Studies on a Group of Silicon Carbide Structures

Richard S. Mitchell*
Mineralogical Laboratory, University of Michigan, Ann Arbor, Michigan

(Received May 10, 1954)

Abstract

Morphological and structural details of silicon carbide type $141 R$ are given. This polymorph, having a structure represented by the zigzag sequence 3333333333333332 , is a member of the ' $3 \ldots 2$ ' rhombohedral series proposed by Ramsdell [Am. Mineralogist 32, 64 (1947)].

A detailed study of the ' 3 . . .2' series is undertaken, resulting in an empirical mechanism which can be used for the direct determination of the structure of any member of this series. Using this means the structure of the new polymorph $393 R$ is suggested.

INTRODUCTION

WITH the discovery of each new polymorph of silicon carbide it becomes more evident that there is no limit to the possible modifications of this substance. Up to the present time, the structures of 15 types have been established. The largest structure of this group is $87 R .{ }^{1}$ Types consisting of a larger number of layers have also been reported, but no satisfactory analysis of their structures has so far been advanced. Some of these types are $\sim 270 R,{ }^{2} 594 R^{3} ; 141 R, 168 R$, $192 R,{ }^{4}$ and recently the writer has also identified $120 R$, $393 R, 33 H, 48 H$, and three specimens of $78 H$. In this paper a structure for type $141 R$ is proposed which is in good agreement with the observed data. Upon the basis of this new structure as well as from previously known structures, the writer suggests a mechanism for the direct determination of the structures of an evidently common group of silicon carbide polymorphs. Using this means the structure of type $393 R$ is proposed. Much work has also been done on the structures of some of the other types listed above, but at present no definite results can be reported.

DISCOVERY AND IDENTIFICATION OF $141 R$

Two specimens of silicon carbide $141 R$ have been encountered at this laboratory. The first of these (No. 109), upon which all the structural work was based, was discovered in 1950. Though the presence of this form was first noticed on Weissenberg films, its exact identity was not determined until later by the use of the Laue method. The second specimen (No. 169) was discovered recently during an investigation, with the Laue method, of a number of silicon carbide crystals showing growth spirals. The x-ray patterns of these two specimens are identical.
Both specimens of silicon carbide $141 R$ are coalesced with type $6 H$. The $6 H$ Laue spots are valuable reference points in the identification of this new rhombohedral

[^0]form. In any rhombohedral type $(x R)$, the range from $10 \cdot 0$ to $10 \cdot x$ for $x R$ coincides exactly with the range 10.0 to $10 \cdot 6$ for $6 H$. One must remember, however, that the $10 \cdot l$ reflections of the rhombodhedral $x R$ are missing when $l-1 \neq 3 n$. It also follows that the range between two adjacent $6 H$ reflections, e.g., $10 \cdot 1$ to $10 \cdot 2$, coincides exactly with $1 / 6$ of the $10 \cdot 0$ to $10 \cdot x$ range of $x R$. Thus, if $6 H$ spots were present on a film with unknown $x R$ spots, one could identify the $x R$ type by multiplying by 6 the number of spaces between the $x R 10 \cdot l$ reflections that lie between any two adjacent $6 H 10 \cdot l$ spots, counting, of course, the spaces between the missing reflections caused by the rhombohedral lattice. On the x-ray films 23.5 of these spaces lie between the known 10.1 and $10.26 H$ reflections. The number of layers in the unknown type would, therefore, be $6 \times 23.5=141$. A synthetic Laue pattern of silicon carbide $141 R$ was also constructed according to the method previously described. ${ }^{5}$ This corresponded exactly with the $10 \cdot l$ spots on the Laue film.

THE STRUCTURE OF $141 R$

Those $141 R 10 \cdot l$ reflections which coincide most closely with $6 H 10 \cdot l$ positions are of stronger intensity. This intensity coincidence is an indication of the presence of many 33 units, which characterize $6 H$, in the zigzag sequence of $141 R$. Assuming that many 33 units are necessary because of this intensity distribution, and also that the only numbers found in zigzag sequences are 2,3 , and $4,{ }^{6}$ the only possible way to complete the $141 R$ cell is the arrangement 3333333333333332 . The calculations for this sequence gave satisfactory agreement with the observed intensities of the films. Table I compares the calculated and observed intensities for this sequence. Other evidence supporting the validity of this sequence for the $141 R$ structure is presented in a later section.

