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electrostatic field of symmetry C2V was found to be 
small. There are no calculations for A1(III) and B1(II) 
using SCF-LCAO-MO virtual orbitals of the proper 
symmetry since none were obtained in the ground-state 
calculation. 

The perturbation approach emphasizes the use of 
the best available core function and the best available 
excited orbital from the outset, without variation. 
Variation would allow the excited orbital to relax in 
the field of the molecular core but raises questions of 
orthogonality to the core. In this regard, the method 
of McWeeny and (jhrnl9 is promising without requiring 

19 R. McWeeny, Tech. Rept. No. 59, Quantum Chemistry 
Group, Uppsala University, Uppsala, Sweden (unpublished); 
R. McWeeny and Y. Ohm, ibid. No. 60; Rev. Mod. Phys. 35, 
520 (1963). 

strong orthogonality between excited orbital and mo­
lecular core. It should be tested on a simple polyatomic 
molecule. 

Even if an excited orbital is obtained which is a vari­
ational solution in the field of the exact molecular core, 
two further effects remain to be evaluated. The "or­
bital average polarization" of the molecular core20 is 
the polarization of the core due to the smeared-out 
potential of the excited electron. This effect disappears 
in a complete SCF treatment of core plus electron. 
Secondly, the more important "core polarization" 
which arises from instantaneous polarization of the 
core by the excited electron is a correlation effect. 
Both of these effects are of spectroscopic importance. 

20 O. Sinanoglu, J. Chern. Phys. 33, 1212 (1960). 
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Simple approximation formulas are d.'!rived for the dipole-quadrupole and retardation effects upon the 
total elastic scattering cross section for atomic collisions in the thermal energy range. For a long-range 
potential containing both the dipole-dipole and dipole-quadrupole terms, i.e., V (r) = - (C(6) IrS) [1 + (fJ/r2) J, 
one finds ~Q/QMM""j?!'(fJ/QMM) where QMM is the Massey-Mohr cross section for an inverse sixth-power 
attraction. For a long-range potential including dipole-dipole and retardation effects, approximated by 
V(r)=-(C(6)/rS)[a/(a+r)], one obtains ~Q/QMM",,-(?!,-JQMMi)/a. Since these deviations are small 
and opposite in sign, it is concluded that the contributions of the dipole-quadrupole and retardation effects 
to the total cross sections are not sufficient to account for any significant discrepancy between theoretical 
and experimental Q values. 

I. INTRODUCTION 

THE principal objective of low-energy atomic scat­
tering experiments is the determination of the long­

range part of the interaction potential, for comparison 
with theory. The data are usually interpreted on the 
assumption that the potential at large separations is 
of the London inverse sixth-power functional form. 
For the general case of a potential with asymptotic 
behavior V (r) = - C(8) I r8

, one expects the total elastic 
scattering cross section to be well approximated by the 
Massey-Mohrl relationship Q(v) cc (C(8) Iv )2/(8-1), where 
v is the relative velocity. In addition, the low-angle 
"classical" differential cross section should be given by 
J(O) cco-2(l+l/8). There is a considerable body of evi-

* Work supported by the U. S. Atomic Energy Commission and 
National Aeronautics and Space Administration. 

1 H. S. W. Massey and C. B. O. Mohr, Proc. Roy. Soc. (London) 
A144, 188 (1934). 

dence2 from both total and differential cross sections 
that s is very close to the expected value of 6. In addi­
tion, relative values of Q's are found to correlate welp·4 
with theoretical estimates of C for a large number of 
atomic (and molecular) systems. Unfortunately, abso­
lute values of C derived from experimental Q's appear5 
to be somewhat larger than predicted values based on 
perturbation theory calculations. This discrepancy may 
well be due to a common systematic experimental 
error; alternately, it could be an indication that the 
long-range attraction is somewhat stronger than that 

2 R. B. Bernstein, Proceedings of the Third International Con­
ference on the Physics of Electronic and Atomic Collisions, London, 
1963 (North Holland Publishing Company, Amsterdam, to be 
published) . 

