, the bubble velocity and size vary following the
pattern shown in Fig. 5, which is characterized by a
“loop.” Whereas, when V1(0) exceeds 249, these vari-
ations follow the other pattern as shown in Figs. 6 and
7, which is characterized by a “peak” or a ‘“valley.”

The variety of changes in the bubble shape in a
source flow is due to the initial velocity V1(0). For
small values of V1(0), the bubble first changes its
shape from a sphere to an “ellipsoid,” then indents on
the downstream side and eventually forms a crater as
shown in Fig. 8.

As the initial velocity increases the indentation
shifts upstream along the bubble surface as shown in
Fig. 9. When the initial velocity is further increased,
the indentation occurs at the upstream side of the bubble
surface as illustrated in Fig. 10.

Figure 11 shows the calculated time history of the
velocity and radius of a spherical bubble traveling
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Fi1c. 7. The velocities u/n? and Vi and the radius R of a
spherical bubble moving in a source flow with the initial conditions
70=100, R(0)=1, V=260 for three cases: (i) pia(0)=195,
y=14, (i) pw(0)=195, v=1.0, and (iii) pw(¢)=0. [The
bubble shape is predicted by Egs. (25) and (29).]
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Fic. 8. The transient shape of an initially spherical bubble
moving in a source flow with the initial conditions 7,=100,
R(0)=1, V=220 for three cases: (1) pm(O)—195, y=14, (11)
2ia(0) —-195, =10, and (iii) p(¢) =

through a venturi tube. The liquid flow through the
venturi tube may be approximated by the combination
of a sink flow and a source flow of equal strength. The
same initial conditions used for the sink flow case
were also employed in this numerical solution. Also
illustrated in Fig. 11 is the axial liquid-velocity dis-
tribution in the tube. ;=100 corresponds to the loca-
tion of the venturi throat. It is observed in the figure
that the bubble grows quite rapidly after it passes the
throat. It then starts to collapse. Figure 11 also indi-
cates that the bubble may rebound at ;=107 from the
source, The process of rebounding followed by collapse
repeats as the bubble moves downstream. The decel-
eration and acceleration of the bubble’s translational

VI

Fic. 9. The transient shape of an initially spherical bubble
moving in a source flow with the initial conditions 7r,=100,
R(0)=1, V,=238 for three cases: (i) 1;,.,(0)-195 y=14,
(i) pm(O) =195, v=1.0, and (ili) pin () =
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—_—V,

Fic. 10. The transient shape of an initially spherical bubble
moving in a source flow with the initial conditions r,=100,
R(0)=1, Vo=260 for three cases: (i) $i(0)=195, y=14,
(it) pm(O)-—IQS v=1.0, and (iii) g () =0.

motion also repeats. In practice, however, the bubble
cannot remain spherical after it collapses to a certain
size.

Mechanism: It was mentioned earlier that when a
bubble travels in a source flow, its velocity and size
vary with bubble position following two distinct
patterns as shown in Figs. 5 and 6. The mechanism
leading to these phenomena is discussed below. For
convenience in discussion, the terms involving a, in
Egs. (25) and (29a) are neglected since they do not
contribute appreciably to the overall result. Then the
equations can be rewritten as

dry/det=~62/rP—3(R/R) (Vi—pu/r?)

—6(u/r®)2(R/n)*R, (30)
and
@R/df=(1/2R)[(u/r:?)*— (u{ )]
+(1/4R) (Vi—u/ri?)>—~3R3/ R+ (pia—p0) /R
~2/R+(5/3) (u/r®)*(R/m)?,  (31)
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Fic. 11. The velocities u/r® and V; and the radius R of a
spherical bubble moving in a sink flow and then in a source flow
with the initial conditions o=105, R(0)=1, V;=200, and s (0) =
4395. The value of v is 1.4.
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F16. 12. High-speed photographs, % in. venturi throat velocity
74.6 ft/sec, air content 2.35 vol%, 132 usec/frame, scale length
0.25 in. [courtesy of ASME (Ref. 5)7.