This new rhombohedral polymorph has the following (hexagonal) cell dimensions:

$$
a_{0}=3.073 k X, \dagger \quad c_{0}=354.33_{3} k X, \quad Z=141
$$

[^1]or, for rhombohedral axes,
$$
a_{r h}=118.12_{4} k X, \quad \alpha=1^{\circ} 30^{\prime}, \quad Z=47
$$

The space group for $141 R$ is $R 3 m$, as in the other known rhombohedral polymorphs. The zigzag sequence 3333333333333332, which must be repeated three times to give the complete unit cell, results in the following atomic positions:

```
47 Si at \(0,0, r z\)
\(47 C\) at \(0,0, r z+p\)
47 Si and 47 C at \(1 / 3,2 / 3,2 / 3+\) the above coordi-
    nates
47 Si and \(47 C\) at \(2 / 3,1 / 3,1 / 3+\) the above coordinates.
\(r=0,2,6,8,12,14,18 \ldots 48 ; 51,54,57,60 \ldots 93 ; 97\), \(99,103,105,109,111,115 \ldots 139\).
\(z=1 / 141\)
\(p=(3 / 4)(1 / 141)\).
```

Table I. Comparison of observed and calculated intensities for some of the reflections of type $141 R$.

(10.l)	$I_{\text {ealo }}$	$I_{\text {obs }}$	(10.l)	$I_{\text {cale }}$	$\mathrm{I}_{\mathrm{ob} \text {, }}$
10.1	0.8	vvw?	$10 . \overline{3} \overline{5}$	0.4	a
4	0.9	vvw?	$\overline{3} 8$	3.2	a
7	2.0	vvw	41	1.5	a
10	1.2	vvw	$\overline{4} 4$	0.1	a
13	8.0	vw	$4 \overline{7}$	1000.0	vvs
16	6.5	vw	50	2.1	a
19	21.9	w	$\overline{5} \overline{3}$	2.4	a
22	190.3	ms	$5 \overline{6}$	0.0	a
25	129.9	ms	$5 \overline{9}$	5.0	a
28	30.0	mw	$6 \underline{2}$	0.0	a
31	23.9	w	$\overline{65}$	1.7	vvw
34	25.9	w	$\square_{8} 8$	18.3	w
37	12.0	w	71	685.8	vs
40	17.0	w	74	19.2	w
43	52.5	m	$\overline{7} \overline{7}$	0.1	vw
46	740.4	vs	$\overline{8} \overline{0}$	5.7	vw
49	139.3	ms	$\overline{8} \overline{3}$	12.9	vw
52	21.9	w	$\overline{8} \overline{6}$	5.2	vvw
55	14.9	vw	$\overline{8} 9$	14.1	w
58	2.9	vw	$\overline{9} \overline{2}$	78.0	m
61	6.4	vw	$\overline{95}$	221.3	ms
64	4.5	w	$9 \overline{8}$	14.5	w
67	19.5	w?	101	9.0	vw
70	744.9	vs	104	6.0	vw
73	31.2	mw	$\overline{1} \overline{0} \overline{7}$	0.4	vw
76	7.9	vw	110	0.4	vvw
$10 . \overline{2}$	0.8	a	$\overline{113}$	7.9	vw
5	0.4	a	$\overline{116}$	61.1	m
$\overline{8}$	0.5	a	$\overline{119}$	39.6	m
11	1.2	a	122	4.9	vvw
14	2.0	a	125	0.7	vvw
17	3.3	a	$\overline{12} \overline{8}$	13.4	vw
$\overline{2} \overline{0}$	7.9	...	131	5.4	vvw
$2 \overline{3}$	479.6	s	$1{ }^{1} \overline{4}$	0.0	vow
$\underline{2}$	27.0	w	$\overline{1} \overline{3} 7$	0.9	vvw
$\overline{2} \overline{9}$	3.0	vvw	$\overline{140}$	0.9	vvw
$\overline{3} \overline{2}$	1.4	a			

THE MORPHOLOGY OF $141 R$

Because two examples of $141 R$ have been discovered it will be necessary to give separate descriptions of each of the specimens.

Crystal No. 109 is blue-gray in color and transparent ; it measures about 1.00 mm long, 0.75 mm wide, and 0.25 mm thick. It is tabular parallel to (0001), the two pinacoids being the largest and best developed faces present.

Of the six trigonal pyramid zones, only four have measurable faces, giving goniometer signals of varying quality. There is a striking resemblance between the character of the pyramid faces as observed in the optical goniometer and the reflections of the corresponding $10 . l$ planes that exist on x-ray films. In fact a photograph of a series of these goniometer signals would give a fair picture of the $10 . l$ reflections observed on a Buerger precession film. Table II is a summary of the various forms observed on the crystal. The quality of the goniometer signal is divided into the two components, intensity and amount of lateral blurring. In attempting a comparison of these data with the x-ray data of Table I or Fig. 1, one should consider the more intense reflections in the cases where two intensities are reported. The goniometer reflections which are much blurred, compare, in general, with the regions on the x-ray film where whole groups of weak or very weak reflections occur. These correspond also with the clusters of reflections lying around points F^{\prime}, B, and C in the graph of calculated $141 R$ intensities shown on Fig. 1. The faces which are sharper and of a higher intensity correspond, in general, to reflections on the

Table II. Morphological data for SiC type $141 R$.