3 E. W. Rothe and R. B. Bernstein, J. Chern. Phys. 31, 1619 
(1959). 

4 H. Pauly, Fortsch. Physik 9, 613 (1961). 
5 A. Dalgarno, Rev. Mod. Phys. 35, 611 (1963); also Refs. 2-4. 
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predicted by perturbation theory considering only the 
induced-dipole interation. In the present paper we ex­
amine the influence of the usually neglected terms in 
the potential such as the dipole-quadrupole interac­
tion (rB) and the retardation effect (r7 at large 
separations) . 

The approach used is a direct extension of the 
Massey-Mohr1 (MM) semiclassical approximation 
technique. The results are expressed in terms of the 
fractional deviation (Q-QMM)/QMM, where QMM= 
7.547 (C/liv) I. Although it has been shown6 that the 
Schiff-Landau-Lifshitz (SLL) approximation formula 
for Q (the same as that of MM with a 7.5% greater 
numerical factor) is more exact, the MM procedure is 
better adapted to the present problem and has there­
fore been chosen. In any case, the fractional effect 
t:.Q/Q should be very nearly correct. The present results 
should be applicable over the same range of velocities 
as the MM or SLL approximations. They all lose 
validity at low v due to the failure of the semiclassical 
assumptions and at high v due to the increasing impor­
tance of the short-range repulsion. 

II. DIPOLE-QUADRUPOLE EFFECT 

Including the ,-B dipole-quadrupole contribution the 
long-range interatomic potential becomes 

where (3= C(B) /C(6) with C(B) denoting the dipole-quad­
rupole constant and C(6) the dipole-dipole constant. 

If one uses the London approach to calculate the 
interatomic potential then C(B) as well as C(6) can be 
given in closed form.7 In the equations that follow, 
the subscripts on the! values (oscillator strengths), 
polarizabilities a, and ionization energies E refer to 
the two interacting atoms. The results are expressed 
in atomic units: 

C(6) =![ala2ElE2/(El+E2) J, (2) 

C(8) = 45[ ala22 EIE22 + ala2E12 E2 ]. 
8 (E1+2E2)h (2E1+E2)!1 (3) 

The total collision cross section is then calculated by 
assuming the usual semiclassical conditions.l,6·8 

where 

211'V 811' ("" 
Q=Q<+Q>=~+ k2J

L 
1'r/JB

2dl, (4) 

(5) 

where 'I1JB(6) is the Jeffreys-Born phase in the dipole-

6 R. B. Bernstein and K. H. Kramer, J. Chem. Phys. 38, 2507 
(1963). 

7 J. F. Hornig and J. O. Hirschfelder, J. Chem. Phys. 20, 1812 
(1952); P. R. Fontana, Phys. Rev. 123, 1865 (1961). 

8 R. B. Bernstein, J. Chem. Phys. 38, 515 (1963). 

dipole approximation, 

'I1JB (6) = 1s1l' (J.l.C(6) k4/1i,2l5) , 

and L is defined by the equation 

'I1JB(L) = t=tx5(1+<px2) , 

where X= Lo/ L. Here, 

(6) 

(7) 

<p= t{3[311'C(6) /81iv J-I= ¥n-(,6/QMM), (8) 

Lo= [311'1.LC(6)k4/8/iPJl, (9) 
and 

QMM=h(Lo/k)2=h(311'C(6) /8Iiv) I. (10) 

Evaluation of (4) yields 

Q= 211'(Lo/kx) 2 (1 +txlO[l +!<px2+i<p2X4J} (11) 

so that the fractional deviation of Q due to dipole­
quadrupole effects is 

l-l= t:.Q =~ {1+txlO[1+!<px2+i<p2x4JI-1. 
QMM QMM 9X2 

(12) 

For most cases of practical interest, <p«1 and x~1-<p/5. 
Under these conditions, one obtains the following 
approximate result valid to first order in <p for the 
fractional deviation 

t:.Q/QMM~H-<p=211'{3/3QMM. (13) 