respectively. Equation (30) shows that the acceler-
ation or deceleration of the bubble’s translational
motion consists of the components induced by w?/r
the liquid acceleration, by (R/R)(Vi—u/r?), the
interaction between R the rate of bubble growth or
collapse, and (Vi—u/r?), the relative velocity between
the liquid and the bubble, and by u/r, the liquid
velocity. Since the last component is of the third power
of R/r, its contribution to the bubble’s acceleration is
negligible. Equation (31) indicates that the acceler-
ation in the bubble growth or collapse consists of the
components induced by the change in the liquid pres-
sure with bubble position, by the relative velocity
between the liquid and bubble, by the rate of bubble
growth or collapse, by the pressure difference between
the gas inside the bubble and the liquid at the initial
position of the bubble, by the surface tension, and
by the liquid velocity. The contribution of the last
component is considered small, since it involves the
second power of R/r.

H-C. YEH AND W-.]J.

YANG

Consider first the case where the initial velocity is
smaller than the critical value. During the initial
stage of the transient corresponding to the interval
between points 1 and 2 in Fig. 5, the translational
motion of the bubble is governed by the force induced
by the deceleration of the liquid, while its collapse is
controlled by the force induced by the change in the
liquid pressure. However, as the bubble reaches point
2, the relative velocity between the bubble and the
liquid changes its sign. As a result, the force induced
by the interaction between the bubble’s collapse rate
and the relative velocity, the —3(R/R)(Vi—u/r)
term in Eq. (30), becomes negative, which causes the
bubble to further decelerate. As the bubble travels
further downstream, the collapse rate continues to
increase, thus causing an increase in the magnitude of
the —3F?/R term in Eq. (31). Therefore, the increases
in the collapse rate and relative velocity interact to
cause the bubble to further decelerate. This is indicated
by a very rapid increase in the —3(R/R) (Vi—u/r?)
term in Eq. (30). The bubble velocity eventually
becomes negative and the bubble starts to travel
upstream when it reaches point 3 in Fig. 5. Meanwhile,
the (1/R)(Vi—u/n?)? term in Eq. (31) increases as the
relative velocity increases. Since this term is always
positive, it exerts a force to retard the collapse rate and
eventually causes the bubble to stop collapsing when
it reaches point 4 in Fig. 5. The bubble then starts to
grow and travels upstream. This phenomenon may be
called “rebound” or “regrowth” which was observed
in various experiments.® At the moment of “rebound”,
the sign of K changes and the —3(R/R) (Vi—u/r?)
term in Eq. (30) becomes positive. This causes the
bubble to accelerate so rapidly that the bubble velocity
V1 soon becomes positive and moves downstream again.
However, as Vi increases both the Vi—u/r? and
—3(R/R)(Vi—u/r¥) terms tend to decrease. The
latter term may eventually be exceeded by the decel-
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Fic. 13. Bubble traveling velocity vs its position in 1 in. venturi
throat (Fig. 12).
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erating terms in Eq. (30). This is the reason why the
bubble velocity is lower than the liquid velocity in the
accelerating stage.

When the initial bubble velocity is greater than the
critical value, the time history of the bubble velocity
and size follows the second pattern as shown in Figs.
6 and 7. During the initial stage of the transient,
corresponding to the interval between points 1 and 2,
the bubble motion is governed by the deceleration of
the liquid, while its collapse is controlled by the change
in the liquid pressure. As the bubble travels downstream
the collapse rate increases and the —3(R/R) (Vi—u/r?)
term in Eq. (30) becomes important. Since this term
is positive, it tends to reduce the deceleration of the
bubble motion. Before the bubble velocity is reduced
to the magnitude of the liquid velocity, the magnitude
of this term may become comparable to that of the
—6u?/r® term in Eq. (30) and eventually the bubble
accelerates. This occurs at point 3 in Fig. 6. Meanwhile,
the —2R?/R term in Eq. (31) governs the bubble
collapse like the first pattern. As the bubble is acceler-
ated the relative velocity increases, as does the term
(1/4R) (Vi—p/r)?in Eq. (31). As a result the bubble’s
collapse rate decreases. At point 4 in Fig. 6 the bubble
stops collapsing and starts to grow; but due to the
sign change in the —3(R/R)(Vi—u/r?) term, the
bubble velocity is decreased.