Form	No. times observed	Quality		Angle between form and base	
		I	Amt. blurred	Observed	Calculated ${ }^{\text {a }}$
00.1	2	s	none	0°	0°
$10 . \overline{1} \overline{2} \overline{2}$	1	vw	much	$\sim 47^{\circ}$	$47^{\circ} 30^{\prime}$
$10.1 \overline{1} 9$	2	w	much	$48^{\circ} 16^{\prime}$	$48^{\circ} 13^{\prime}$
$10.1 \overline{1} \overline{6}$	1	vw	much	$\sim 48^{\circ} 50^{\prime}$	$48^{\circ} 56^{\prime}$
10.95	2	mw-vvw	some	$\sim 54^{\circ}-54^{\circ} 52^{\prime}$	$54^{\circ} 30^{\prime}$
$10.7 \overline{1}$	3	ms-vvw	none to some	$61^{\circ} 45^{\prime}-62^{\circ} 0^{\prime}$	$61^{\circ} 56^{\prime}$
$10 . \overline{4} \overline{7}$	3	ms-vvw	some	$70^{\circ} 38^{\prime}-70^{\circ} 52^{\prime}$	$70^{\circ} 33^{\prime}$
$10 . \overline{2} \overline{6}$?	1	vvw	much	$\sim 79^{\circ}$	$78^{\circ} 57^{\prime}$
$10 . \overline{2} \overline{3}$	3	ms-vvw	some to much	$80^{\circ} 0^{\prime}-80^{\circ} 5^{\prime}$	$80^{\circ} 12^{\prime}$
10.11	1	vw	some	$84^{\circ} 57^{\prime}$	$85^{\circ} 17^{\prime}$
10.8	1	vw	much	$\sim 85^{\circ} 53^{\prime}$	$86^{\circ} 34^{\prime}$
$\left.\begin{array}{l}10.0 \\ 10.1\end{array}\right\}$	4	w-vw	much	$89^{\circ} 48^{\prime}-\sim 90^{\circ}$	$\left\{\begin{array}{l}90^{\circ} 00^{\prime} \\ 89^{\circ} 34^{\prime}\end{array}\right.$
10.4?	1	vw	some	$88^{\circ} 14^{\prime}$	$88^{\circ} 17^{\prime}$
10.16	1	vvw	much	$\sim 83^{\circ}$	$83^{\circ} 9^{\prime}$
10.19	3	m-vw	much	$\sim 82^{\circ}$	$81^{\circ} 53{ }^{\prime}$
10.22	3	m-vw	v. much	$\sim 80^{\circ} 41^{\prime}$	$80^{\circ} 37^{\prime}$
10.25	3	m-vw	some to much	$\sim 79^{\circ} 40^{\prime}$	$79^{\circ} 22^{\prime}$
10.28	3	vVw	much	$\sim 78^{\circ}$	$78^{\circ} 7^{\prime}$
10.31	1	vvw	much	$\sim 77^{\circ}$	$76^{\circ} 54^{\prime}$
10.43	2	vw	some to much	$72^{\circ} 1^{\prime}-72^{\circ} 7^{\prime}$	$72^{\circ} 6^{\prime}$
10.46	4	mw-w	some to much	$70^{\circ} 44^{\prime}-70^{\circ} 53^{\prime}$	$70^{\circ} 56^{\prime}$
10.49	2	w-vvw	much	$69^{\circ} 38^{\prime} \sim 70^{\circ}$	$69^{\circ} 48^{\prime}$
10.52	1	vvw	much	$68^{\circ} 42^{\prime}$	$68^{\circ} 40^{\prime}$
10.70	4	ms-w	none to some	$62^{\circ} 15^{\prime}-62^{\circ} 30^{\prime}$	$62^{\circ} 16^{\prime}$
10.73	2	vvw	some	$\sim 59^{\circ} 30^{\prime}$	$61^{\circ} 16^{\prime}$
10.94	3	ms-mw	some	$54^{\circ} 30^{\prime}-54^{\circ} 53^{\prime}$	$54^{\circ} 47^{\prime}$
10.118	1	vw	some	$48^{\circ} 15^{\prime}$	$48^{\circ} 27^{\prime}$

[^2]

Fig. 1. Comparison of the calculated $10 . l$ reflections for five members of the ' $3 \ldots 2$ ' series.
x -ray film which are medium strong to very very strong. A study of the morphology revealed that the coalesced $6 H$ portion was very minor. Only one pyramid zone showed faces which could definitely be distinguished from the $141 R$ faces.

Crystal No. 169 is dark blue in color, translucent, and about 2.5 mm long, 1.5 mm wide, and 0.5 mm thick. It is tabular parallel to (0001). Attached to the edge of this crystal is another silicon carbide plate of about the same size. These two crystals do not appear to be related by twinning. Their c axes are inclined to each other by an angle of about $68^{\circ} 18^{\prime}$ and none of the other axes are parallel. This attached crystal is a combination of types $6 H, 15 R, 33 R$ plus a new type which is in the general vicinity of 400 H , if hexagonal, or 1200 R , if rhombohedral. Polymorph $141 R$ is also coalesced with $6 H$. Of the six trigonal pyramid zones, only four have measurable faces. The measured faces of three of these zones are of very good quality and have angular values indicating pure $6 H$. The fourth zone, whose reflections appeared to result from a thinner plate coalesced with the predominant $6 H$ portion of the crystal, gave blurred reflections exactly the same in character as those for crystal No. 109 which were summarized above in Table II. It thus appears from the morphology of the crystal that $141 R$ is a separate crystal plate syntactically coalesced with a thicker crystal of $6 H$.