In Fig. 1 we have plotted t:.Q/QMM [using Eq. (13) J 
vs the relative velocity v for two systems where total 
cross sections have been measured experimentally.9 It 
is seen that for the thermal-energy region, say from 
lQ4-1()5 cm/sec, the deviation is only a few percent. 
For the curves labeled K-M we used a value for C(6) 
obtained from the variational calculations of Kirkwood 
and Muller.1° Since the London results for the inter­
atomic potential provide a lower limit and the Kirk­
wood-Muller calculations an effective upper limit, a 
more precise determination of C(6) and C(8) would 
yield a result for t:.Q/QMM that lies somewhere within 
the shaded area. The curves for Ne-Ar, Ar-Ar, and 
Kr-Ar fit smoothly between the curves for the He-Ar 
and Xe-Ar interactions. The results for v> 106 em/sec 
should be considered with caution since for such high 
velocities the repulsive forces become very important 
(see Ref. 8) and the form of V in Eq. (1) is no longer 
a good approximation. 

III. RETARDATION EFFECT 

The retardation effect arises from the interaction of 
the electrons with the radiation field and at large inter­
atomic separations the effect modifies the dipole-dipole 

9 E. W. Rothe, P. K. Rol, S. M. Trujillo, and R. H. Neynaber, 
Phys. Rev. 128, 659 (1962). 

10 J. C. Kirkwood, Physik Z. 33, 57 (1932); A. Muller, Proc. 
Roy. Soc. (London) AI54, 624 (1936). 
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van der Waals force. The interaction becomes more 
attractive and for r~oo the modified potential has a 
r 7 dependence. One might thus expect that the retarda­
tion increases the total collision cross section. The inter­
action constant, however, changes too, and depending 
on the magnitude of the relative velocity, the cross 
section can change in either direction. 

The effect of the retardation is to multiply the 
dipole-dipole potential by a function which goes as 
r1 at large interatomic separations and becomes unity 
at small distances. Casimir and Polder have calculated 
this function for a toms with closed -shell configura tions.ll 
There results are given in numerical form; for our 
purpose it was necessary to find an empirical function 
to describe the retardation effect. The parameter in 
this function which determines at what separations the 
r 1 dependence takes over is related to the longest 
wavelength of the dipole transitions in the separate 
atoms. If we define a reduced distance r' = r IX, where 
X is the wavelength mentioned above, then one possible 
empirical function is given by 

( ') a/X 
f r =r'+a/X' (14) 

This function has the proper behavior at large as well 
as at small interatomic distances and it also agrees 
well with the Casimir-Polder calculations. The constant 
a must be adjusted to give the proper fit. The useful 
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FIG. 1. Dipole-quadrupole effect on total scattering cross 
section. Parameters used: He-Ar, CL(6)=7.8XlO-tlO erg· em", 
CL (S)=13.9X1o-76 erg'cms, CKM(6) = 14.4XlO-tlO erg·cm6, {jKM= 
(jL. Xe-Ar, CL(6) = 109XlO-tlO erg·cm6, CL(S) = 266X lO-76 erg· ems, 
CKM(6)=302XlO-tlO erg·em6, {jKM={jL. Calculated using Eq. (13) 
(see text for discussion). 

11 A. B. G. Casimir and D. Polder, Phys. Rev. 73, 360 (1948). 
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FIG. 2. Retardation effect on total scattering cross section. 
Parameters used: Same as for Fig. 1; also a values (in centimeters) 
as follows: He-Ar, aL=2.50XlO-tl, aKM=1.36XlO-tl. Xe-Ar, 
aL=3.46XlO-tl, aKM=1.25XlO-6. 

range of a/X is from 0.54 to 0.75. The modified inter­
action potential now becomes 

VCr) = - (C(6) /r6)f(r) , (15) 

where 
f(r)=a/(r+a). (16) 

With this potential we can now calculate the JB phase 
shift and then the cross section. Thus 

fJ.C(6)lCO adr 

'7JB= /i2k b ,-5(a+r) (r2-b2)!' 
(17) 

where b is the impact parameter. The integration of 
Eq. (17) yields 

[ 
32 4 16 8 16 ] 

TJJB = TJJB(6) 1 __ p+_p2 __ p3+_p4 __ p6J(p) , (18) 
971'3371' 3371' 

where TJJB(6) has been defined in Eq. (6), p=b/a= 
(Lo/ka) (ljLo) , and 

J(p)= 1 p=l 

2(pL 1)-! tan-1/[(p-1) /(p+ 1) J!}. p> 1. 