It is disclosed from the numerical raduction that in
the vicinity of point 3 where both Vy—u/r? and R are
large, a. increase very rapidly and soon become too
large to be applicable to the perturbation method.
Physically, this moment corresponds to the threshold
of instability where the bubble becomes highly irregular
shape.

The gas pressure inside the bubble plays a relatively
important role only when the bubble size is small.
Although the presence of gas may somewhat contribute
to the cause of “rebound” it is the (1/4R) (Vi—pu/r2)?
term in Eq. (31) which plays more important role on
the “rebound” phenomenon.

In order to examine the influence of the presence of a
gas inside the bubble and its thermodynamic behavior
on the dynamic behavior of the moving bubble, three
representative cases were compared in Figs. 5, 7-9, and
10. These three cases are (i) pin(0) =195, y=14
which corresponds to an adiabatic process, (ii) i (0) =
195, ¥=1.0 which is an isothermal process and (ii)
pin(£) =0 which corresponds to the absence of a gas
within the bubble. It is seen from these figures that
during the course of bubble collapse, from its inception
to the threshold of instability, the presence of the gas
and its thermodynamic behavior do not affect the
translating velocity, unperturbed radius and instan-
taneous shape of the bubble. It is most important to
note that the “rebound” phenomenon occurs even in
the absence of a gas within the bubble as shown in
Figs. 5 and 7.

A photographic study for the dynamics of a cavitation
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bubble traveling through a } inch venturi throat was
performed in Ref. 5. One representative result was
reproduced here in Fig. 12. The bubble velocity vs
its position shown in Fig. 12 is plotted in Fig. 13. It
must be denoted that since the venturi is rectangular
in cross section, the flow may be approximated as a
two-dimensional source flow (from a line source).
However, Fig. 12 indicates that the instability in bubble
shape begins at the moment when the rate change in
the translating velocity is maximum. The mechanism
is in agreement with the present analysis for the point-
source flow.

CONCLUSION

The following conclusions are made from the present
study:

(1) When a gas bubble is in translatory motion,
the bubble may be accelerated or decelerated as the
result of the relative velocity between the bubble and
the liquid and the rate of bubble collapse or growth.
In addition, the relative velocity between the bubble
and the liquid may accelerate the rate of growth.

(2) The time history of the bubble’s translating
velocity in a sink flow monotonically increases, while
in a source flow it varies following two typical patterns
depending' on the initial velocity. When the initial
velocity is smaller than a critical value, the translating
motion of the bubble is decreased as it collapses. After
the bubble comes to a complete stop, it travels upstream
for a short distance, then moves downstream, growing
again. When the initial velocity is greater than the
critical value, the bubble’s translating motion is first
decreased as it collapses. The velocity is then increased
over a short distance followed by a deceleration and a
regrowth of the bubble.

In a sink flow, an initially spherical bubble can
maintain a nearly spherical shape over a rather long
distance as it grows. In a source flow, the bubble shape
varies with time in various ways depending upon the
initial velocity. When the initial translating velocity
is low, the initially spherical bubble becomes oblate in
shape. It then flattens on the downstream side. As
the initial velocity increases, the indentation shifts
upstream along the bubble surface. When the initial
velocity is further increased, the indentation occurs on
the upstream side. During the collapse the bubble
shape may become unstable when the rate change in
the translatory velocity is large.

(3) The characteristic features in the dynamic
behavior of a translating gas bubble as described in the
previous sections were previously disclosed in the
photographic study of a cavitation bubble in a rectan-
gular venturi tube’
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