Crystal No. 169 is also interesting from the point of view that it displays a visible growth spiral. The spiral radiates counterclockwise from the center of the pinacoid on that surface of the crystal which was determined above as being $141 R$. Verma ${ }^{7}$ who has done con-

Table III. The relationship of $6 H$ positions to $x R 10 \cdot l$ reflections.

6H $10 \cdot \mathrm{l}$	Fractional relationship	Value of l for the $x R 10 \cdot l$ refiections
10.0	$2 / 6$ way between $x R 10.1$ and $10 \cdot 2$	
$10 \cdot 1$	$3 / 6$ way between $x R 10 \cdot l$ and $10 \cdot l+3$	$l=1+3 n$
$10 \cdot 2$	$2 / 6$ way between $x R 10 \cdot l$ and $10 \cdot l+3$	$l=1+3(2 n+1)$
$10 \cdot 3$	$1 / 6$ way between $x R 10 \cdot l$ and $10 \cdot l+3$	$l=1+3(3 n+2)$
$10 \cdot 4$	Coincides with x R 10.l	$l=1+3(4 n+3)$
$10 \cdot 5$	```5/6 way between xR 10.l-3 and 10.l```	$l=1+3(5 n+4)$
10.6	$4 / 6$ way between $x R 10 \cdot l-3$ and $10 . l$	$l=1+3(6 n+5)$
10.1	1/6 way between $x R 10 \cdot l$ and $10 \cdot l-3$	$l=-(2+3 n)$
$10 \cdot \overline{2}$	Coincides with $x R 10 \cdot l$	$l=-(2+3(2 n+1))$
$10 \cdot 3$	$5 / 6$ way between $x R 10 \cdot l+3$ and $10 . l$	$l=-(2+3(3 n+2))$
10.4	$4 / 6$ way between $x R 10 \cdot l+3$ and $10 \cdot$ l	$l=-(2+3(4 n+3))$
10.5	$3 / 6$ way between $x R 10 \cdot l+3$ and $10 \cdot l$	$l=-(2+3(5 n+4))$
10.6	```2/6 way between xR 10.l+3 and 10.l```	$l=-(2+3(6 n+5))$

[^3]siderable work measuring the step heights of the spirals. on silicon carbide crystals, has shown that these heights are of a magnitude equal to either fractions or multiples of actual unit cells. The step height of the spiral on $141 R$ has not yet been determined. The writer has noticed visible spirals on numerous other specimens of silicon carbide which have giant c_{0} values. With the exception of $168 R$, he has so far been unable to exactly identify these. Perhaps most crystals of this substance which display spirals visible to the naked eye, possess giant c_{0} values. This point definitely warrants further investigation.

$141 R$ AND OTHER SIMILAR SILICON CARBIDE STRUCTURES

The $141 R$ zigzag sequence falls into the ' $3 \ldots 2$ ' rhombohedral series proposed by Ramsdell, ${ }^{1}$ where the ratio of 33 's to 32 's in this case is $7: 1$. The following extension of the Ramsdell series includes this new form:

		Ratio of 33 to 32
$15 R$	32	$0: 1$
$33 R$	3332	$1: 1$
$51 R_{(a)}$	333332	$2: 1$
$(69 R) \ddagger$	33333332	$3: 1$
$87 R$	3333333332	$4: 1$
$(105 R) \ddagger$	333333333332	$5: 1$
$(123 R) \ddagger$	33333333333332	$6: 1$
$141 R$	333333333333332	$7: 1$
$6 H$	$3333333333333333333 \ldots \infty$	$1: 0$

These sequences must be repeated three times to give the complete unit cell, since the last layer must be directly above the initial layer. Each member of this series $(x R)$ will have

$$
\begin{equation*}
x=3(6 n+5) \tag{1}
\end{equation*}
$$

where $x=$ number of layers in the polymorph, n is any whole number, $6=3+3$, and $5=3+2$.

Ramsdell' has pointed out that major "blocks" of the larger cells have the $6 H$ structure because of the increasing number of successive 33 units in the zigzag sequence, and thus the larger cells in the series become increasingly more like $6 H .6 H$ is the limiting case of this series. Because of the abundance of the 33 units in the many-layered rhombohedral structures, the intensities of the rhombohedral $10 . l$ reflections lying near $6 H 10 . l$ positions should be greater.