(19) 

For small p the phase shift can be approximated by 

(20) 
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FIG. 3. Combined effect of dipole-quadrupole and retardation 
terms on the total scattering cross section. Obtained by summing 
effects shown in Figs. 1 and 2. 

while for p-700 expansion of J(p) in inverse powers of 
p exactly cancels all the terms in the bracket of Eq. 
(18), and the remaining terms in the expansion yield 
the asymptotic result. 

17JB= 17JB(6)[(128/457r)p-L !p-2+ ... ] 
=!"5(C(6)a/livb6) [l-Hs1r(a/b) + ... ] 
=17JB(7)[1-27~(a/b)+··· ], 

where 17JB(7) is the phase shift of the potential 

(21) 

V(r)=-(C(6)a/r7)=-(C(7)/r7). (22) 

Thus, for very large impact parameters (p-7oo), Eq. 
(21) yields the expected phase shift. 

In most scattering experiments the characteristic 
values of the impact parameters are considerably smaller 
than the constant a of Eq. (16), and thus to a good 
approximation the total collision cross section can be 
calculated by using Eq. (20) for the phase shift. The 
contributions of the phase shift for p> 1 to the collision 
cross section are negligible for the velocity range con­
sidered. 

To determine the lower limit of the integral in Eq. 
(4) we again consider 

17JB(L) =t=tx5[1- (fix)], (23) 

where x= Lo/ L, and 

1/;= (32/97r) (Lo/ka). (24) 

Since 1/;«1, 
x~1+(fl5). (25) 

Substitution of (20) and (25) into (4) and evaluation 
of the integral yields 

Q= (27rLNk2x2) [1+tx10 {1-1,fi(I/;/x) + ••• }]; (26) 

and thus the fractional deviation from the dipole-dipole 
(MM) cross section becomes 

LlQ =~[1+~XIO(1_16t+ ••• )]-1. (27) 
QMM 9x2 8 7 x 

Then, analogous to Eq. (13), we may obtain an 
approximation (valid to first order in 1/;) for the frac­
tional deviation 

LlQ 8704 QMM! 
QMM = - 85057r1 -a- (28) 

In Fig. 2 we have plotted LlQ/QMM of (28) for He-Ar 
and Xe-Ar. Again a more sophisticated calculation of 
the interaction constant C(6) would yield a result 
somewhere within the shaded area. As seen from Eq. 
(28), the retardation effect lowers the total cross sec­
tion. This indicates that the change of the interaction 
constant is more important than the effect of the more 
attractive potential (rL ·-7r7). 

IV. COMBINED EFFECTS 

In Fig. 3 we have plotted the fractional deviation 
from the dipole-dipole cross section due to the com­
bined dipole-quadrupole and retardation effects. [The 
effects of the retardation on the dipole-quadrupole 
interaction is, of course, not included. The change of 
Q, however, should be very small since fer) is very 
close to one in the region where the dipole-quadrupole 
interaction makes a significant contribution.] It is 
interesting to note that in the velocity range of experi­
mental interest the two effects almost cancel each other. 

These results clearly show that neither the dipole­
quadrupole nor the retardation effects make a large 
enough contribution to explain any discrepancies (Sec. 
I) between theory and experiment. It appears that in 
the framework of the perturbation approach the dipole­
dipole interaction provides by far the largest contribu­
tion to the collision cross section. It is true, however, 
that a very small change in the power of the r-6 inter­
action can change the resulting cross section signifi­
cantly,12 and it may be that a variational calculation 
of the atom-atom interaction energy would yield a 
power dependence (s) that is slightly different from 
the value 6.0. 

12 P. R. Fontana, Ref. 2. 