Because every polymorph of silicon carbide has the same a axis and a c axis whose length is an exact multiple of a common unit ($d=2.513 k X$), there is a coincidence of the rows of $10 . l$ reflections of all silicon carbide types. Moreover, the range from 10.0 to $10 . x$ for every $x R$ or $x H$ type will be equal on a film. This distance corresponds to the reciprocal of the basic unit. This relationship between $6 H$ and $141 R$ was used above to identify the $141 R$ form. In the following discussion

[^4]$x R 10 . l$ reflections which fall in this range will simply be called $x R$ reflections. The $6 H 10 . l$ reflections will be designated $6 H$ positions since we are only interested in their position on the films in relationship to actual $x R$ reflections.

It was stated above that the rhombohedral $10 . l$ reflections lying near $6 H$ 10.l positions should be of greatest intensity. In order to determine which $x R$ reflections are most influenced by these $6 H$ positions it is necessary to determine which of the $10 . l$ reflections for the members of the ' $3 \ldots 2$ ' series are most closely related to these $6 H$ positions. Table III summarizes the relationship of $136 \mathrm{H} 10 . \mathrm{l}$ positions to their two neighboring $x R 10 . l$ reflections. The value n, used in determining l for the $10 . l$ reflections, can be found from $n=(x-15) / 18$, a rearrangement of Eq. (1) above. In Table III it is easily observed that the $6 H$ positions are related to the $x R$ reflections in a limited number of ways. The $6 H$ position can either coincide with a $x R$ reflection or be $1 / 6,2 / 6,3 / 6,4 / 6$, or $5 / 6$ the way between two of the $x R$ reflections. The importance of these different fractions will be discussed in more detail later using $141 R$ as an example.

The general effect of the $6 H$ positions of the $x R$ reflections is easily observed in Fig. 1 which is a graph showing a comparison of the calculated $10 . l$ reflections for 5 members of the ' $3 \ldots 2$ ' series. A, B, C, D, E, F, and G are the locations of the $6 H$ positions $10.0,10.1$, 10.2 , etc. respectively, and $B^{\prime}, C^{\prime}, D^{\prime}, E^{\prime}, F^{\prime}$, and G^{\prime} are the locations of the $6 H$ positions $10 . \overline{1}, 10 . \overline{2}$, etc., respectively.

Those calculated intensity values plotted in Fig. 1 for type $141 R$ are the same as those listed in Table I. The values for $33 R, 51 R_{(a)}, 87 R \S$ were taken from Ramsdell. ${ }^{1,8}$ Type $69 R$ has not yet been discovered, so no intensity values for this structure have previously been published. The complete ranges of $10 . l$ reflections for $51 R_{(a)}, 87 R$, and $141 R$ have not been calculated. For this reason the extent of their calculation is indicated by the light vertical dashed lines in the figure. The darkest $10 . l$ reflections, which in each case have l equal to $1 / 3 \cdot x$ of the $x R$ form were arbitrarily made equal for each of the types.

The intensity of a $x R$ reflection is not only conditioned by its promixity to a $6 H 10 . l$ position, but also depends upon the intensity of the 6 H reflection that falls at this position. In other words a $x R$ reflection falling near a very intense $6 H$ reflection position should itself be of a high intensity, and a $x R$ reflection next to a weak $6 H$ reflection position should itself be weak.

In order to show more clearly the dual importance of the proximity as well as the intensity of a $6 H$ position, the relative intensities of the $6 H$ positions are compared to the relative intensities of the neighboring $141 R$

[^5]Table IV. Intensities of $6 H$ reflections compared to adjoining $141 R$ reflections.

$6 H 10 . l$	6H in- tensity	Adjoining $141 R$ reflections	Fractional intensity	distance of $6 H$ between $141 R$	
10.0	0.0	$10.1-10 . \overline{2}$	$0.8-0.8$	$2 / 6$	
10.1	478.1	10.22	-10.25	$190.3-129.9$	$3 / 6$
10.2	1000.0	10.46	-10.49	$740.4-139.3$	$2 / 6$
10.3	640.5	$10.70-10.73$	$744.9-31.2$	$1 / 6$	
10.4	311.2	10.94	not calc.	coincides	
10.5	129.5	$10.115-10.118$	not calc.	$5 / 6$	
10.6	0.0	$10.139-10.142$	not calc.	$4 / 6$	
$10 . \overline{1}$	478.1	$10 . \overline{2} \overline{3}-10 . \overline{2} \overline{6}$	$479.6-27.0$	$1 / 6$	
$10 . \overline{2}$	1000.0	$10 . \overline{4} \overline{7}$	1000.0	coincides	
$10 . \overline{3}$	640.5	$10 . \overline{6} \overline{8}-10 . \overline{7} \overline{1}$	$18.3-685.8$	$5 / 6$	
$10 . \overline{4}$	311.2	$10 . \overline{9} \overline{2}-10 . \overline{9} \overline{5}$	$78.0-221.3$	$4 / 6$	
$10 . \overline{5}$	129.5	$10 . \overline{1} \overline{1} \overline{6}-10 . \overline{1} \overline{1} \overline{9}$	$61.1-39.6$	$3 / 6$	
$10 . \overline{6}$	0.0	$10 . \overline{1} \overline{4}-10 . \overline{1} \overline{4} \overline{3}$	$0.9-$ not calc.	$2 / 6$	

reflections in Table IV. For convenience the intensities for $6 H \quad 10 . \overline{2}$ and $141 R 10 . \overline{47}$ were made equal, because they are the most intense reflections for both polymorphs and coincide with each other in position. On this basis their magnitudes are in such good agreement, that a good comparison is possible.
It is easily noticed that in the cases where a $6 H$ position is $1 / 6$ or $5 / 6$ the way between two $141 R$ reflections (e.g., $6 H 10 . \overline{1}$), the intensity of that $141 R$ reflection nearest the $6 H$ position is the greater by a large ratio. Its intensity is close to the intensity of the $6 H$ reflection its neighbors. When a $6 H$ position is $2 / 6$ or $4 / 6$ the way between two $141 R$ reflections (e.g., $6 H 10 . \overline{4})$ the intensity of that $141 R$ reflection nearest the $6 H$ position is the greater, but by a smaller ratio than for the $1 / 6$ or $5 / 6$ case. Also its intensity is considerably less than that of the neighboring $6 H$ reflection. When the $6 H$ position is $3 / 6$ way between two $141 R$ reflections (e.g., $6 H 10 . \overline{5}$ and 10.1) both of these reflections will have an intensity much less than the $6 H$ intensity and will differ from each other by a very small ratio. In the cases where a $141 R$ reflection lies in the same position as a possible $6 H$ reflection (e.g., $141 R$ $10 . \overline{47}$) it will have an intensity nearly equal to that corresponding 6 H reflection. The intensities of the other $141 R$ reflections neighboring this case (e.g., $141 R 10 . \overline{4} \overline{4}$ and $10 . \overline{50}$) are much smaller.
In the discussion above, only the influences of the $6 H$ positions upon two neighboring $x R$ reflections were considered. These effects can be somewhat more generalized in considering the other $x R$ reflections. If one temporarily disregards the reflections of high intensity discussed above and considers the remaining reflections (Fig. 1), it will be noticed that in the regions between G^{\prime} and D^{\prime} and also between A and D, there are clusters of reflections of a higher intensity compared to the remaining regions. More specifically, they lie as clusters around $6 H 10 . \overline{5}, 10 . \overline{4}, 10.1$, and 10.2 . These are regions where the $6 H$ positions are related to $x R$ reflections by $2 / 6,3 / 6$, and $4 / 6$ as was discussed earlier. When the $6 H$
positions superimpose, or are very close to $x R$ reflections, e.g., by $1 / 6$ or $5 / 6$, the adjoining neighbors are very low in intensity or nearly absent. An example of this is the neighbors of $141 R 10 . \overline{47}$ in Fig. 1. The $x R$ reflections in regions corresponding to the $6 H$ missing reflections $10.0,10.6$, and $10 . \overline{6}$ are themselves usually very weak or absent.

Another important relationship exists between the members of the series in discussion. As the number of layers in the form increases the ratio between the intense reflections near $6 H$ positions and those clusters of less intense reflections also increases. This is easily understood when one recalls that in the larger cells of the series the number of 33 units in the zigzag sequence increases, making the structure more like $6 H$ in character. As the structure approaches this limiting case, the reflections near $6 H$ positions will become more intense while other reflections become less intense. When $6 H$ is reached only the $6 H$ positions are present. As a result of this fact it is obvious that above a certain point the many-layered forms in the series would have no distinguishing characteristics. Only reflections next to $6 H$ positions would be noticeable on the film. This increasing ratio between the more intense reflections and the less intense reflections makes intensity evaluation very difficult in the many-layered forms. Those intense reflections near $6 H$ positions have to be greatly overexposed before the less intense clusters of reflections can be observed or evaluated. These facts were considered in the evaluation of the $141 R$ intensities in Table I.
In résumé it may be said that all $x R$ forms belonging to the ' $3 \ldots 2$ ' series have the following characteristics: (a) x must equal $3(6 n+5)$. (b) $10 . l$ reflections lying next to $6 H$ positions have the greatest intensity. In general, the intensity of these depends upon the exact proximity of the $6 H$ position and upon the intensity of the possible $6 H 10 . l$ at that position. (c) All of the remaining $x R$ reflections follow a characteristic pattern, in that they fall as clusters of reflections of medium intensity around the $6 H 10 . \overline{5}, 10 . \overline{4}, 10.1$, and 10.2 positions. (d) As the number of layers in the form increases there is an increasing ratio between the intensity of the reflections near $6 H$ positions and the intensity of the clusters of less important reflections.

It seems logical to conclude that any new type which fits all of the above conditions would belong to this series.

SILICON CARBIDE TYPE $393 R$

Silicon carbide type $393 R$, which was discovered during the course of the writing of this paper, serves as an excellent example of the usefulness of the above study of the ' $3 \ldots 2$ ' series. The fact that the crystal was coalesced with type $6 H$ permitted its unambiguous identification using Laue photographs.
Of great importance is the fact that this type fits the condition $x=3(6 n+5)$, where $n=21$. Buerger precession
films showed the characteristic intensity distribution for the ' $3 \ldots 2$ ' series. As was to be expected, the reflections next to $6 H$ positions were so intense, compared to the minor clusters of reflections, that at first glance the crystal appeared to be pure $6 H$. Closer inspection, however, showed the presence of those less intense clusters of reflections in the regions characteristic for them in this series.

Consequently, on the basis of empirical reasoning, it seems quite certain that $393 R$ is a member of the ' $3 \ldots 2$ ' series. Its zigzag sequence is 3333333333333333 3333333333333333333333333332 , where the ratio of 33 's to 32 's is $21: 1$. There is no point in listing the coordinates of the 786 atoms in the unit cell of this form, since they can easily be derived from the above zigzag sequence.
This new rhombohedral polymorph has the following (hexagonal) cell dimensions:

$$
a_{0}=3.073 k X, \quad c_{0}=987.60_{9} k X, \quad Z=393
$$

or, for rhombohedral axes,

$$
a_{r h}=329.20_{8} k X, \quad \alpha=0^{\circ} 32^{\prime}, \quad Z=131 .
$$

The space group for $393 R$ is $R 3 m$, as in the other rhombohedral polymorphs.

The crystal is dark blue in color, almost opaque, and about 2.5 mm long, 1.5 mm wide, and 1.0 mm thick. X-ray data show that it is syntactically coalesced with $6 H$. An unusual feature of the crystal is the fact that it is also coalesced with another $6 H$ crystal in such a manner that their c axes are parallel but their a axes have an angle between them of about $3^{\circ} 19^{\prime}$. The crystal is also randomly attached to other bits of various silicon carbide crystals which have not been identified. One basal pincoid of $393 R$ shows a pattern of concentric scalloped-circles. It was because of this unusual surface feature that the crystal was initially investigated. Four of the six trigonal pyramid zones have measurable faces. The measured angles showed no appreciable departure from the corresponding $6 H$ angles. This is to be expected since the structure is so closely related to $6 H$. Most of the reflections were of good quality. Because of the very close similarity of this crystal to $6 H$ it does not seem necessary to include a table of morphological data.

CONCLUSION

Virtually this study provides an empirical mechanism for the direct determination of the structures of an evidently common group of silicon carbide polymorphs. Perhaps from now on the tedious calculations involved in the determination of the intensities of the manylayered forms of the ' $3 \ldots 2$ ' series can be eliminated. Similar studies of other series of silicon carbide zigzag sequences might prove as equally useful in the solution of the structures of other many-layered types.

ACKNOWLEDGMENTS

This investigation was carried out through the financial assistance of the U. S. Office of Naval Research.

The writer wishes to thank Professor L. S. Ramsdell of the Mineraological Laboratory, University of Michigan, for his many helpful suggestions during the
progress of the study. Special mention is also due Dr. J. A. Kohn, U. S. Bureau of Mines, Electrotechnical Laboratory, Norris, Tennessee, who began the study of type $141 R$ in 1950. The following, of the University of Michigan, should also be acknowledged for their help with the intensity calculations: W. B. Fauser, Jr., J. Funkhouser, A. A. Giardini, and E. L. Hastings.

Vibrational Spectra of $\mathrm{CF}_{2}=\mathrm{CHD}$ and $\mathrm{CF}_{2}=\mathrm{CD}_{2}{ }^{*}$

Walter F. Edgell and Casper J. Ultee \dagger
Department of Chemistry, Purdue University, Lafayette, Indiana

(Received May 14, 1954)

Abstract

A method has been devised to prepare $\mathrm{CF}_{2}=\mathrm{CD}_{2}$ and $\mathrm{CF}_{2}=\mathrm{CHD}$. The infrared spectra of the gaseous compounds and the Raman spectra of the liquids have been determined. The observed frequencies have been assigned to the fundamental modes of vibration and to overtones and combinations. The torsional frequency has been estimated as $c a 720$ and $c a 520 \mathrm{~cm}^{-1}$ in $\mathrm{CF}_{2}=\mathrm{CH}_{2}$ and $\mathrm{CF}_{2}=\mathrm{CD}_{2}$, respectively. The overtone of the torsional frequency interacts with the CH_{2} or the CD_{2} deformation fundamental and this is the cause of the anomalous results with the product rule.

INTRODUCTION

THE infrared spectrum of $\mathrm{CF}_{2}=\mathrm{CH}_{2}$ was first studied by Torkington and Thompson in 1945. ${ }^{1}$ Edgell and Byrd reported the Raman spectrum of liquid $\mathrm{CF}_{2}=\mathrm{CH}_{2}$ in 1949 and assigned the fundamentals. ${ }^{2}$ At about the same time Smith, Nielsen, and Claassen published the results of their investigation of the Raman and infrared spectrum of gaseous $\mathrm{CF}_{2}=\mathrm{CH}_{2}{ }^{3}$ In general, there is good agreement between the last two investigations, except for the assignment of the $A_{1} \mathrm{CH}_{2}$ deformation frequency and the A_{2} torsion.

This laboratory has been studying the coupling between the (hypothetical) group and skeletal motions during the actual fundamental vibrations of some simple molecules. $\mathrm{CF}_{2}=\mathrm{CH}_{2}$ is quite interesting from this point of view. However, isotopic species are needed for a complete analysis. These and other reasons have prompted us to investigate the spectra of $\mathrm{CF}_{2}=\mathrm{CD}_{2}$ and $\mathrm{CF}_{2}=\mathrm{CHD}$. It was also hoped that such a study might remove the uncertainties in the $\mathrm{CF}_{2}=\mathrm{CH}_{2}$ assignment. No previous references to these molecules have been found.

[^6]
PREPARATION OF SAMPLES

The $\mathrm{CF}_{2}=\mathrm{CD}_{2}$ was prepared by the following reactions:
(1)

(2)

(3) $\mathrm{CF}_{3} \mathrm{CD}_{2} \mathrm{I}+\mathrm{Mg} \rightarrow \mathrm{CF}_{2}=\mathrm{CD}_{2}+\mathrm{MgIF}$.

The $\mathrm{CF}_{3} \mathrm{CD}_{2} \mathrm{OH}$ was prepared by the method of Henne et al. using LiAlD_{4} instead of $\mathrm{LiAlH}_{4},{ }^{4}$ and following the procedure of Edgell and Borneman. ${ }^{5}$ The alcohol was converted to the p-toluenesulfonic acid ester, a typical preparation of which is given below :

50 g (0.5 mole) of $\mathrm{CF}_{3} \mathrm{CD}_{2} \mathrm{OH}$ were mixed with 105 g (0.55 mole) of $\mathrm{ClSO}_{2} \longrightarrow \mathrm{CH}_{3}$ in a 1-liter flask provided with a reflex condenser, stirrer, and dropping funnel. The flask was cooled in an ice bath and 80 g (~ 1 mole) of pyridine were added slowly. The reaction mixture was stirred overnight at a temperature of $0^{\circ} \mathrm{C}$. The resulting mixture was poured on ice and neutralized with dilute HCl . The ester was filtered off, washed with water, recrystallized from petroleum ether, and

[^7]
[^0]: * Present address: Department of Geology, University of Virginia, Charlottesville, Virginia.
 ${ }^{1}$ L. S. Ramsdell, Am. Mineralogist 32, 64 (1947).
 ${ }^{2}$ G. S. Zhdanov and Z. V. Minervina, J. Exptl. Theoret. Phys. 17, 3 (1947).
 ${ }^{3}$ Honjo, Miyake, and Tomita, Acta Cryst. 3, 396 (1950).
 ${ }^{4}$ L. S. Ramsdell and R. S. Mitchell, Am. Mineralogist 38, 56

[^1]: ${ }^{5}$ R. S. Mitchell, Am. Mineralogist 38, 60 (1953).
 ${ }^{6}$ L. S. Ramsdell and J. A. Kohn, Acta Cryst. 5, 215 (1952).
 \dagger These dimensions are given in $k X$ units to agree with the earlier published data which, although reported as Angstrom units, were really in $k X$ units.

[^2]: a Calculated from the theoretical axial ratio for a 141 layer cell.

[^3]: ${ }^{7}$ A. R. Verma, Nature 168, 431 (1951); Z. Elektrochem. 56, 4, 268 (1952).

[^4]: \ddagger These types have not yet been discovered.

[^5]: \S Upon recalculation it was shown that $10 . \overline{2} \overline{9}$ for $87 R$ should be more intense than the 10.28 reflection. The reverse condition had previously been reported.
 ${ }^{8}$ L. S. Ramsdell, Am. Mineralogist 30, 519 (1945).

[^6]: *Abstracted from the Ph.D. thesis of C. J. Ultee, Purdue University, April, 1954.
 \dagger Purdue Research Foundation Fellow, 1952-1953 and Standard Oil Foundation, Inc., Fellow 1953-1954.
 ${ }^{1}$ P. Torkington and H. W. Thompson, Trans. Faraday Soc. 41, 236 (1945).
 ${ }^{2}$ W. F. Edgell and W. E. Byrd, J. Chem. Phys. 17, 740 (1949); 18, 892 (1950).
 ${ }^{3}$ Smith, Nielsen, and Claassen, J. Chem. Phys. 18, 326 (1950).

[^7]: ${ }^{4}$ Henne, Alm, and Smook, J. Am. Chem. Soc. 70, 1968 (1948).
 ${ }^{5}$ W. F. Edgell and E. H. Borneman, to be published. See also E. H. Borneman, Ph.D. thesis, Purdue University, 1952.

